From: rtrimana Date: Sat, 1 Sep 2018 00:00:17 +0000 (-0700) Subject: Adding plotting scriptto plot both on and off plots at once. X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=301f34fb861dd5622d96bbbfe07bcd82b120fabf;p=pingpong.git Adding plotting scriptto plot both on and off plots at once. --- diff --git a/python_ml/plotting-dbscan-complete.py b/python_ml/plotting-dbscan-complete.py new file mode 100644 index 0000000..d8c015b --- /dev/null +++ b/python_ml/plotting-dbscan-complete.py @@ -0,0 +1,141 @@ +from sklearn.cluster import DBSCAN +from sklearn import metrics +import matplotlib.cm as cm +import numpy as np +import matplotlib.pyplot as plt + +# Create a subplot with 1 row and 2 columns +fig, (ax2) = plt.subplots(1, 1) +fig.set_size_inches(7, 7) + + +# Read from file +# TODO: Just change the following path and filename +# when needed to read from a different file +path = "/scratch/July-2018/Pairs/" +device1 = "tplink-bulb-on" +device2 = "tplink-bulb-off" +filename1 = device1 + ".txt" +filename2 = device2 + ".txt" + +# Number of triggers +trig = 50 + +# PLOTTING FOR DEVICE ON EVENT +# Read and create an array of pairs +with open(path + filename1, "r") as pairs: + pairsArr = [] + for line in pairs: + # We will see a pair and we need to split it into xpoint and ypoint + xpoint, ypoint = line.split(", ") + pair = [int(xpoint), int(ypoint)] + pairsArr.append(pair) + +# Formed array of pairs +#print(pairsArr) +X = np.array(pairsArr); + +# Compute DBSCAN +# eps = distances +# min_samples = minimum number of members of a cluster +db = DBSCAN(eps=30, min_samples=trig - 5).fit(X) +core_samples_mask = np.zeros_like(db.labels_, dtype=bool) +core_samples_mask[db.core_sample_indices_] = True +labels = db.labels_ + +# Number of clusters in labels, ignoring noise if present. +n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) +#print('Estimated number of clusters: %d' % n_clusters_) + +# Black removed and is used for noise instead. +unique_labels = set(labels) +#print("Labels: " + str(labels)) + +colors = [plt.cm.Spectral(each) + for each in np.linspace(0, 1, len(unique_labels))] +for k, col in zip(unique_labels, colors): + if k == -1: + # Black used for noise. + col = [0, 0, 0, 1] + + class_member_mask = (labels == k) + + print("Unique label: " + str(k) + " with freq: " + str(labels.tolist().count(k))) + xy = X[class_member_mask & core_samples_mask] + plt.plot(xy[:, 0], xy[:, 1], 'o', + markeredgecolor='k', markersize=10) + + xy = X[class_member_mask & ~core_samples_mask] + plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), + markeredgecolor='k', markersize=6) + +count = 0 +for pair in pairsArr: + plt.text(pair[0], pair[1], str(pair[0]) + ", " + str(pair[1]) + + "\nFreq: " + str(labels.tolist().count(labels[count])), fontsize=10) + count = count + 1 + +#==================================================================================================== + +# PLOTTING FOR DEVICE ON EVENT +# Read and create an array of pairs +with open(path + filename2, "r") as pairs: + pairsArr = [] + for line in pairs: + # We will see a pair and we need to split it into xpoint and ypoint + xpoint, ypoint = line.split(", ") + pair = [int(xpoint), int(ypoint)] + pairsArr.append(pair) + +# Formed array of pairs +#print(pairsArr) +X = np.array(pairsArr); + +# Compute DBSCAN +# eps = distances +# min_samples = minimum number of members of a cluster +db = DBSCAN(eps=10, min_samples=trig - 5).fit(X) +core_samples_mask = np.zeros_like(db.labels_, dtype=bool) +core_samples_mask[db.core_sample_indices_] = True +labels = db.labels_ + +# Number of clusters in labels, ignoring noise if present. +n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) +#print('Estimated number of clusters: %d' % n_clusters_) + +import matplotlib.pyplot as plt + +# Black removed and is used for noise instead. +unique_labels = set(labels) +#print("Labels: " + str(labels)) + +colors = [plt.cm.Spectral(each) + for each in np.linspace(0, 1, len(unique_labels))] +for k, col in zip(unique_labels, colors): + if k == -1: + # Black used for noise. + col = [0, 0, 0, 1] + + class_member_mask = (labels == k) + + print("Unique label: " + str(k) + " with freq: " + str(labels.tolist().count(k))) + xy = X[class_member_mask & core_samples_mask] + plt.plot(xy[:, 0], xy[:, 1], 'o', + markeredgecolor='k', markersize=10) + + xy = X[class_member_mask & ~core_samples_mask] + plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), + markeredgecolor='k', markersize=6) + +count = 0 +for pair in pairsArr: + plt.text(pair[0], pair[1], str(pair[0]) + ", " + str(pair[1]) + + "\nFreq: " + str(labels.tolist().count(labels[count])), fontsize=10) + count = count + 1 + + + +plt.title(device1 + ' & ' + device2 + ' - Estimated number of clusters: %d' % n_clusters_) +plt.show() + + diff --git a/python_ml/plotting-dbscan.py b/python_ml/plotting-dbscan.py index 6362b2f..315f0cb 100644 --- a/python_ml/plotting-dbscan.py +++ b/python_ml/plotting-dbscan.py @@ -13,7 +13,7 @@ fig.set_size_inches(7, 7) # TODO: Just change the following path and filename # when needed to read from a different file path = "/scratch/July-2018/Pairs/" -device = "dlink-off" +device = "dlink-siren-on" filename = device + ".txt" # Number of triggers @@ -62,7 +62,7 @@ for k, col in zip(unique_labels, colors): xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', - markeredgecolor='k', markersize=14) + markeredgecolor='k', markersize=10) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),