SDValue V2, ArrayRef<int> Mask,
const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
+ // TODO: If minimizing size and one of the inputs is a zero vector and the
+ // the zero vector has only one use, we could use a VPERM2X128 to save the
+ // instruction bytes needed to explicitly generate the zero vector.
+
// Blends are faster and handle all the non-lane-crossing cases.
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
Subtarget, DAG))
return Blend;
- MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
- VT.getVectorNumElements() / 2);
- // Check for patterns which can be matched with a single insert of a 128-bit
- // subvector.
- bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
- if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
- SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
- DAG.getIntPtrConstant(0));
- SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
- OnlyUsesV1 ? V1 : V2, DAG.getIntPtrConstant(0));
- return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
- }
- if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 6, 7})) {
- SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
- DAG.getIntPtrConstant(0));
- SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2,
- DAG.getIntPtrConstant(2));
- return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
+ bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode());
+ bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode());
+
+ // If either input operand is a zero vector, use VPERM2X128 because its mask
+ // allows us to replace the zero input with an implicit zero.
+ if (!IsV1Zero && !IsV2Zero) {
+ // Check for patterns which can be matched with a single insert of a 128-bit
+ // subvector.
+ bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
+ if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
+ MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
+ VT.getVectorNumElements() / 2);
+ SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
+ DAG.getIntPtrConstant(0));
+ SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
+ OnlyUsesV1 ? V1 : V2, DAG.getIntPtrConstant(0));
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
+ }
}
- // Otherwise form a 128-bit permutation.
- // FIXME: Detect zero-vector inputs and use the VPERM2X128 to zero that half.
+ // Otherwise form a 128-bit permutation. After accounting for undefs,
+ // convert the 64-bit shuffle mask selection values into 128-bit
+ // selection bits by dividing the indexes by 2 and shifting into positions
+ // defined by a vperm2*128 instruction's immediate control byte.
+
+ // The immediate permute control byte looks like this:
+ // [1:0] - select 128 bits from sources for low half of destination
+ // [2] - ignore
+ // [3] - zero low half of destination
+ // [5:4] - select 128 bits from sources for high half of destination
+ // [6] - ignore
+ // [7] - zero high half of destination
+
int MaskLO = Mask[0];
if (MaskLO == SM_SentinelUndef)
MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1];
MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3];
unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4;
+
+ // If either input is a zero vector, replace it with an undef input.
+ // Shuffle mask values < 4 are selecting elements of V1.
+ // Shuffle mask values >= 4 are selecting elements of V2.
+ // Adjust each half of the permute mask by clearing the half that was
+ // selecting the zero vector and setting the zero mask bit.
+ if (IsV1Zero) {
+ V1 = DAG.getUNDEF(VT);
+ if (MaskLO < 4)
+ PermMask = (PermMask & 0xf0) | 0x08;
+ if (MaskHI < 4)
+ PermMask = (PermMask & 0x0f) | 0x80;
+ }
+ if (IsV2Zero) {
+ V2 = DAG.getUNDEF(VT);
+ if (MaskLO >= 4)
+ PermMask = (PermMask & 0xf0) | 0x08;
+ if (MaskHI >= 4)
+ PermMask = (PermMask & 0x0f) | 0x80;
+ }
+
return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
DAG.getConstant(PermMask, MVT::i8));
}
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 undef, i32 12, i32 undef, i32 15>
ret <8 x float> %shuffle
}
+
+;; Test zero mask generation.
+;; PR22984: https://llvm.org/bugs/show_bug.cgi?id=22984
+;; Prefer xor+vblendpd over vperm2f128 because that has better performance.
+
+define <4 x double> @vperm2z_0x08(<4 x double> %a) {
+; ALL-LABEL: vperm2z_0x08:
+; ALL: # BB#0:
+; ALL-NEXT: vperm2f128 $40, %ymm0, %ymm0, %ymm0
+; ALL-NEXT: retq
+ %s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 4, i32 5, i32 0, i32 1>
+ ret <4 x double> %s
+}
+
+define <4 x double> @vperm2z_0x18(<4 x double> %a) {
+; ALL-LABEL: vperm2z_0x18:
+; ALL: # BB#0:
+; ALL-NEXT: vxorpd %ymm1, %ymm1, %ymm1
+; ALL-NEXT: vblendpd $12, %ymm0, %ymm1, %ymm0
+; ALL-NEXT: retq
+ %s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 4, i32 5, i32 2, i32 3>
+ ret <4 x double> %s
+}
+
+define <4 x double> @vperm2z_0x28(<4 x double> %a) {
+; ALL-LABEL: vperm2z_0x28:
+; ALL: # BB#0:
+; ALL-NEXT: vperm2f128 $40, %ymm0, %ymm0, %ymm0
+; ALL-NEXT: retq
+ %s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
+ ret <4 x double> %s
+}
+
+define <4 x double> @vperm2z_0x38(<4 x double> %a) {
+; ALL-LABEL: vperm2z_0x38:
+; ALL: # BB#0:
+; ALL-NEXT: vxorpd %ymm1, %ymm1, %ymm1
+; ALL-NEXT: vblendpd $12, %ymm0, %ymm1, %ymm0
+; ALL-NEXT: retq
+ %s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 0, i32 1, i32 6, i32 7>
+ ret <4 x double> %s
+}
+
+define <4 x double> @vperm2z_0x80(<4 x double> %a) {
+; ALL-LABEL: vperm2z_0x80:
+; ALL: # BB#0:
+; ALL-NEXT: vperm2f128 $128, %ymm0, %ymm0, %ymm0
+; ALL-NEXT: retq
+ %s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
+ ret <4 x double> %s
+}
+
+define <4 x double> @vperm2z_0x81(<4 x double> %a) {
+; ALL-LABEL: vperm2z_0x81:
+; ALL: # BB#0:
+; ALL-NEXT: vperm2f128 $129, %ymm0, %ymm0, %ymm0
+; ALL-NEXT: retq
+ %s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 2, i32 3, i32 4, i32 5>
+ ret <4 x double> %s
+}
+
+define <4 x double> @vperm2z_0x82(<4 x double> %a) {
+; ALL-LABEL: vperm2z_0x82:
+; ALL: # BB#0:
+; ALL-NEXT: vperm2f128 $128, %ymm0, %ymm0, %ymm0
+; ALL-NEXT: retq
+ %s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 4, i32 5, i32 0, i32 1>
+ ret <4 x double> %s
+}
+
+define <4 x double> @vperm2z_0x83(<4 x double> %a) {
+; ALL-LABEL: vperm2z_0x83:
+; ALL: # BB#0:
+; ALL-NEXT: vperm2f128 $129, %ymm0, %ymm0, %ymm0
+; ALL-NEXT: retq
+ %s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 6, i32 7, i32 0, i32 1>
+ ret <4 x double> %s
+}
+
+;; With AVX2 select the integer version of the instruction. Use an add to force the domain selection.
+
+define <4 x i64> @vperm2z_int_0x83(<4 x i64> %a, <4 x i64> %b) {
+; ALL-LABEL: vperm2z_int_0x83:
+; ALL: # BB#0:
+; AVX1: vperm2f128 $129, %ymm0, %ymm0, %ymm0
+; AVX2: vperm2i128 $129, %ymm0, %ymm0, %ymm0
+ %s = shufflevector <4 x i64> <i64 0, i64 0, i64 undef, i64 undef>, <4 x i64> %a, <4 x i32> <i32 6, i32 7, i32 0, i32 1>
+ %c = add <4 x i64> %b, %s
+ ret <4 x i64> %c
+}
+