From: Jeff Garzik <jeff@garzik.org>
Date: Tue, 19 Sep 2006 04:42:13 +0000 (-0400)
Subject: Merge branch 'master' into upstream
X-Git-Tag: firefly_0821_release~33636^2~3
X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=4a3381feb823e06c8e2da7e283c17b0b6fdbddcf;p=firefly-linux-kernel-4.4.55.git

Merge branch 'master' into upstream
---

4a3381feb823e06c8e2da7e283c17b0b6fdbddcf
diff --cc drivers/ata/libata-core.c
index bb66a12c84e5,000000000000..e85c2f8cf193
mode 100644,000000..100644
--- a/drivers/ata/libata-core.c
+++ b/drivers/ata/libata-core.c
@@@ -1,6151 -1,0 +1,6156 @@@
 +/*
 + *  libata-core.c - helper library for ATA
 + *
 + *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
 + *    		    Please ALWAYS copy linux-ide@vger.kernel.org
 + *		    on emails.
 + *
 + *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
 + *  Copyright 2003-2004 Jeff Garzik
 + *
 + *
 + *  This program is free software; you can redistribute it and/or modify
 + *  it under the terms of the GNU General Public License as published by
 + *  the Free Software Foundation; either version 2, or (at your option)
 + *  any later version.
 + *
 + *  This program is distributed in the hope that it will be useful,
 + *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 + *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 + *  GNU General Public License for more details.
 + *
 + *  You should have received a copy of the GNU General Public License
 + *  along with this program; see the file COPYING.  If not, write to
 + *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 + *
 + *
 + *  libata documentation is available via 'make {ps|pdf}docs',
 + *  as Documentation/DocBook/libata.*
 + *
 + *  Hardware documentation available from http://www.t13.org/ and
 + *  http://www.sata-io.org/
 + *
 + */
 +
 +#include <linux/kernel.h>
 +#include <linux/module.h>
 +#include <linux/pci.h>
 +#include <linux/init.h>
 +#include <linux/list.h>
 +#include <linux/mm.h>
 +#include <linux/highmem.h>
 +#include <linux/spinlock.h>
 +#include <linux/blkdev.h>
 +#include <linux/delay.h>
 +#include <linux/timer.h>
 +#include <linux/interrupt.h>
 +#include <linux/completion.h>
 +#include <linux/suspend.h>
 +#include <linux/workqueue.h>
 +#include <linux/jiffies.h>
 +#include <linux/scatterlist.h>
 +#include <scsi/scsi.h>
 +#include <scsi/scsi_cmnd.h>
 +#include <scsi/scsi_host.h>
 +#include <linux/libata.h>
 +#include <asm/io.h>
 +#include <asm/semaphore.h>
 +#include <asm/byteorder.h>
 +
 +#include "libata.h"
 +
 +/* debounce timing parameters in msecs { interval, duration, timeout } */
 +const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
 +const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
 +const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
 +
 +static unsigned int ata_dev_init_params(struct ata_device *dev,
 +					u16 heads, u16 sectors);
 +static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
 +static void ata_dev_xfermask(struct ata_device *dev);
 +
 +static unsigned int ata_unique_id = 1;
 +static struct workqueue_struct *ata_wq;
 +
 +struct workqueue_struct *ata_aux_wq;
 +
 +int atapi_enabled = 1;
 +module_param(atapi_enabled, int, 0444);
 +MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
 +
 +int atapi_dmadir = 0;
 +module_param(atapi_dmadir, int, 0444);
 +MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
 +
 +int libata_fua = 0;
 +module_param_named(fua, libata_fua, int, 0444);
 +MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
 +
 +static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
 +module_param(ata_probe_timeout, int, 0444);
 +MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 +
 +MODULE_AUTHOR("Jeff Garzik");
 +MODULE_DESCRIPTION("Library module for ATA devices");
 +MODULE_LICENSE("GPL");
 +MODULE_VERSION(DRV_VERSION);
 +
 +
 +/**
 + *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 + *	@tf: Taskfile to convert
 + *	@fis: Buffer into which data will output
 + *	@pmp: Port multiplier port
 + *
 + *	Converts a standard ATA taskfile to a Serial ATA
 + *	FIS structure (Register - Host to Device).
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
 +{
 +	fis[0] = 0x27;	/* Register - Host to Device FIS */
 +	fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
 +					    bit 7 indicates Command FIS */
 +	fis[2] = tf->command;
 +	fis[3] = tf->feature;
 +
 +	fis[4] = tf->lbal;
 +	fis[5] = tf->lbam;
 +	fis[6] = tf->lbah;
 +	fis[7] = tf->device;
 +
 +	fis[8] = tf->hob_lbal;
 +	fis[9] = tf->hob_lbam;
 +	fis[10] = tf->hob_lbah;
 +	fis[11] = tf->hob_feature;
 +
 +	fis[12] = tf->nsect;
 +	fis[13] = tf->hob_nsect;
 +	fis[14] = 0;
 +	fis[15] = tf->ctl;
 +
 +	fis[16] = 0;
 +	fis[17] = 0;
 +	fis[18] = 0;
 +	fis[19] = 0;
 +}
 +
 +/**
 + *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 + *	@fis: Buffer from which data will be input
 + *	@tf: Taskfile to output
 + *
 + *	Converts a serial ATA FIS structure to a standard ATA taskfile.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 +{
 +	tf->command	= fis[2];	/* status */
 +	tf->feature	= fis[3];	/* error */
 +
 +	tf->lbal	= fis[4];
 +	tf->lbam	= fis[5];
 +	tf->lbah	= fis[6];
 +	tf->device	= fis[7];
 +
 +	tf->hob_lbal	= fis[8];
 +	tf->hob_lbam	= fis[9];
 +	tf->hob_lbah	= fis[10];
 +
 +	tf->nsect	= fis[12];
 +	tf->hob_nsect	= fis[13];
 +}
 +
 +static const u8 ata_rw_cmds[] = {
 +	/* pio multi */
 +	ATA_CMD_READ_MULTI,
 +	ATA_CMD_WRITE_MULTI,
 +	ATA_CMD_READ_MULTI_EXT,
 +	ATA_CMD_WRITE_MULTI_EXT,
 +	0,
 +	0,
 +	0,
 +	ATA_CMD_WRITE_MULTI_FUA_EXT,
 +	/* pio */
 +	ATA_CMD_PIO_READ,
 +	ATA_CMD_PIO_WRITE,
 +	ATA_CMD_PIO_READ_EXT,
 +	ATA_CMD_PIO_WRITE_EXT,
 +	0,
 +	0,
 +	0,
 +	0,
 +	/* dma */
 +	ATA_CMD_READ,
 +	ATA_CMD_WRITE,
 +	ATA_CMD_READ_EXT,
 +	ATA_CMD_WRITE_EXT,
 +	0,
 +	0,
 +	0,
 +	ATA_CMD_WRITE_FUA_EXT
 +};
 +
 +/**
 + *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 + *	@qc: command to examine and configure
 + *
 + *	Examine the device configuration and tf->flags to calculate
 + *	the proper read/write commands and protocol to use.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
 +{
 +	struct ata_taskfile *tf = &qc->tf;
 +	struct ata_device *dev = qc->dev;
 +	u8 cmd;
 +
 +	int index, fua, lba48, write;
 +
 +	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 +	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 +	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 +
 +	if (dev->flags & ATA_DFLAG_PIO) {
 +		tf->protocol = ATA_PROT_PIO;
 +		index = dev->multi_count ? 0 : 8;
 +	} else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
 +		/* Unable to use DMA due to host limitation */
 +		tf->protocol = ATA_PROT_PIO;
 +		index = dev->multi_count ? 0 : 8;
 +	} else {
 +		tf->protocol = ATA_PROT_DMA;
 +		index = 16;
 +	}
 +
 +	cmd = ata_rw_cmds[index + fua + lba48 + write];
 +	if (cmd) {
 +		tf->command = cmd;
 +		return 0;
 +	}
 +	return -1;
 +}
 +
 +/**
 + *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 + *	@pio_mask: pio_mask
 + *	@mwdma_mask: mwdma_mask
 + *	@udma_mask: udma_mask
 + *
 + *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 + *	unsigned int xfer_mask.
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	Packed xfer_mask.
 + */
 +static unsigned int ata_pack_xfermask(unsigned int pio_mask,
 +				      unsigned int mwdma_mask,
 +				      unsigned int udma_mask)
 +{
 +	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 +		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 +		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 +}
 +
 +/**
 + *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 + *	@xfer_mask: xfer_mask to unpack
 + *	@pio_mask: resulting pio_mask
 + *	@mwdma_mask: resulting mwdma_mask
 + *	@udma_mask: resulting udma_mask
 + *
 + *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 + *	Any NULL distination masks will be ignored.
 + */
 +static void ata_unpack_xfermask(unsigned int xfer_mask,
 +				unsigned int *pio_mask,
 +				unsigned int *mwdma_mask,
 +				unsigned int *udma_mask)
 +{
 +	if (pio_mask)
 +		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 +	if (mwdma_mask)
 +		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 +	if (udma_mask)
 +		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 +}
 +
 +static const struct ata_xfer_ent {
 +	int shift, bits;
 +	u8 base;
 +} ata_xfer_tbl[] = {
 +	{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
 +	{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
 +	{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
 +	{ -1, },
 +};
 +
 +/**
 + *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 + *	@xfer_mask: xfer_mask of interest
 + *
 + *	Return matching XFER_* value for @xfer_mask.  Only the highest
 + *	bit of @xfer_mask is considered.
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	Matching XFER_* value, 0 if no match found.
 + */
 +static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
 +{
 +	int highbit = fls(xfer_mask) - 1;
 +	const struct ata_xfer_ent *ent;
 +
 +	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 +		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 +			return ent->base + highbit - ent->shift;
 +	return 0;
 +}
 +
 +/**
 + *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 + *	@xfer_mode: XFER_* of interest
 + *
 + *	Return matching xfer_mask for @xfer_mode.
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	Matching xfer_mask, 0 if no match found.
 + */
 +static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
 +{
 +	const struct ata_xfer_ent *ent;
 +
 +	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 +		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 +			return 1 << (ent->shift + xfer_mode - ent->base);
 +	return 0;
 +}
 +
 +/**
 + *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 + *	@xfer_mode: XFER_* of interest
 + *
 + *	Return matching xfer_shift for @xfer_mode.
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	Matching xfer_shift, -1 if no match found.
 + */
 +static int ata_xfer_mode2shift(unsigned int xfer_mode)
 +{
 +	const struct ata_xfer_ent *ent;
 +
 +	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 +		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 +			return ent->shift;
 +	return -1;
 +}
 +
 +/**
 + *	ata_mode_string - convert xfer_mask to string
 + *	@xfer_mask: mask of bits supported; only highest bit counts.
 + *
 + *	Determine string which represents the highest speed
 + *	(highest bit in @modemask).
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	Constant C string representing highest speed listed in
 + *	@mode_mask, or the constant C string "<n/a>".
 + */
 +static const char *ata_mode_string(unsigned int xfer_mask)
 +{
 +	static const char * const xfer_mode_str[] = {
 +		"PIO0",
 +		"PIO1",
 +		"PIO2",
 +		"PIO3",
 +		"PIO4",
 +		"PIO5",
 +		"PIO6",
 +		"MWDMA0",
 +		"MWDMA1",
 +		"MWDMA2",
 +		"MWDMA3",
 +		"MWDMA4",
 +		"UDMA/16",
 +		"UDMA/25",
 +		"UDMA/33",
 +		"UDMA/44",
 +		"UDMA/66",
 +		"UDMA/100",
 +		"UDMA/133",
 +		"UDMA7",
 +	};
 +	int highbit;
 +
 +	highbit = fls(xfer_mask) - 1;
 +	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
 +		return xfer_mode_str[highbit];
 +	return "<n/a>";
 +}
 +
 +static const char *sata_spd_string(unsigned int spd)
 +{
 +	static const char * const spd_str[] = {
 +		"1.5 Gbps",
 +		"3.0 Gbps",
 +	};
 +
 +	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
 +		return "<unknown>";
 +	return spd_str[spd - 1];
 +}
 +
 +void ata_dev_disable(struct ata_device *dev)
 +{
 +	if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
 +		ata_dev_printk(dev, KERN_WARNING, "disabled\n");
 +		dev->class++;
 +	}
 +}
 +
 +/**
 + *	ata_pio_devchk - PATA device presence detection
 + *	@ap: ATA channel to examine
 + *	@device: Device to examine (starting at zero)
 + *
 + *	This technique was originally described in
 + *	Hale Landis's ATADRVR (www.ata-atapi.com), and
 + *	later found its way into the ATA/ATAPI spec.
 + *
 + *	Write a pattern to the ATA shadow registers,
 + *	and if a device is present, it will respond by
 + *	correctly storing and echoing back the
 + *	ATA shadow register contents.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +
 +static unsigned int ata_pio_devchk(struct ata_port *ap,
 +				   unsigned int device)
 +{
 +	struct ata_ioports *ioaddr = &ap->ioaddr;
 +	u8 nsect, lbal;
 +
 +	ap->ops->dev_select(ap, device);
 +
 +	outb(0x55, ioaddr->nsect_addr);
 +	outb(0xaa, ioaddr->lbal_addr);
 +
 +	outb(0xaa, ioaddr->nsect_addr);
 +	outb(0x55, ioaddr->lbal_addr);
 +
 +	outb(0x55, ioaddr->nsect_addr);
 +	outb(0xaa, ioaddr->lbal_addr);
 +
 +	nsect = inb(ioaddr->nsect_addr);
 +	lbal = inb(ioaddr->lbal_addr);
 +
 +	if ((nsect == 0x55) && (lbal == 0xaa))
 +		return 1;	/* we found a device */
 +
 +	return 0;		/* nothing found */
 +}
 +
 +/**
 + *	ata_mmio_devchk - PATA device presence detection
 + *	@ap: ATA channel to examine
 + *	@device: Device to examine (starting at zero)
 + *
 + *	This technique was originally described in
 + *	Hale Landis's ATADRVR (www.ata-atapi.com), and
 + *	later found its way into the ATA/ATAPI spec.
 + *
 + *	Write a pattern to the ATA shadow registers,
 + *	and if a device is present, it will respond by
 + *	correctly storing and echoing back the
 + *	ATA shadow register contents.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +
 +static unsigned int ata_mmio_devchk(struct ata_port *ap,
 +				    unsigned int device)
 +{
 +	struct ata_ioports *ioaddr = &ap->ioaddr;
 +	u8 nsect, lbal;
 +
 +	ap->ops->dev_select(ap, device);
 +
 +	writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
 +	writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
 +
 +	writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
 +	writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
 +
 +	writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
 +	writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
 +
 +	nsect = readb((void __iomem *) ioaddr->nsect_addr);
 +	lbal = readb((void __iomem *) ioaddr->lbal_addr);
 +
 +	if ((nsect == 0x55) && (lbal == 0xaa))
 +		return 1;	/* we found a device */
 +
 +	return 0;		/* nothing found */
 +}
 +
 +/**
 + *	ata_devchk - PATA device presence detection
 + *	@ap: ATA channel to examine
 + *	@device: Device to examine (starting at zero)
 + *
 + *	Dispatch ATA device presence detection, depending
 + *	on whether we are using PIO or MMIO to talk to the
 + *	ATA shadow registers.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +
 +static unsigned int ata_devchk(struct ata_port *ap,
 +				    unsigned int device)
 +{
 +	if (ap->flags & ATA_FLAG_MMIO)
 +		return ata_mmio_devchk(ap, device);
 +	return ata_pio_devchk(ap, device);
 +}
 +
 +/**
 + *	ata_dev_classify - determine device type based on ATA-spec signature
 + *	@tf: ATA taskfile register set for device to be identified
 + *
 + *	Determine from taskfile register contents whether a device is
 + *	ATA or ATAPI, as per "Signature and persistence" section
 + *	of ATA/PI spec (volume 1, sect 5.14).
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
 + *	the event of failure.
 + */
 +
 +unsigned int ata_dev_classify(const struct ata_taskfile *tf)
 +{
 +	/* Apple's open source Darwin code hints that some devices only
 +	 * put a proper signature into the LBA mid/high registers,
 +	 * So, we only check those.  It's sufficient for uniqueness.
 +	 */
 +
 +	if (((tf->lbam == 0) && (tf->lbah == 0)) ||
 +	    ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
 +		DPRINTK("found ATA device by sig\n");
 +		return ATA_DEV_ATA;
 +	}
 +
 +	if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
 +	    ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
 +		DPRINTK("found ATAPI device by sig\n");
 +		return ATA_DEV_ATAPI;
 +	}
 +
 +	DPRINTK("unknown device\n");
 +	return ATA_DEV_UNKNOWN;
 +}
 +
 +/**
 + *	ata_dev_try_classify - Parse returned ATA device signature
 + *	@ap: ATA channel to examine
 + *	@device: Device to examine (starting at zero)
 + *	@r_err: Value of error register on completion
 + *
 + *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
 + *	an ATA/ATAPI-defined set of values is placed in the ATA
 + *	shadow registers, indicating the results of device detection
 + *	and diagnostics.
 + *
 + *	Select the ATA device, and read the values from the ATA shadow
 + *	registers.  Then parse according to the Error register value,
 + *	and the spec-defined values examined by ata_dev_classify().
 + *
 + *	LOCKING:
 + *	caller.
 + *
 + *	RETURNS:
 + *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
 + */
 +
 +static unsigned int
 +ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
 +{
 +	struct ata_taskfile tf;
 +	unsigned int class;
 +	u8 err;
 +
 +	ap->ops->dev_select(ap, device);
 +
 +	memset(&tf, 0, sizeof(tf));
 +
 +	ap->ops->tf_read(ap, &tf);
 +	err = tf.feature;
 +	if (r_err)
 +		*r_err = err;
 +
 +	/* see if device passed diags */
 +	if (err == 1)
 +		/* do nothing */ ;
 +	else if ((device == 0) && (err == 0x81))
 +		/* do nothing */ ;
 +	else
 +		return ATA_DEV_NONE;
 +
 +	/* determine if device is ATA or ATAPI */
 +	class = ata_dev_classify(&tf);
 +
 +	if (class == ATA_DEV_UNKNOWN)
 +		return ATA_DEV_NONE;
 +	if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
 +		return ATA_DEV_NONE;
 +	return class;
 +}
 +
 +/**
 + *	ata_id_string - Convert IDENTIFY DEVICE page into string
 + *	@id: IDENTIFY DEVICE results we will examine
 + *	@s: string into which data is output
 + *	@ofs: offset into identify device page
 + *	@len: length of string to return. must be an even number.
 + *
 + *	The strings in the IDENTIFY DEVICE page are broken up into
 + *	16-bit chunks.  Run through the string, and output each
 + *	8-bit chunk linearly, regardless of platform.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +
 +void ata_id_string(const u16 *id, unsigned char *s,
 +		   unsigned int ofs, unsigned int len)
 +{
 +	unsigned int c;
 +
 +	while (len > 0) {
 +		c = id[ofs] >> 8;
 +		*s = c;
 +		s++;
 +
 +		c = id[ofs] & 0xff;
 +		*s = c;
 +		s++;
 +
 +		ofs++;
 +		len -= 2;
 +	}
 +}
 +
 +/**
 + *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
 + *	@id: IDENTIFY DEVICE results we will examine
 + *	@s: string into which data is output
 + *	@ofs: offset into identify device page
 + *	@len: length of string to return. must be an odd number.
 + *
 + *	This function is identical to ata_id_string except that it
 + *	trims trailing spaces and terminates the resulting string with
 + *	null.  @len must be actual maximum length (even number) + 1.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +void ata_id_c_string(const u16 *id, unsigned char *s,
 +		     unsigned int ofs, unsigned int len)
 +{
 +	unsigned char *p;
 +
 +	WARN_ON(!(len & 1));
 +
 +	ata_id_string(id, s, ofs, len - 1);
 +
 +	p = s + strnlen(s, len - 1);
 +	while (p > s && p[-1] == ' ')
 +		p--;
 +	*p = '\0';
 +}
 +
 +static u64 ata_id_n_sectors(const u16 *id)
 +{
 +	if (ata_id_has_lba(id)) {
 +		if (ata_id_has_lba48(id))
 +			return ata_id_u64(id, 100);
 +		else
 +			return ata_id_u32(id, 60);
 +	} else {
 +		if (ata_id_current_chs_valid(id))
 +			return ata_id_u32(id, 57);
 +		else
 +			return id[1] * id[3] * id[6];
 +	}
 +}
 +
 +/**
 + *	ata_noop_dev_select - Select device 0/1 on ATA bus
 + *	@ap: ATA channel to manipulate
 + *	@device: ATA device (numbered from zero) to select
 + *
 + *	This function performs no actual function.
 + *
 + *	May be used as the dev_select() entry in ata_port_operations.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
 +{
 +}
 +
 +
 +/**
 + *	ata_std_dev_select - Select device 0/1 on ATA bus
 + *	@ap: ATA channel to manipulate
 + *	@device: ATA device (numbered from zero) to select
 + *
 + *	Use the method defined in the ATA specification to
 + *	make either device 0, or device 1, active on the
 + *	ATA channel.  Works with both PIO and MMIO.
 + *
 + *	May be used as the dev_select() entry in ata_port_operations.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +
 +void ata_std_dev_select (struct ata_port *ap, unsigned int device)
 +{
 +	u8 tmp;
 +
 +	if (device == 0)
 +		tmp = ATA_DEVICE_OBS;
 +	else
 +		tmp = ATA_DEVICE_OBS | ATA_DEV1;
 +
 +	if (ap->flags & ATA_FLAG_MMIO) {
 +		writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
 +	} else {
 +		outb(tmp, ap->ioaddr.device_addr);
 +	}
 +	ata_pause(ap);		/* needed; also flushes, for mmio */
 +}
 +
 +/**
 + *	ata_dev_select - Select device 0/1 on ATA bus
 + *	@ap: ATA channel to manipulate
 + *	@device: ATA device (numbered from zero) to select
 + *	@wait: non-zero to wait for Status register BSY bit to clear
 + *	@can_sleep: non-zero if context allows sleeping
 + *
 + *	Use the method defined in the ATA specification to
 + *	make either device 0, or device 1, active on the
 + *	ATA channel.
 + *
 + *	This is a high-level version of ata_std_dev_select(),
 + *	which additionally provides the services of inserting
 + *	the proper pauses and status polling, where needed.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +
 +void ata_dev_select(struct ata_port *ap, unsigned int device,
 +			   unsigned int wait, unsigned int can_sleep)
 +{
 +	if (ata_msg_probe(ap))
 +		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
 +				"device %u, wait %u\n", ap->id, device, wait);
 +
 +	if (wait)
 +		ata_wait_idle(ap);
 +
 +	ap->ops->dev_select(ap, device);
 +
 +	if (wait) {
 +		if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
 +			msleep(150);
 +		ata_wait_idle(ap);
 +	}
 +}
 +
 +/**
 + *	ata_dump_id - IDENTIFY DEVICE info debugging output
 + *	@id: IDENTIFY DEVICE page to dump
 + *
 + *	Dump selected 16-bit words from the given IDENTIFY DEVICE
 + *	page.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +
 +static inline void ata_dump_id(const u16 *id)
 +{
 +	DPRINTK("49==0x%04x  "
 +		"53==0x%04x  "
 +		"63==0x%04x  "
 +		"64==0x%04x  "
 +		"75==0x%04x  \n",
 +		id[49],
 +		id[53],
 +		id[63],
 +		id[64],
 +		id[75]);
 +	DPRINTK("80==0x%04x  "
 +		"81==0x%04x  "
 +		"82==0x%04x  "
 +		"83==0x%04x  "
 +		"84==0x%04x  \n",
 +		id[80],
 +		id[81],
 +		id[82],
 +		id[83],
 +		id[84]);
 +	DPRINTK("88==0x%04x  "
 +		"93==0x%04x\n",
 +		id[88],
 +		id[93]);
 +}
 +
 +/**
 + *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
 + *	@id: IDENTIFY data to compute xfer mask from
 + *
 + *	Compute the xfermask for this device. This is not as trivial
 + *	as it seems if we must consider early devices correctly.
 + *
 + *	FIXME: pre IDE drive timing (do we care ?).
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	Computed xfermask
 + */
 +static unsigned int ata_id_xfermask(const u16 *id)
 +{
 +	unsigned int pio_mask, mwdma_mask, udma_mask;
 +
 +	/* Usual case. Word 53 indicates word 64 is valid */
 +	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
 +		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
 +		pio_mask <<= 3;
 +		pio_mask |= 0x7;
 +	} else {
 +		/* If word 64 isn't valid then Word 51 high byte holds
 +		 * the PIO timing number for the maximum. Turn it into
 +		 * a mask.
 +		 */
 +		pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
 +
 +		/* But wait.. there's more. Design your standards by
 +		 * committee and you too can get a free iordy field to
 +		 * process. However its the speeds not the modes that
 +		 * are supported... Note drivers using the timing API
 +		 * will get this right anyway
 +		 */
 +	}
 +
 +	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
 +
 +	if (ata_id_is_cfa(id)) {
 +		/*
 +		 *	Process compact flash extended modes
 +		 */
 +		int pio = id[163] & 0x7;
 +		int dma = (id[163] >> 3) & 7;
 +
 +		if (pio)
 +			pio_mask |= (1 << 5);
 +		if (pio > 1)
 +			pio_mask |= (1 << 6);
 +		if (dma)
 +			mwdma_mask |= (1 << 3);
 +		if (dma > 1)
 +			mwdma_mask |= (1 << 4);
 +	}
 +
 +	udma_mask = 0;
 +	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
 +		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
 +
 +	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
 +}
 +
 +/**
 + *	ata_port_queue_task - Queue port_task
 + *	@ap: The ata_port to queue port_task for
 + *	@fn: workqueue function to be scheduled
 + *	@data: data value to pass to workqueue function
 + *	@delay: delay time for workqueue function
 + *
 + *	Schedule @fn(@data) for execution after @delay jiffies using
 + *	port_task.  There is one port_task per port and it's the
 + *	user(low level driver)'s responsibility to make sure that only
 + *	one task is active at any given time.
 + *
 + *	libata core layer takes care of synchronization between
 + *	port_task and EH.  ata_port_queue_task() may be ignored for EH
 + *	synchronization.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
 +			 unsigned long delay)
 +{
 +	int rc;
 +
 +	if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
 +		return;
 +
 +	PREPARE_WORK(&ap->port_task, fn, data);
 +
 +	if (!delay)
 +		rc = queue_work(ata_wq, &ap->port_task);
 +	else
 +		rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
 +
 +	/* rc == 0 means that another user is using port task */
 +	WARN_ON(rc == 0);
 +}
 +
 +/**
 + *	ata_port_flush_task - Flush port_task
 + *	@ap: The ata_port to flush port_task for
 + *
 + *	After this function completes, port_task is guranteed not to
 + *	be running or scheduled.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + */
 +void ata_port_flush_task(struct ata_port *ap)
 +{
 +	unsigned long flags;
 +
 +	DPRINTK("ENTER\n");
 +
 +	spin_lock_irqsave(ap->lock, flags);
 +	ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
 +	spin_unlock_irqrestore(ap->lock, flags);
 +
 +	DPRINTK("flush #1\n");
 +	flush_workqueue(ata_wq);
 +
 +	/*
 +	 * At this point, if a task is running, it's guaranteed to see
 +	 * the FLUSH flag; thus, it will never queue pio tasks again.
 +	 * Cancel and flush.
 +	 */
 +	if (!cancel_delayed_work(&ap->port_task)) {
 +		if (ata_msg_ctl(ap))
 +			ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
 +					__FUNCTION__);
 +		flush_workqueue(ata_wq);
 +	}
 +
 +	spin_lock_irqsave(ap->lock, flags);
 +	ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
 +	spin_unlock_irqrestore(ap->lock, flags);
 +
 +	if (ata_msg_ctl(ap))
 +		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
 +}
 +
 +void ata_qc_complete_internal(struct ata_queued_cmd *qc)
 +{
 +	struct completion *waiting = qc->private_data;
 +
 +	complete(waiting);
 +}
 +
 +/**
 + *	ata_exec_internal - execute libata internal command
 + *	@dev: Device to which the command is sent
 + *	@tf: Taskfile registers for the command and the result
 + *	@cdb: CDB for packet command
 + *	@dma_dir: Data tranfer direction of the command
 + *	@buf: Data buffer of the command
 + *	@buflen: Length of data buffer
 + *
 + *	Executes libata internal command with timeout.  @tf contains
 + *	command on entry and result on return.  Timeout and error
 + *	conditions are reported via return value.  No recovery action
 + *	is taken after a command times out.  It's caller's duty to
 + *	clean up after timeout.
 + *
 + *	LOCKING:
 + *	None.  Should be called with kernel context, might sleep.
 + *
 + *	RETURNS:
 + *	Zero on success, AC_ERR_* mask on failure
 + */
 +unsigned ata_exec_internal(struct ata_device *dev,
 +			   struct ata_taskfile *tf, const u8 *cdb,
 +			   int dma_dir, void *buf, unsigned int buflen)
 +{
 +	struct ata_port *ap = dev->ap;
 +	u8 command = tf->command;
 +	struct ata_queued_cmd *qc;
 +	unsigned int tag, preempted_tag;
 +	u32 preempted_sactive, preempted_qc_active;
 +	DECLARE_COMPLETION_ONSTACK(wait);
 +	unsigned long flags;
 +	unsigned int err_mask;
 +	int rc;
 +
 +	spin_lock_irqsave(ap->lock, flags);
 +
 +	/* no internal command while frozen */
 +	if (ap->pflags & ATA_PFLAG_FROZEN) {
 +		spin_unlock_irqrestore(ap->lock, flags);
 +		return AC_ERR_SYSTEM;
 +	}
 +
 +	/* initialize internal qc */
 +
 +	/* XXX: Tag 0 is used for drivers with legacy EH as some
 +	 * drivers choke if any other tag is given.  This breaks
 +	 * ata_tag_internal() test for those drivers.  Don't use new
 +	 * EH stuff without converting to it.
 +	 */
 +	if (ap->ops->error_handler)
 +		tag = ATA_TAG_INTERNAL;
 +	else
 +		tag = 0;
 +
 +	if (test_and_set_bit(tag, &ap->qc_allocated))
 +		BUG();
 +	qc = __ata_qc_from_tag(ap, tag);
 +
 +	qc->tag = tag;
 +	qc->scsicmd = NULL;
 +	qc->ap = ap;
 +	qc->dev = dev;
 +	ata_qc_reinit(qc);
 +
 +	preempted_tag = ap->active_tag;
 +	preempted_sactive = ap->sactive;
 +	preempted_qc_active = ap->qc_active;
 +	ap->active_tag = ATA_TAG_POISON;
 +	ap->sactive = 0;
 +	ap->qc_active = 0;
 +
 +	/* prepare & issue qc */
 +	qc->tf = *tf;
 +	if (cdb)
 +		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
 +	qc->flags |= ATA_QCFLAG_RESULT_TF;
 +	qc->dma_dir = dma_dir;
 +	if (dma_dir != DMA_NONE) {
 +		ata_sg_init_one(qc, buf, buflen);
 +		qc->nsect = buflen / ATA_SECT_SIZE;
 +	}
 +
 +	qc->private_data = &wait;
 +	qc->complete_fn = ata_qc_complete_internal;
 +
 +	ata_qc_issue(qc);
 +
 +	spin_unlock_irqrestore(ap->lock, flags);
 +
 +	rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
 +
 +	ata_port_flush_task(ap);
 +
 +	if (!rc) {
 +		spin_lock_irqsave(ap->lock, flags);
 +
 +		/* We're racing with irq here.  If we lose, the
 +		 * following test prevents us from completing the qc
 +		 * twice.  If we win, the port is frozen and will be
 +		 * cleaned up by ->post_internal_cmd().
 +		 */
 +		if (qc->flags & ATA_QCFLAG_ACTIVE) {
 +			qc->err_mask |= AC_ERR_TIMEOUT;
 +
 +			if (ap->ops->error_handler)
 +				ata_port_freeze(ap);
 +			else
 +				ata_qc_complete(qc);
 +
 +			if (ata_msg_warn(ap))
 +				ata_dev_printk(dev, KERN_WARNING,
 +					"qc timeout (cmd 0x%x)\n", command);
 +		}
 +
 +		spin_unlock_irqrestore(ap->lock, flags);
 +	}
 +
 +	/* do post_internal_cmd */
 +	if (ap->ops->post_internal_cmd)
 +		ap->ops->post_internal_cmd(qc);
 +
 +	if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
 +		if (ata_msg_warn(ap))
 +			ata_dev_printk(dev, KERN_WARNING,
 +				"zero err_mask for failed "
 +				"internal command, assuming AC_ERR_OTHER\n");
 +		qc->err_mask |= AC_ERR_OTHER;
 +	}
 +
 +	/* finish up */
 +	spin_lock_irqsave(ap->lock, flags);
 +
 +	*tf = qc->result_tf;
 +	err_mask = qc->err_mask;
 +
 +	ata_qc_free(qc);
 +	ap->active_tag = preempted_tag;
 +	ap->sactive = preempted_sactive;
 +	ap->qc_active = preempted_qc_active;
 +
 +	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
 +	 * Until those drivers are fixed, we detect the condition
 +	 * here, fail the command with AC_ERR_SYSTEM and reenable the
 +	 * port.
 +	 *
 +	 * Note that this doesn't change any behavior as internal
 +	 * command failure results in disabling the device in the
 +	 * higher layer for LLDDs without new reset/EH callbacks.
 +	 *
 +	 * Kill the following code as soon as those drivers are fixed.
 +	 */
 +	if (ap->flags & ATA_FLAG_DISABLED) {
 +		err_mask |= AC_ERR_SYSTEM;
 +		ata_port_probe(ap);
 +	}
 +
 +	spin_unlock_irqrestore(ap->lock, flags);
 +
 +	return err_mask;
 +}
 +
 +/**
 + *	ata_do_simple_cmd - execute simple internal command
 + *	@dev: Device to which the command is sent
 + *	@cmd: Opcode to execute
 + *
 + *	Execute a 'simple' command, that only consists of the opcode
 + *	'cmd' itself, without filling any other registers
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep).
 + *
 + *	RETURNS:
 + *	Zero on success, AC_ERR_* mask on failure
 + */
 +unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
 +{
 +	struct ata_taskfile tf;
 +
 +	ata_tf_init(dev, &tf);
 +
 +	tf.command = cmd;
 +	tf.flags |= ATA_TFLAG_DEVICE;
 +	tf.protocol = ATA_PROT_NODATA;
 +
 +	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
 +}
 +
 +/**
 + *	ata_pio_need_iordy	-	check if iordy needed
 + *	@adev: ATA device
 + *
 + *	Check if the current speed of the device requires IORDY. Used
 + *	by various controllers for chip configuration.
 + */
 +
 +unsigned int ata_pio_need_iordy(const struct ata_device *adev)
 +{
 +	int pio;
 +	int speed = adev->pio_mode - XFER_PIO_0;
 +
 +	if (speed < 2)
 +		return 0;
 +	if (speed > 2)
 +		return 1;
 +
 +	/* If we have no drive specific rule, then PIO 2 is non IORDY */
 +
 +	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
 +		pio = adev->id[ATA_ID_EIDE_PIO];
 +		/* Is the speed faster than the drive allows non IORDY ? */
 +		if (pio) {
 +			/* This is cycle times not frequency - watch the logic! */
 +			if (pio > 240)	/* PIO2 is 240nS per cycle */
 +				return 1;
 +			return 0;
 +		}
 +	}
 +	return 0;
 +}
 +
 +/**
 + *	ata_dev_read_id - Read ID data from the specified device
 + *	@dev: target device
 + *	@p_class: pointer to class of the target device (may be changed)
 + *	@post_reset: is this read ID post-reset?
 + *	@id: buffer to read IDENTIFY data into
 + *
 + *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
 + *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
 + *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
 + *	for pre-ATA4 drives.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	0 on success, -errno otherwise.
 + */
 +int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
 +		    int post_reset, u16 *id)
 +{
 +	struct ata_port *ap = dev->ap;
 +	unsigned int class = *p_class;
 +	struct ata_taskfile tf;
 +	unsigned int err_mask = 0;
 +	const char *reason;
 +	int rc;
 +
 +	if (ata_msg_ctl(ap))
 +		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
 +			       __FUNCTION__, ap->id, dev->devno);
 +
 +	ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
 +
 + retry:
 +	ata_tf_init(dev, &tf);
 +
 +	switch (class) {
 +	case ATA_DEV_ATA:
 +		tf.command = ATA_CMD_ID_ATA;
 +		break;
 +	case ATA_DEV_ATAPI:
 +		tf.command = ATA_CMD_ID_ATAPI;
 +		break;
 +	default:
 +		rc = -ENODEV;
 +		reason = "unsupported class";
 +		goto err_out;
 +	}
 +
 +	tf.protocol = ATA_PROT_PIO;
 +
 +	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
 +				     id, sizeof(id[0]) * ATA_ID_WORDS);
 +	if (err_mask) {
 +		rc = -EIO;
 +		reason = "I/O error";
 +		goto err_out;
 +	}
 +
 +	swap_buf_le16(id, ATA_ID_WORDS);
 +
 +	/* sanity check */
- 	if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
- 		rc = -EINVAL;
- 		reason = "device reports illegal type";
- 		goto err_out;
++	rc = -EINVAL;
++	reason = "device reports illegal type";
++
++	if (class == ATA_DEV_ATA) {
++		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
++			goto err_out;
++	} else {
++		if (ata_id_is_ata(id))
++			goto err_out;
 +	}
 +
 +	if (post_reset && class == ATA_DEV_ATA) {
 +		/*
 +		 * The exact sequence expected by certain pre-ATA4 drives is:
 +		 * SRST RESET
 +		 * IDENTIFY
 +		 * INITIALIZE DEVICE PARAMETERS
 +		 * anything else..
 +		 * Some drives were very specific about that exact sequence.
 +		 */
 +		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
 +			err_mask = ata_dev_init_params(dev, id[3], id[6]);
 +			if (err_mask) {
 +				rc = -EIO;
 +				reason = "INIT_DEV_PARAMS failed";
 +				goto err_out;
 +			}
 +
 +			/* current CHS translation info (id[53-58]) might be
 +			 * changed. reread the identify device info.
 +			 */
 +			post_reset = 0;
 +			goto retry;
 +		}
 +	}
 +
 +	*p_class = class;
 +
 +	return 0;
 +
 + err_out:
 +	if (ata_msg_warn(ap))
 +		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
 +			       "(%s, err_mask=0x%x)\n", reason, err_mask);
 +	return rc;
 +}
 +
 +static inline u8 ata_dev_knobble(struct ata_device *dev)
 +{
 +	return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
 +}
 +
 +static void ata_dev_config_ncq(struct ata_device *dev,
 +			       char *desc, size_t desc_sz)
 +{
 +	struct ata_port *ap = dev->ap;
 +	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
 +
 +	if (!ata_id_has_ncq(dev->id)) {
 +		desc[0] = '\0';
 +		return;
 +	}
 +
 +	if (ap->flags & ATA_FLAG_NCQ) {
 +		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
 +		dev->flags |= ATA_DFLAG_NCQ;
 +	}
 +
 +	if (hdepth >= ddepth)
 +		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
 +	else
 +		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
 +}
 +
 +static void ata_set_port_max_cmd_len(struct ata_port *ap)
 +{
 +	int i;
 +
 +	if (ap->scsi_host) {
 +		unsigned int len = 0;
 +
 +		for (i = 0; i < ATA_MAX_DEVICES; i++)
 +			len = max(len, ap->device[i].cdb_len);
 +
 +		ap->scsi_host->max_cmd_len = len;
 +	}
 +}
 +
 +/**
 + *	ata_dev_configure - Configure the specified ATA/ATAPI device
 + *	@dev: Target device to configure
 + *	@print_info: Enable device info printout
 + *
 + *	Configure @dev according to @dev->id.  Generic and low-level
 + *	driver specific fixups are also applied.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	0 on success, -errno otherwise
 + */
 +int ata_dev_configure(struct ata_device *dev, int print_info)
 +{
 +	struct ata_port *ap = dev->ap;
 +	const u16 *id = dev->id;
 +	unsigned int xfer_mask;
 +	char revbuf[7];		/* XYZ-99\0 */
 +	int rc;
 +
 +	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
 +		ata_dev_printk(dev, KERN_INFO,
 +			       "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
 +			       __FUNCTION__, ap->id, dev->devno);
 +		return 0;
 +	}
 +
 +	if (ata_msg_probe(ap))
 +		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
 +			       __FUNCTION__, ap->id, dev->devno);
 +
 +	/* print device capabilities */
 +	if (ata_msg_probe(ap))
 +		ata_dev_printk(dev, KERN_DEBUG,
 +			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
 +			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
 +			       __FUNCTION__,
 +			       id[49], id[82], id[83], id[84],
 +			       id[85], id[86], id[87], id[88]);
 +
 +	/* initialize to-be-configured parameters */
 +	dev->flags &= ~ATA_DFLAG_CFG_MASK;
 +	dev->max_sectors = 0;
 +	dev->cdb_len = 0;
 +	dev->n_sectors = 0;
 +	dev->cylinders = 0;
 +	dev->heads = 0;
 +	dev->sectors = 0;
 +
 +	/*
 +	 * common ATA, ATAPI feature tests
 +	 */
 +
 +	/* find max transfer mode; for printk only */
 +	xfer_mask = ata_id_xfermask(id);
 +
 +	if (ata_msg_probe(ap))
 +		ata_dump_id(id);
 +
 +	/* ATA-specific feature tests */
 +	if (dev->class == ATA_DEV_ATA) {
 +		if (ata_id_is_cfa(id)) {
 +			if (id[162] & 1) /* CPRM may make this media unusable */
 +				ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u  supports DRM functions and may not be fully accessable.\n",
 +					ap->id, dev->devno);
 +			snprintf(revbuf, 7, "CFA");
 +		}
 +		else
 +			snprintf(revbuf, 7, "ATA-%d",  ata_id_major_version(id));
 +
 +		dev->n_sectors = ata_id_n_sectors(id);
 +
 +		if (ata_id_has_lba(id)) {
 +			const char *lba_desc;
 +			char ncq_desc[20];
 +
 +			lba_desc = "LBA";
 +			dev->flags |= ATA_DFLAG_LBA;
 +			if (ata_id_has_lba48(id)) {
 +				dev->flags |= ATA_DFLAG_LBA48;
 +				lba_desc = "LBA48";
 +			}
 +
 +			/* config NCQ */
 +			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
 +
 +			/* print device info to dmesg */
 +			if (ata_msg_drv(ap) && print_info)
 +				ata_dev_printk(dev, KERN_INFO, "%s, "
 +					"max %s, %Lu sectors: %s %s\n",
 +					revbuf,
 +					ata_mode_string(xfer_mask),
 +					(unsigned long long)dev->n_sectors,
 +					lba_desc, ncq_desc);
 +		} else {
 +			/* CHS */
 +
 +			/* Default translation */
 +			dev->cylinders	= id[1];
 +			dev->heads	= id[3];
 +			dev->sectors	= id[6];
 +
 +			if (ata_id_current_chs_valid(id)) {
 +				/* Current CHS translation is valid. */
 +				dev->cylinders = id[54];
 +				dev->heads     = id[55];
 +				dev->sectors   = id[56];
 +			}
 +
 +			/* print device info to dmesg */
 +			if (ata_msg_drv(ap) && print_info)
 +				ata_dev_printk(dev, KERN_INFO, "%s, "
 +					"max %s, %Lu sectors: CHS %u/%u/%u\n",
 +					revbuf,
 +					ata_mode_string(xfer_mask),
 +					(unsigned long long)dev->n_sectors,
 +					dev->cylinders, dev->heads,
 +					dev->sectors);
 +		}
 +
 +		if (dev->id[59] & 0x100) {
 +			dev->multi_count = dev->id[59] & 0xff;
 +			if (ata_msg_drv(ap) && print_info)
 +				ata_dev_printk(dev, KERN_INFO,
 +					"ata%u: dev %u multi count %u\n",
 +					ap->id, dev->devno, dev->multi_count);
 +		}
 +
 +		dev->cdb_len = 16;
 +	}
 +
 +	/* ATAPI-specific feature tests */
 +	else if (dev->class == ATA_DEV_ATAPI) {
 +		char *cdb_intr_string = "";
 +
 +		rc = atapi_cdb_len(id);
 +		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
 +			if (ata_msg_warn(ap))
 +				ata_dev_printk(dev, KERN_WARNING,
 +					       "unsupported CDB len\n");
 +			rc = -EINVAL;
 +			goto err_out_nosup;
 +		}
 +		dev->cdb_len = (unsigned int) rc;
 +
 +		if (ata_id_cdb_intr(dev->id)) {
 +			dev->flags |= ATA_DFLAG_CDB_INTR;
 +			cdb_intr_string = ", CDB intr";
 +		}
 +
 +		/* print device info to dmesg */
 +		if (ata_msg_drv(ap) && print_info)
 +			ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
 +				       ata_mode_string(xfer_mask),
 +				       cdb_intr_string);
 +	}
 +
 +	ata_set_port_max_cmd_len(ap);
 +
 +	/* limit bridge transfers to udma5, 200 sectors */
 +	if (ata_dev_knobble(dev)) {
 +		if (ata_msg_drv(ap) && print_info)
 +			ata_dev_printk(dev, KERN_INFO,
 +				       "applying bridge limits\n");
 +		dev->udma_mask &= ATA_UDMA5;
 +		dev->max_sectors = ATA_MAX_SECTORS;
 +	}
 +
 +	if (ap->ops->dev_config)
 +		ap->ops->dev_config(ap, dev);
 +
 +	if (ata_msg_probe(ap))
 +		ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
 +			__FUNCTION__, ata_chk_status(ap));
 +	return 0;
 +
 +err_out_nosup:
 +	if (ata_msg_probe(ap))
 +		ata_dev_printk(dev, KERN_DEBUG,
 +			       "%s: EXIT, err\n", __FUNCTION__);
 +	return rc;
 +}
 +
 +/**
 + *	ata_bus_probe - Reset and probe ATA bus
 + *	@ap: Bus to probe
 + *
 + *	Master ATA bus probing function.  Initiates a hardware-dependent
 + *	bus reset, then attempts to identify any devices found on
 + *	the bus.
 + *
 + *	LOCKING:
 + *	PCI/etc. bus probe sem.
 + *
 + *	RETURNS:
 + *	Zero on success, negative errno otherwise.
 + */
 +
 +int ata_bus_probe(struct ata_port *ap)
 +{
 +	unsigned int classes[ATA_MAX_DEVICES];
 +	int tries[ATA_MAX_DEVICES];
 +	int i, rc, down_xfermask;
 +	struct ata_device *dev;
 +
 +	ata_port_probe(ap);
 +
 +	for (i = 0; i < ATA_MAX_DEVICES; i++)
 +		tries[i] = ATA_PROBE_MAX_TRIES;
 +
 + retry:
 +	down_xfermask = 0;
 +
 +	/* reset and determine device classes */
 +	ap->ops->phy_reset(ap);
 +
 +	for (i = 0; i < ATA_MAX_DEVICES; i++) {
 +		dev = &ap->device[i];
 +
 +		if (!(ap->flags & ATA_FLAG_DISABLED) &&
 +		    dev->class != ATA_DEV_UNKNOWN)
 +			classes[dev->devno] = dev->class;
 +		else
 +			classes[dev->devno] = ATA_DEV_NONE;
 +
 +		dev->class = ATA_DEV_UNKNOWN;
 +	}
 +
 +	ata_port_probe(ap);
 +
 +	/* after the reset the device state is PIO 0 and the controller
 +	   state is undefined. Record the mode */
 +
 +	for (i = 0; i < ATA_MAX_DEVICES; i++)
 +		ap->device[i].pio_mode = XFER_PIO_0;
 +
 +	/* read IDENTIFY page and configure devices */
 +	for (i = 0; i < ATA_MAX_DEVICES; i++) {
 +		dev = &ap->device[i];
 +
 +		if (tries[i])
 +			dev->class = classes[i];
 +
 +		if (!ata_dev_enabled(dev))
 +			continue;
 +
 +		rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
 +		if (rc)
 +			goto fail;
 +
 +		rc = ata_dev_configure(dev, 1);
 +		if (rc)
 +			goto fail;
 +	}
 +
 +	/* configure transfer mode */
 +	rc = ata_set_mode(ap, &dev);
 +	if (rc) {
 +		down_xfermask = 1;
 +		goto fail;
 +	}
 +
 +	for (i = 0; i < ATA_MAX_DEVICES; i++)
 +		if (ata_dev_enabled(&ap->device[i]))
 +			return 0;
 +
 +	/* no device present, disable port */
 +	ata_port_disable(ap);
 +	ap->ops->port_disable(ap);
 +	return -ENODEV;
 +
 + fail:
 +	switch (rc) {
 +	case -EINVAL:
 +	case -ENODEV:
 +		tries[dev->devno] = 0;
 +		break;
 +	case -EIO:
 +		sata_down_spd_limit(ap);
 +		/* fall through */
 +	default:
 +		tries[dev->devno]--;
 +		if (down_xfermask &&
 +		    ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
 +			tries[dev->devno] = 0;
 +	}
 +
 +	if (!tries[dev->devno]) {
 +		ata_down_xfermask_limit(dev, 1);
 +		ata_dev_disable(dev);
 +	}
 +
 +	goto retry;
 +}
 +
 +/**
 + *	ata_port_probe - Mark port as enabled
 + *	@ap: Port for which we indicate enablement
 + *
 + *	Modify @ap data structure such that the system
 + *	thinks that the entire port is enabled.
 + *
 + *	LOCKING: host lock, or some other form of
 + *	serialization.
 + */
 +
 +void ata_port_probe(struct ata_port *ap)
 +{
 +	ap->flags &= ~ATA_FLAG_DISABLED;
 +}
 +
 +/**
 + *	sata_print_link_status - Print SATA link status
 + *	@ap: SATA port to printk link status about
 + *
 + *	This function prints link speed and status of a SATA link.
 + *
 + *	LOCKING:
 + *	None.
 + */
 +static void sata_print_link_status(struct ata_port *ap)
 +{
 +	u32 sstatus, scontrol, tmp;
 +
 +	if (sata_scr_read(ap, SCR_STATUS, &sstatus))
 +		return;
 +	sata_scr_read(ap, SCR_CONTROL, &scontrol);
 +
 +	if (ata_port_online(ap)) {
 +		tmp = (sstatus >> 4) & 0xf;
 +		ata_port_printk(ap, KERN_INFO,
 +				"SATA link up %s (SStatus %X SControl %X)\n",
 +				sata_spd_string(tmp), sstatus, scontrol);
 +	} else {
 +		ata_port_printk(ap, KERN_INFO,
 +				"SATA link down (SStatus %X SControl %X)\n",
 +				sstatus, scontrol);
 +	}
 +}
 +
 +/**
 + *	__sata_phy_reset - Wake/reset a low-level SATA PHY
 + *	@ap: SATA port associated with target SATA PHY.
 + *
 + *	This function issues commands to standard SATA Sxxx
 + *	PHY registers, to wake up the phy (and device), and
 + *	clear any reset condition.
 + *
 + *	LOCKING:
 + *	PCI/etc. bus probe sem.
 + *
 + */
 +void __sata_phy_reset(struct ata_port *ap)
 +{
 +	u32 sstatus;
 +	unsigned long timeout = jiffies + (HZ * 5);
 +
 +	if (ap->flags & ATA_FLAG_SATA_RESET) {
 +		/* issue phy wake/reset */
 +		sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
 +		/* Couldn't find anything in SATA I/II specs, but
 +		 * AHCI-1.1 10.4.2 says at least 1 ms. */
 +		mdelay(1);
 +	}
 +	/* phy wake/clear reset */
 +	sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
 +
 +	/* wait for phy to become ready, if necessary */
 +	do {
 +		msleep(200);
 +		sata_scr_read(ap, SCR_STATUS, &sstatus);
 +		if ((sstatus & 0xf) != 1)
 +			break;
 +	} while (time_before(jiffies, timeout));
 +
 +	/* print link status */
 +	sata_print_link_status(ap);
 +
 +	/* TODO: phy layer with polling, timeouts, etc. */
 +	if (!ata_port_offline(ap))
 +		ata_port_probe(ap);
 +	else
 +		ata_port_disable(ap);
 +
 +	if (ap->flags & ATA_FLAG_DISABLED)
 +		return;
 +
 +	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
 +		ata_port_disable(ap);
 +		return;
 +	}
 +
 +	ap->cbl = ATA_CBL_SATA;
 +}
 +
 +/**
 + *	sata_phy_reset - Reset SATA bus.
 + *	@ap: SATA port associated with target SATA PHY.
 + *
 + *	This function resets the SATA bus, and then probes
 + *	the bus for devices.
 + *
 + *	LOCKING:
 + *	PCI/etc. bus probe sem.
 + *
 + */
 +void sata_phy_reset(struct ata_port *ap)
 +{
 +	__sata_phy_reset(ap);
 +	if (ap->flags & ATA_FLAG_DISABLED)
 +		return;
 +	ata_bus_reset(ap);
 +}
 +
 +/**
 + *	ata_dev_pair		-	return other device on cable
 + *	@adev: device
 + *
 + *	Obtain the other device on the same cable, or if none is
 + *	present NULL is returned
 + */
 +
 +struct ata_device *ata_dev_pair(struct ata_device *adev)
 +{
 +	struct ata_port *ap = adev->ap;
 +	struct ata_device *pair = &ap->device[1 - adev->devno];
 +	if (!ata_dev_enabled(pair))
 +		return NULL;
 +	return pair;
 +}
 +
 +/**
 + *	ata_port_disable - Disable port.
 + *	@ap: Port to be disabled.
 + *
 + *	Modify @ap data structure such that the system
 + *	thinks that the entire port is disabled, and should
 + *	never attempt to probe or communicate with devices
 + *	on this port.
 + *
 + *	LOCKING: host lock, or some other form of
 + *	serialization.
 + */
 +
 +void ata_port_disable(struct ata_port *ap)
 +{
 +	ap->device[0].class = ATA_DEV_NONE;
 +	ap->device[1].class = ATA_DEV_NONE;
 +	ap->flags |= ATA_FLAG_DISABLED;
 +}
 +
 +/**
 + *	sata_down_spd_limit - adjust SATA spd limit downward
 + *	@ap: Port to adjust SATA spd limit for
 + *
 + *	Adjust SATA spd limit of @ap downward.  Note that this
 + *	function only adjusts the limit.  The change must be applied
 + *	using sata_set_spd().
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + *
 + *	RETURNS:
 + *	0 on success, negative errno on failure
 + */
 +int sata_down_spd_limit(struct ata_port *ap)
 +{
 +	u32 sstatus, spd, mask;
 +	int rc, highbit;
 +
 +	rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
 +	if (rc)
 +		return rc;
 +
 +	mask = ap->sata_spd_limit;
 +	if (mask <= 1)
 +		return -EINVAL;
 +	highbit = fls(mask) - 1;
 +	mask &= ~(1 << highbit);
 +
 +	spd = (sstatus >> 4) & 0xf;
 +	if (spd <= 1)
 +		return -EINVAL;
 +	spd--;
 +	mask &= (1 << spd) - 1;
 +	if (!mask)
 +		return -EINVAL;
 +
 +	ap->sata_spd_limit = mask;
 +
 +	ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
 +			sata_spd_string(fls(mask)));
 +
 +	return 0;
 +}
 +
 +static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
 +{
 +	u32 spd, limit;
 +
 +	if (ap->sata_spd_limit == UINT_MAX)
 +		limit = 0;
 +	else
 +		limit = fls(ap->sata_spd_limit);
 +
 +	spd = (*scontrol >> 4) & 0xf;
 +	*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
 +
 +	return spd != limit;
 +}
 +
 +/**
 + *	sata_set_spd_needed - is SATA spd configuration needed
 + *	@ap: Port in question
 + *
 + *	Test whether the spd limit in SControl matches
 + *	@ap->sata_spd_limit.  This function is used to determine
 + *	whether hardreset is necessary to apply SATA spd
 + *	configuration.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + *
 + *	RETURNS:
 + *	1 if SATA spd configuration is needed, 0 otherwise.
 + */
 +int sata_set_spd_needed(struct ata_port *ap)
 +{
 +	u32 scontrol;
 +
 +	if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
 +		return 0;
 +
 +	return __sata_set_spd_needed(ap, &scontrol);
 +}
 +
 +/**
 + *	sata_set_spd - set SATA spd according to spd limit
 + *	@ap: Port to set SATA spd for
 + *
 + *	Set SATA spd of @ap according to sata_spd_limit.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + *
 + *	RETURNS:
 + *	0 if spd doesn't need to be changed, 1 if spd has been
 + *	changed.  Negative errno if SCR registers are inaccessible.
 + */
 +int sata_set_spd(struct ata_port *ap)
 +{
 +	u32 scontrol;
 +	int rc;
 +
 +	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
 +		return rc;
 +
 +	if (!__sata_set_spd_needed(ap, &scontrol))
 +		return 0;
 +
 +	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
 +		return rc;
 +
 +	return 1;
 +}
 +
 +/*
 + * This mode timing computation functionality is ported over from
 + * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
 + */
 +/*
 + * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
 + * These were taken from ATA/ATAPI-6 standard, rev 0a, except
 + * for UDMA6, which is currently supported only by Maxtor drives.
 + *
 + * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
 + */
 +
 +static const struct ata_timing ata_timing[] = {
 +
 +	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
 +	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
 +	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
 +	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
 +
 +	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
 +	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
 +	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
 +	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
 +	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
 +
 +/*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
 +
 +	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
 +	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
 +	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
 +
 +	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
 +	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
 +	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
 +
 +	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
 +	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
 +	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
 +	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
 +
 +	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
 +	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
 +	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
 +
 +/*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
 +
 +	{ 0xFF }
 +};
 +
 +#define ENOUGH(v,unit)		(((v)-1)/(unit)+1)
 +#define EZ(v,unit)		((v)?ENOUGH(v,unit):0)
 +
 +static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
 +{
 +	q->setup   = EZ(t->setup   * 1000,  T);
 +	q->act8b   = EZ(t->act8b   * 1000,  T);
 +	q->rec8b   = EZ(t->rec8b   * 1000,  T);
 +	q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
 +	q->active  = EZ(t->active  * 1000,  T);
 +	q->recover = EZ(t->recover * 1000,  T);
 +	q->cycle   = EZ(t->cycle   * 1000,  T);
 +	q->udma    = EZ(t->udma    * 1000, UT);
 +}
 +
 +void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
 +		      struct ata_timing *m, unsigned int what)
 +{
 +	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
 +	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
 +	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
 +	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
 +	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
 +	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
 +	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
 +	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
 +}
 +
 +static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
 +{
 +	const struct ata_timing *t;
 +
 +	for (t = ata_timing; t->mode != speed; t++)
 +		if (t->mode == 0xFF)
 +			return NULL;
 +	return t;
 +}
 +
 +int ata_timing_compute(struct ata_device *adev, unsigned short speed,
 +		       struct ata_timing *t, int T, int UT)
 +{
 +	const struct ata_timing *s;
 +	struct ata_timing p;
 +
 +	/*
 +	 * Find the mode.
 +	 */
 +
 +	if (!(s = ata_timing_find_mode(speed)))
 +		return -EINVAL;
 +
 +	memcpy(t, s, sizeof(*s));
 +
 +	/*
 +	 * If the drive is an EIDE drive, it can tell us it needs extended
 +	 * PIO/MW_DMA cycle timing.
 +	 */
 +
 +	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
 +		memset(&p, 0, sizeof(p));
 +		if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
 +			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
 +					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
 +		} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
 +			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
 +		}
 +		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
 +	}
 +
 +	/*
 +	 * Convert the timing to bus clock counts.
 +	 */
 +
 +	ata_timing_quantize(t, t, T, UT);
 +
 +	/*
 +	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
 +	 * S.M.A.R.T * and some other commands. We have to ensure that the
 +	 * DMA cycle timing is slower/equal than the fastest PIO timing.
 +	 */
 +
 +	if (speed > XFER_PIO_4) {
 +		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
 +		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
 +	}
 +
 +	/*
 +	 * Lengthen active & recovery time so that cycle time is correct.
 +	 */
 +
 +	if (t->act8b + t->rec8b < t->cyc8b) {
 +		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
 +		t->rec8b = t->cyc8b - t->act8b;
 +	}
 +
 +	if (t->active + t->recover < t->cycle) {
 +		t->active += (t->cycle - (t->active + t->recover)) / 2;
 +		t->recover = t->cycle - t->active;
 +	}
 +
 +	return 0;
 +}
 +
 +/**
 + *	ata_down_xfermask_limit - adjust dev xfer masks downward
 + *	@dev: Device to adjust xfer masks
 + *	@force_pio0: Force PIO0
 + *
 + *	Adjust xfer masks of @dev downward.  Note that this function
 + *	does not apply the change.  Invoking ata_set_mode() afterwards
 + *	will apply the limit.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + *
 + *	RETURNS:
 + *	0 on success, negative errno on failure
 + */
 +int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
 +{
 +	unsigned long xfer_mask;
 +	int highbit;
 +
 +	xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
 +				      dev->udma_mask);
 +
 +	if (!xfer_mask)
 +		goto fail;
 +	/* don't gear down to MWDMA from UDMA, go directly to PIO */
 +	if (xfer_mask & ATA_MASK_UDMA)
 +		xfer_mask &= ~ATA_MASK_MWDMA;
 +
 +	highbit = fls(xfer_mask) - 1;
 +	xfer_mask &= ~(1 << highbit);
 +	if (force_pio0)
 +		xfer_mask &= 1 << ATA_SHIFT_PIO;
 +	if (!xfer_mask)
 +		goto fail;
 +
 +	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
 +			    &dev->udma_mask);
 +
 +	ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
 +		       ata_mode_string(xfer_mask));
 +
 +	return 0;
 +
 + fail:
 +	return -EINVAL;
 +}
 +
 +static int ata_dev_set_mode(struct ata_device *dev)
 +{
 +	unsigned int err_mask;
 +	int rc;
 +
 +	dev->flags &= ~ATA_DFLAG_PIO;
 +	if (dev->xfer_shift == ATA_SHIFT_PIO)
 +		dev->flags |= ATA_DFLAG_PIO;
 +
 +	err_mask = ata_dev_set_xfermode(dev);
 +	if (err_mask) {
 +		ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
 +			       "(err_mask=0x%x)\n", err_mask);
 +		return -EIO;
 +	}
 +
 +	rc = ata_dev_revalidate(dev, 0);
 +	if (rc)
 +		return rc;
 +
 +	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
 +		dev->xfer_shift, (int)dev->xfer_mode);
 +
 +	ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
 +		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
 +	return 0;
 +}
 +
 +/**
 + *	ata_set_mode - Program timings and issue SET FEATURES - XFER
 + *	@ap: port on which timings will be programmed
 + *	@r_failed_dev: out paramter for failed device
 + *
 + *	Set ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
 + *	ata_set_mode() fails, pointer to the failing device is
 + *	returned in @r_failed_dev.
 + *
 + *	LOCKING:
 + *	PCI/etc. bus probe sem.
 + *
 + *	RETURNS:
 + *	0 on success, negative errno otherwise
 + */
 +int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
 +{
 +	struct ata_device *dev;
 +	int i, rc = 0, used_dma = 0, found = 0;
 +
 +	/* has private set_mode? */
 +	if (ap->ops->set_mode) {
 +		/* FIXME: make ->set_mode handle no device case and
 +		 * return error code and failing device on failure.
 +		 */
 +		for (i = 0; i < ATA_MAX_DEVICES; i++) {
 +			if (ata_dev_ready(&ap->device[i])) {
 +				ap->ops->set_mode(ap);
 +				break;
 +			}
 +		}
 +		return 0;
 +	}
 +
 +	/* step 1: calculate xfer_mask */
 +	for (i = 0; i < ATA_MAX_DEVICES; i++) {
 +		unsigned int pio_mask, dma_mask;
 +
 +		dev = &ap->device[i];
 +
 +		if (!ata_dev_enabled(dev))
 +			continue;
 +
 +		ata_dev_xfermask(dev);
 +
 +		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
 +		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
 +		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
 +		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
 +
 +		found = 1;
 +		if (dev->dma_mode)
 +			used_dma = 1;
 +	}
 +	if (!found)
 +		goto out;
 +
 +	/* step 2: always set host PIO timings */
 +	for (i = 0; i < ATA_MAX_DEVICES; i++) {
 +		dev = &ap->device[i];
 +		if (!ata_dev_enabled(dev))
 +			continue;
 +
 +		if (!dev->pio_mode) {
 +			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
 +			rc = -EINVAL;
 +			goto out;
 +		}
 +
 +		dev->xfer_mode = dev->pio_mode;
 +		dev->xfer_shift = ATA_SHIFT_PIO;
 +		if (ap->ops->set_piomode)
 +			ap->ops->set_piomode(ap, dev);
 +	}
 +
 +	/* step 3: set host DMA timings */
 +	for (i = 0; i < ATA_MAX_DEVICES; i++) {
 +		dev = &ap->device[i];
 +
 +		if (!ata_dev_enabled(dev) || !dev->dma_mode)
 +			continue;
 +
 +		dev->xfer_mode = dev->dma_mode;
 +		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
 +		if (ap->ops->set_dmamode)
 +			ap->ops->set_dmamode(ap, dev);
 +	}
 +
 +	/* step 4: update devices' xfer mode */
 +	for (i = 0; i < ATA_MAX_DEVICES; i++) {
 +		dev = &ap->device[i];
 +
 +		/* don't udpate suspended devices' xfer mode */
 +		if (!ata_dev_ready(dev))
 +			continue;
 +
 +		rc = ata_dev_set_mode(dev);
 +		if (rc)
 +			goto out;
 +	}
 +
 +	/* Record simplex status. If we selected DMA then the other
 +	 * host channels are not permitted to do so.
 +	 */
 +	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
 +		ap->host->simplex_claimed = 1;
 +
 +	/* step5: chip specific finalisation */
 +	if (ap->ops->post_set_mode)
 +		ap->ops->post_set_mode(ap);
 +
 + out:
 +	if (rc)
 +		*r_failed_dev = dev;
 +	return rc;
 +}
 +
 +/**
 + *	ata_tf_to_host - issue ATA taskfile to host controller
 + *	@ap: port to which command is being issued
 + *	@tf: ATA taskfile register set
 + *
 + *	Issues ATA taskfile register set to ATA host controller,
 + *	with proper synchronization with interrupt handler and
 + *	other threads.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + */
 +
 +static inline void ata_tf_to_host(struct ata_port *ap,
 +				  const struct ata_taskfile *tf)
 +{
 +	ap->ops->tf_load(ap, tf);
 +	ap->ops->exec_command(ap, tf);
 +}
 +
 +/**
 + *	ata_busy_sleep - sleep until BSY clears, or timeout
 + *	@ap: port containing status register to be polled
 + *	@tmout_pat: impatience timeout
 + *	@tmout: overall timeout
 + *
 + *	Sleep until ATA Status register bit BSY clears,
 + *	or a timeout occurs.
 + *
 + *	LOCKING: None.
 + */
 +
 +unsigned int ata_busy_sleep (struct ata_port *ap,
 +			     unsigned long tmout_pat, unsigned long tmout)
 +{
 +	unsigned long timer_start, timeout;
 +	u8 status;
 +
 +	status = ata_busy_wait(ap, ATA_BUSY, 300);
 +	timer_start = jiffies;
 +	timeout = timer_start + tmout_pat;
 +	while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
 +		msleep(50);
 +		status = ata_busy_wait(ap, ATA_BUSY, 3);
 +	}
 +
 +	if (status & ATA_BUSY)
 +		ata_port_printk(ap, KERN_WARNING,
 +				"port is slow to respond, please be patient\n");
 +
 +	timeout = timer_start + tmout;
 +	while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
 +		msleep(50);
 +		status = ata_chk_status(ap);
 +	}
 +
 +	if (status & ATA_BUSY) {
 +		ata_port_printk(ap, KERN_ERR, "port failed to respond "
 +				"(%lu secs)\n", tmout / HZ);
 +		return 1;
 +	}
 +
 +	return 0;
 +}
 +
 +static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
 +{
 +	struct ata_ioports *ioaddr = &ap->ioaddr;
 +	unsigned int dev0 = devmask & (1 << 0);
 +	unsigned int dev1 = devmask & (1 << 1);
 +	unsigned long timeout;
 +
 +	/* if device 0 was found in ata_devchk, wait for its
 +	 * BSY bit to clear
 +	 */
 +	if (dev0)
 +		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
 +
 +	/* if device 1 was found in ata_devchk, wait for
 +	 * register access, then wait for BSY to clear
 +	 */
 +	timeout = jiffies + ATA_TMOUT_BOOT;
 +	while (dev1) {
 +		u8 nsect, lbal;
 +
 +		ap->ops->dev_select(ap, 1);
 +		if (ap->flags & ATA_FLAG_MMIO) {
 +			nsect = readb((void __iomem *) ioaddr->nsect_addr);
 +			lbal = readb((void __iomem *) ioaddr->lbal_addr);
 +		} else {
 +			nsect = inb(ioaddr->nsect_addr);
 +			lbal = inb(ioaddr->lbal_addr);
 +		}
 +		if ((nsect == 1) && (lbal == 1))
 +			break;
 +		if (time_after(jiffies, timeout)) {
 +			dev1 = 0;
 +			break;
 +		}
 +		msleep(50);	/* give drive a breather */
 +	}
 +	if (dev1)
 +		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
 +
 +	/* is all this really necessary? */
 +	ap->ops->dev_select(ap, 0);
 +	if (dev1)
 +		ap->ops->dev_select(ap, 1);
 +	if (dev0)
 +		ap->ops->dev_select(ap, 0);
 +}
 +
 +static unsigned int ata_bus_softreset(struct ata_port *ap,
 +				      unsigned int devmask)
 +{
 +	struct ata_ioports *ioaddr = &ap->ioaddr;
 +
 +	DPRINTK("ata%u: bus reset via SRST\n", ap->id);
 +
 +	/* software reset.  causes dev0 to be selected */
 +	if (ap->flags & ATA_FLAG_MMIO) {
 +		writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
 +		udelay(20);	/* FIXME: flush */
 +		writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
 +		udelay(20);	/* FIXME: flush */
 +		writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
 +	} else {
 +		outb(ap->ctl, ioaddr->ctl_addr);
 +		udelay(10);
 +		outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
 +		udelay(10);
 +		outb(ap->ctl, ioaddr->ctl_addr);
 +	}
 +
 +	/* spec mandates ">= 2ms" before checking status.
 +	 * We wait 150ms, because that was the magic delay used for
 +	 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
 +	 * between when the ATA command register is written, and then
 +	 * status is checked.  Because waiting for "a while" before
 +	 * checking status is fine, post SRST, we perform this magic
 +	 * delay here as well.
 +	 *
 +	 * Old drivers/ide uses the 2mS rule and then waits for ready
 +	 */
 +	msleep(150);
 +
 +	/* Before we perform post reset processing we want to see if
 +	 * the bus shows 0xFF because the odd clown forgets the D7
 +	 * pulldown resistor.
 +	 */
 +	if (ata_check_status(ap) == 0xFF) {
 +		ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
 +		return AC_ERR_OTHER;
 +	}
 +
 +	ata_bus_post_reset(ap, devmask);
 +
 +	return 0;
 +}
 +
 +/**
 + *	ata_bus_reset - reset host port and associated ATA channel
 + *	@ap: port to reset
 + *
 + *	This is typically the first time we actually start issuing
 + *	commands to the ATA channel.  We wait for BSY to clear, then
 + *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
 + *	result.  Determine what devices, if any, are on the channel
 + *	by looking at the device 0/1 error register.  Look at the signature
 + *	stored in each device's taskfile registers, to determine if
 + *	the device is ATA or ATAPI.
 + *
 + *	LOCKING:
 + *	PCI/etc. bus probe sem.
 + *	Obtains host lock.
 + *
 + *	SIDE EFFECTS:
 + *	Sets ATA_FLAG_DISABLED if bus reset fails.
 + */
 +
 +void ata_bus_reset(struct ata_port *ap)
 +{
 +	struct ata_ioports *ioaddr = &ap->ioaddr;
 +	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
 +	u8 err;
 +	unsigned int dev0, dev1 = 0, devmask = 0;
 +
 +	DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
 +
 +	/* determine if device 0/1 are present */
 +	if (ap->flags & ATA_FLAG_SATA_RESET)
 +		dev0 = 1;
 +	else {
 +		dev0 = ata_devchk(ap, 0);
 +		if (slave_possible)
 +			dev1 = ata_devchk(ap, 1);
 +	}
 +
 +	if (dev0)
 +		devmask |= (1 << 0);
 +	if (dev1)
 +		devmask |= (1 << 1);
 +
 +	/* select device 0 again */
 +	ap->ops->dev_select(ap, 0);
 +
 +	/* issue bus reset */
 +	if (ap->flags & ATA_FLAG_SRST)
 +		if (ata_bus_softreset(ap, devmask))
 +			goto err_out;
 +
 +	/*
 +	 * determine by signature whether we have ATA or ATAPI devices
 +	 */
 +	ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
 +	if ((slave_possible) && (err != 0x81))
 +		ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
 +
 +	/* re-enable interrupts */
 +	if (ap->ioaddr.ctl_addr)	/* FIXME: hack. create a hook instead */
 +		ata_irq_on(ap);
 +
 +	/* is double-select really necessary? */
 +	if (ap->device[1].class != ATA_DEV_NONE)
 +		ap->ops->dev_select(ap, 1);
 +	if (ap->device[0].class != ATA_DEV_NONE)
 +		ap->ops->dev_select(ap, 0);
 +
 +	/* if no devices were detected, disable this port */
 +	if ((ap->device[0].class == ATA_DEV_NONE) &&
 +	    (ap->device[1].class == ATA_DEV_NONE))
 +		goto err_out;
 +
 +	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
 +		/* set up device control for ATA_FLAG_SATA_RESET */
 +		if (ap->flags & ATA_FLAG_MMIO)
 +			writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
 +		else
 +			outb(ap->ctl, ioaddr->ctl_addr);
 +	}
 +
 +	DPRINTK("EXIT\n");
 +	return;
 +
 +err_out:
 +	ata_port_printk(ap, KERN_ERR, "disabling port\n");
 +	ap->ops->port_disable(ap);
 +
 +	DPRINTK("EXIT\n");
 +}
 +
 +/**
 + *	sata_phy_debounce - debounce SATA phy status
 + *	@ap: ATA port to debounce SATA phy status for
 + *	@params: timing parameters { interval, duratinon, timeout } in msec
 + *
 + *	Make sure SStatus of @ap reaches stable state, determined by
 + *	holding the same value where DET is not 1 for @duration polled
 + *	every @interval, before @timeout.  Timeout constraints the
 + *	beginning of the stable state.  Because, after hot unplugging,
 + *	DET gets stuck at 1 on some controllers, this functions waits
 + *	until timeout then returns 0 if DET is stable at 1.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	0 on success, -errno on failure.
 + */
 +int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
 +{
 +	unsigned long interval_msec = params[0];
 +	unsigned long duration = params[1] * HZ / 1000;
 +	unsigned long timeout = jiffies + params[2] * HZ / 1000;
 +	unsigned long last_jiffies;
 +	u32 last, cur;
 +	int rc;
 +
 +	if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
 +		return rc;
 +	cur &= 0xf;
 +
 +	last = cur;
 +	last_jiffies = jiffies;
 +
 +	while (1) {
 +		msleep(interval_msec);
 +		if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
 +			return rc;
 +		cur &= 0xf;
 +
 +		/* DET stable? */
 +		if (cur == last) {
 +			if (cur == 1 && time_before(jiffies, timeout))
 +				continue;
 +			if (time_after(jiffies, last_jiffies + duration))
 +				return 0;
 +			continue;
 +		}
 +
 +		/* unstable, start over */
 +		last = cur;
 +		last_jiffies = jiffies;
 +
 +		/* check timeout */
 +		if (time_after(jiffies, timeout))
 +			return -EBUSY;
 +	}
 +}
 +
 +/**
 + *	sata_phy_resume - resume SATA phy
 + *	@ap: ATA port to resume SATA phy for
 + *	@params: timing parameters { interval, duratinon, timeout } in msec
 + *
 + *	Resume SATA phy of @ap and debounce it.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	0 on success, -errno on failure.
 + */
 +int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
 +{
 +	u32 scontrol;
 +	int rc;
 +
 +	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
 +		return rc;
 +
 +	scontrol = (scontrol & 0x0f0) | 0x300;
 +
 +	if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
 +		return rc;
 +
 +	/* Some PHYs react badly if SStatus is pounded immediately
 +	 * after resuming.  Delay 200ms before debouncing.
 +	 */
 +	msleep(200);
 +
 +	return sata_phy_debounce(ap, params);
 +}
 +
 +static void ata_wait_spinup(struct ata_port *ap)
 +{
 +	struct ata_eh_context *ehc = &ap->eh_context;
 +	unsigned long end, secs;
 +	int rc;
 +
 +	/* first, debounce phy if SATA */
 +	if (ap->cbl == ATA_CBL_SATA) {
 +		rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
 +
 +		/* if debounced successfully and offline, no need to wait */
 +		if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
 +			return;
 +	}
 +
 +	/* okay, let's give the drive time to spin up */
 +	end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
 +	secs = ((end - jiffies) + HZ - 1) / HZ;
 +
 +	if (time_after(jiffies, end))
 +		return;
 +
 +	if (secs > 5)
 +		ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
 +				"(%lu secs)\n", secs);
 +
 +	schedule_timeout_uninterruptible(end - jiffies);
 +}
 +
 +/**
 + *	ata_std_prereset - prepare for reset
 + *	@ap: ATA port to be reset
 + *
 + *	@ap is about to be reset.  Initialize it.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	0 on success, -errno otherwise.
 + */
 +int ata_std_prereset(struct ata_port *ap)
 +{
 +	struct ata_eh_context *ehc = &ap->eh_context;
 +	const unsigned long *timing = sata_ehc_deb_timing(ehc);
 +	int rc;
 +
 +	/* handle link resume & hotplug spinup */
 +	if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
 +	    (ap->flags & ATA_FLAG_HRST_TO_RESUME))
 +		ehc->i.action |= ATA_EH_HARDRESET;
 +
 +	if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
 +	    (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
 +		ata_wait_spinup(ap);
 +
 +	/* if we're about to do hardreset, nothing more to do */
 +	if (ehc->i.action & ATA_EH_HARDRESET)
 +		return 0;
 +
 +	/* if SATA, resume phy */
 +	if (ap->cbl == ATA_CBL_SATA) {
 +		rc = sata_phy_resume(ap, timing);
 +		if (rc && rc != -EOPNOTSUPP) {
 +			/* phy resume failed */
 +			ata_port_printk(ap, KERN_WARNING, "failed to resume "
 +					"link for reset (errno=%d)\n", rc);
 +			return rc;
 +		}
 +	}
 +
 +	/* Wait for !BSY if the controller can wait for the first D2H
 +	 * Reg FIS and we don't know that no device is attached.
 +	 */
 +	if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
 +		ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
 +
 +	return 0;
 +}
 +
 +/**
 + *	ata_std_softreset - reset host port via ATA SRST
 + *	@ap: port to reset
 + *	@classes: resulting classes of attached devices
 + *
 + *	Reset host port using ATA SRST.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	0 on success, -errno otherwise.
 + */
 +int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
 +{
 +	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
 +	unsigned int devmask = 0, err_mask;
 +	u8 err;
 +
 +	DPRINTK("ENTER\n");
 +
 +	if (ata_port_offline(ap)) {
 +		classes[0] = ATA_DEV_NONE;
 +		goto out;
 +	}
 +
 +	/* determine if device 0/1 are present */
 +	if (ata_devchk(ap, 0))
 +		devmask |= (1 << 0);
 +	if (slave_possible && ata_devchk(ap, 1))
 +		devmask |= (1 << 1);
 +
 +	/* select device 0 again */
 +	ap->ops->dev_select(ap, 0);
 +
 +	/* issue bus reset */
 +	DPRINTK("about to softreset, devmask=%x\n", devmask);
 +	err_mask = ata_bus_softreset(ap, devmask);
 +	if (err_mask) {
 +		ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
 +				err_mask);
 +		return -EIO;
 +	}
 +
 +	/* determine by signature whether we have ATA or ATAPI devices */
 +	classes[0] = ata_dev_try_classify(ap, 0, &err);
 +	if (slave_possible && err != 0x81)
 +		classes[1] = ata_dev_try_classify(ap, 1, &err);
 +
 + out:
 +	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
 +	return 0;
 +}
 +
 +/**
 + *	sata_std_hardreset - reset host port via SATA phy reset
 + *	@ap: port to reset
 + *	@class: resulting class of attached device
 + *
 + *	SATA phy-reset host port using DET bits of SControl register.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	0 on success, -errno otherwise.
 + */
 +int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
 +{
 +	struct ata_eh_context *ehc = &ap->eh_context;
 +	const unsigned long *timing = sata_ehc_deb_timing(ehc);
 +	u32 scontrol;
 +	int rc;
 +
 +	DPRINTK("ENTER\n");
 +
 +	if (sata_set_spd_needed(ap)) {
 +		/* SATA spec says nothing about how to reconfigure
 +		 * spd.  To be on the safe side, turn off phy during
 +		 * reconfiguration.  This works for at least ICH7 AHCI
 +		 * and Sil3124.
 +		 */
 +		if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
 +			return rc;
 +
 +		scontrol = (scontrol & 0x0f0) | 0x304;
 +
 +		if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
 +			return rc;
 +
 +		sata_set_spd(ap);
 +	}
 +
 +	/* issue phy wake/reset */
 +	if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
 +		return rc;
 +
 +	scontrol = (scontrol & 0x0f0) | 0x301;
 +
 +	if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
 +		return rc;
 +
 +	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
 +	 * 10.4.2 says at least 1 ms.
 +	 */
 +	msleep(1);
 +
 +	/* bring phy back */
 +	sata_phy_resume(ap, timing);
 +
 +	/* TODO: phy layer with polling, timeouts, etc. */
 +	if (ata_port_offline(ap)) {
 +		*class = ATA_DEV_NONE;
 +		DPRINTK("EXIT, link offline\n");
 +		return 0;
 +	}
 +
 +	if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
 +		ata_port_printk(ap, KERN_ERR,
 +				"COMRESET failed (device not ready)\n");
 +		return -EIO;
 +	}
 +
 +	ap->ops->dev_select(ap, 0);	/* probably unnecessary */
 +
 +	*class = ata_dev_try_classify(ap, 0, NULL);
 +
 +	DPRINTK("EXIT, class=%u\n", *class);
 +	return 0;
 +}
 +
 +/**
 + *	ata_std_postreset - standard postreset callback
 + *	@ap: the target ata_port
 + *	@classes: classes of attached devices
 + *
 + *	This function is invoked after a successful reset.  Note that
 + *	the device might have been reset more than once using
 + *	different reset methods before postreset is invoked.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + */
 +void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
 +{
 +	u32 serror;
 +
 +	DPRINTK("ENTER\n");
 +
 +	/* print link status */
 +	sata_print_link_status(ap);
 +
 +	/* clear SError */
 +	if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
 +		sata_scr_write(ap, SCR_ERROR, serror);
 +
 +	/* re-enable interrupts */
 +	if (!ap->ops->error_handler) {
 +		/* FIXME: hack. create a hook instead */
 +		if (ap->ioaddr.ctl_addr)
 +			ata_irq_on(ap);
 +	}
 +
 +	/* is double-select really necessary? */
 +	if (classes[0] != ATA_DEV_NONE)
 +		ap->ops->dev_select(ap, 1);
 +	if (classes[1] != ATA_DEV_NONE)
 +		ap->ops->dev_select(ap, 0);
 +
 +	/* bail out if no device is present */
 +	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
 +		DPRINTK("EXIT, no device\n");
 +		return;
 +	}
 +
 +	/* set up device control */
 +	if (ap->ioaddr.ctl_addr) {
 +		if (ap->flags & ATA_FLAG_MMIO)
 +			writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
 +		else
 +			outb(ap->ctl, ap->ioaddr.ctl_addr);
 +	}
 +
 +	DPRINTK("EXIT\n");
 +}
 +
 +/**
 + *	ata_dev_same_device - Determine whether new ID matches configured device
 + *	@dev: device to compare against
 + *	@new_class: class of the new device
 + *	@new_id: IDENTIFY page of the new device
 + *
 + *	Compare @new_class and @new_id against @dev and determine
 + *	whether @dev is the device indicated by @new_class and
 + *	@new_id.
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	1 if @dev matches @new_class and @new_id, 0 otherwise.
 + */
 +static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
 +			       const u16 *new_id)
 +{
 +	const u16 *old_id = dev->id;
 +	unsigned char model[2][41], serial[2][21];
 +	u64 new_n_sectors;
 +
 +	if (dev->class != new_class) {
 +		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
 +			       dev->class, new_class);
 +		return 0;
 +	}
 +
 +	ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
 +	ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
 +	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
 +	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
 +	new_n_sectors = ata_id_n_sectors(new_id);
 +
 +	if (strcmp(model[0], model[1])) {
 +		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
 +			       "'%s' != '%s'\n", model[0], model[1]);
 +		return 0;
 +	}
 +
 +	if (strcmp(serial[0], serial[1])) {
 +		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
 +			       "'%s' != '%s'\n", serial[0], serial[1]);
 +		return 0;
 +	}
 +
 +	if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
 +		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
 +			       "%llu != %llu\n",
 +			       (unsigned long long)dev->n_sectors,
 +			       (unsigned long long)new_n_sectors);
 +		return 0;
 +	}
 +
 +	return 1;
 +}
 +
 +/**
 + *	ata_dev_revalidate - Revalidate ATA device
 + *	@dev: device to revalidate
 + *	@post_reset: is this revalidation after reset?
 + *
 + *	Re-read IDENTIFY page and make sure @dev is still attached to
 + *	the port.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	0 on success, negative errno otherwise
 + */
 +int ata_dev_revalidate(struct ata_device *dev, int post_reset)
 +{
 +	unsigned int class = dev->class;
 +	u16 *id = (void *)dev->ap->sector_buf;
 +	int rc;
 +
 +	if (!ata_dev_enabled(dev)) {
 +		rc = -ENODEV;
 +		goto fail;
 +	}
 +
 +	/* read ID data */
 +	rc = ata_dev_read_id(dev, &class, post_reset, id);
 +	if (rc)
 +		goto fail;
 +
 +	/* is the device still there? */
 +	if (!ata_dev_same_device(dev, class, id)) {
 +		rc = -ENODEV;
 +		goto fail;
 +	}
 +
 +	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
 +
 +	/* configure device according to the new ID */
 +	rc = ata_dev_configure(dev, 0);
 +	if (rc == 0)
 +		return 0;
 +
 + fail:
 +	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
 +	return rc;
 +}
 +
 +static const char * const ata_dma_blacklist [] = {
 +	"WDC AC11000H", NULL,
 +	"WDC AC22100H", NULL,
 +	"WDC AC32500H", NULL,
 +	"WDC AC33100H", NULL,
 +	"WDC AC31600H", NULL,
 +	"WDC AC32100H", "24.09P07",
 +	"WDC AC23200L", "21.10N21",
 +	"Compaq CRD-8241B",  NULL,
 +	"CRD-8400B", NULL,
 +	"CRD-8480B", NULL,
 +	"CRD-8482B", NULL,
 + 	"CRD-84", NULL,
 +	"SanDisk SDP3B", NULL,
 +	"SanDisk SDP3B-64", NULL,
 +	"SANYO CD-ROM CRD", NULL,
 +	"HITACHI CDR-8", NULL,
 +	"HITACHI CDR-8335", NULL,
 +	"HITACHI CDR-8435", NULL,
 +	"Toshiba CD-ROM XM-6202B", NULL,
 +	"TOSHIBA CD-ROM XM-1702BC", NULL,
 +	"CD-532E-A", NULL,
 +	"E-IDE CD-ROM CR-840", NULL,
 +	"CD-ROM Drive/F5A", NULL,
 +	"WPI CDD-820", NULL,
 +	"SAMSUNG CD-ROM SC-148C", NULL,
 +	"SAMSUNG CD-ROM SC", NULL,
 +	"SanDisk SDP3B-64", NULL,
 +	"ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
 +	"_NEC DV5800A", NULL,
 +	"SAMSUNG CD-ROM SN-124", "N001"
 +};
 +
 +static int ata_strim(char *s, size_t len)
 +{
 +	len = strnlen(s, len);
 +
 +	/* ATAPI specifies that empty space is blank-filled; remove blanks */
 +	while ((len > 0) && (s[len - 1] == ' ')) {
 +		len--;
 +		s[len] = 0;
 +	}
 +	return len;
 +}
 +
 +static int ata_dma_blacklisted(const struct ata_device *dev)
 +{
 +	unsigned char model_num[40];
 +	unsigned char model_rev[16];
 +	unsigned int nlen, rlen;
 +	int i;
 +
 +	/* We don't support polling DMA.
 +	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
 +	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
 +	 */
 +	if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
 +	    (dev->flags & ATA_DFLAG_CDB_INTR))
 +		return 1;
 +
 +	ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
 +			  sizeof(model_num));
 +	ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
 +			  sizeof(model_rev));
 +	nlen = ata_strim(model_num, sizeof(model_num));
 +	rlen = ata_strim(model_rev, sizeof(model_rev));
 +
 +	for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
 +		if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
 +			if (ata_dma_blacklist[i+1] == NULL)
 +				return 1;
 +			if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
 +				return 1;
 +		}
 +	}
 +	return 0;
 +}
 +
 +/**
 + *	ata_dev_xfermask - Compute supported xfermask of the given device
 + *	@dev: Device to compute xfermask for
 + *
 + *	Compute supported xfermask of @dev and store it in
 + *	dev->*_mask.  This function is responsible for applying all
 + *	known limits including host controller limits, device
 + *	blacklist, etc...
 + *
 + *	LOCKING:
 + *	None.
 + */
 +static void ata_dev_xfermask(struct ata_device *dev)
 +{
 +	struct ata_port *ap = dev->ap;
 +	struct ata_host *host = ap->host;
 +	unsigned long xfer_mask;
 +
 +	/* controller modes available */
 +	xfer_mask = ata_pack_xfermask(ap->pio_mask,
 +				      ap->mwdma_mask, ap->udma_mask);
 +
 +	/* Apply cable rule here.  Don't apply it early because when
 +	 * we handle hot plug the cable type can itself change.
 +	 */
 +	if (ap->cbl == ATA_CBL_PATA40)
 +		xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
 +
 +	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
 +				       dev->mwdma_mask, dev->udma_mask);
 +	xfer_mask &= ata_id_xfermask(dev->id);
 +
 +	/*
 +	 *	CFA Advanced TrueIDE timings are not allowed on a shared
 +	 *	cable
 +	 */
 +	if (ata_dev_pair(dev)) {
 +		/* No PIO5 or PIO6 */
 +		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
 +		/* No MWDMA3 or MWDMA 4 */
 +		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
 +	}
 +
 +	if (ata_dma_blacklisted(dev)) {
 +		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
 +		ata_dev_printk(dev, KERN_WARNING,
 +			       "device is on DMA blacklist, disabling DMA\n");
 +	}
 +
 +	if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
 +		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
 +		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
 +			       "other device, disabling DMA\n");
 +	}
 +
 +	if (ap->ops->mode_filter)
 +		xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
 +
 +	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
 +			    &dev->mwdma_mask, &dev->udma_mask);
 +}
 +
 +/**
 + *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
 + *	@dev: Device to which command will be sent
 + *
 + *	Issue SET FEATURES - XFER MODE command to device @dev
 + *	on port @ap.
 + *
 + *	LOCKING:
 + *	PCI/etc. bus probe sem.
 + *
 + *	RETURNS:
 + *	0 on success, AC_ERR_* mask otherwise.
 + */
 +
 +static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
 +{
 +	struct ata_taskfile tf;
 +	unsigned int err_mask;
 +
 +	/* set up set-features taskfile */
 +	DPRINTK("set features - xfer mode\n");
 +
 +	ata_tf_init(dev, &tf);
 +	tf.command = ATA_CMD_SET_FEATURES;
 +	tf.feature = SETFEATURES_XFER;
 +	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 +	tf.protocol = ATA_PROT_NODATA;
 +	tf.nsect = dev->xfer_mode;
 +
 +	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
 +
 +	DPRINTK("EXIT, err_mask=%x\n", err_mask);
 +	return err_mask;
 +}
 +
 +/**
 + *	ata_dev_init_params - Issue INIT DEV PARAMS command
 + *	@dev: Device to which command will be sent
 + *	@heads: Number of heads (taskfile parameter)
 + *	@sectors: Number of sectors (taskfile parameter)
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	0 on success, AC_ERR_* mask otherwise.
 + */
 +static unsigned int ata_dev_init_params(struct ata_device *dev,
 +					u16 heads, u16 sectors)
 +{
 +	struct ata_taskfile tf;
 +	unsigned int err_mask;
 +
 +	/* Number of sectors per track 1-255. Number of heads 1-16 */
 +	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
 +		return AC_ERR_INVALID;
 +
 +	/* set up init dev params taskfile */
 +	DPRINTK("init dev params \n");
 +
 +	ata_tf_init(dev, &tf);
 +	tf.command = ATA_CMD_INIT_DEV_PARAMS;
 +	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 +	tf.protocol = ATA_PROT_NODATA;
 +	tf.nsect = sectors;
 +	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
 +
 +	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
 +
 +	DPRINTK("EXIT, err_mask=%x\n", err_mask);
 +	return err_mask;
 +}
 +
 +/**
 + *	ata_sg_clean - Unmap DMA memory associated with command
 + *	@qc: Command containing DMA memory to be released
 + *
 + *	Unmap all mapped DMA memory associated with this command.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + */
 +
 +static void ata_sg_clean(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +	struct scatterlist *sg = qc->__sg;
 +	int dir = qc->dma_dir;
 +	void *pad_buf = NULL;
 +
 +	WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
 +	WARN_ON(sg == NULL);
 +
 +	if (qc->flags & ATA_QCFLAG_SINGLE)
 +		WARN_ON(qc->n_elem > 1);
 +
 +	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
 +
 +	/* if we padded the buffer out to 32-bit bound, and data
 +	 * xfer direction is from-device, we must copy from the
 +	 * pad buffer back into the supplied buffer
 +	 */
 +	if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
 +		pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
 +
 +	if (qc->flags & ATA_QCFLAG_SG) {
 +		if (qc->n_elem)
 +			dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
 +		/* restore last sg */
 +		sg[qc->orig_n_elem - 1].length += qc->pad_len;
 +		if (pad_buf) {
 +			struct scatterlist *psg = &qc->pad_sgent;
 +			void *addr = kmap_atomic(psg->page, KM_IRQ0);
 +			memcpy(addr + psg->offset, pad_buf, qc->pad_len);
 +			kunmap_atomic(addr, KM_IRQ0);
 +		}
 +	} else {
 +		if (qc->n_elem)
 +			dma_unmap_single(ap->dev,
 +				sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
 +				dir);
 +		/* restore sg */
 +		sg->length += qc->pad_len;
 +		if (pad_buf)
 +			memcpy(qc->buf_virt + sg->length - qc->pad_len,
 +			       pad_buf, qc->pad_len);
 +	}
 +
 +	qc->flags &= ~ATA_QCFLAG_DMAMAP;
 +	qc->__sg = NULL;
 +}
 +
 +/**
 + *	ata_fill_sg - Fill PCI IDE PRD table
 + *	@qc: Metadata associated with taskfile to be transferred
 + *
 + *	Fill PCI IDE PRD (scatter-gather) table with segments
 + *	associated with the current disk command.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + *
 + */
 +static void ata_fill_sg(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +	struct scatterlist *sg;
 +	unsigned int idx;
 +
 +	WARN_ON(qc->__sg == NULL);
 +	WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
 +
 +	idx = 0;
 +	ata_for_each_sg(sg, qc) {
 +		u32 addr, offset;
 +		u32 sg_len, len;
 +
 +		/* determine if physical DMA addr spans 64K boundary.
 +		 * Note h/w doesn't support 64-bit, so we unconditionally
 +		 * truncate dma_addr_t to u32.
 +		 */
 +		addr = (u32) sg_dma_address(sg);
 +		sg_len = sg_dma_len(sg);
 +
 +		while (sg_len) {
 +			offset = addr & 0xffff;
 +			len = sg_len;
 +			if ((offset + sg_len) > 0x10000)
 +				len = 0x10000 - offset;
 +
 +			ap->prd[idx].addr = cpu_to_le32(addr);
 +			ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
 +			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
 +
 +			idx++;
 +			sg_len -= len;
 +			addr += len;
 +		}
 +	}
 +
 +	if (idx)
 +		ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
 +}
 +/**
 + *	ata_check_atapi_dma - Check whether ATAPI DMA can be supported
 + *	@qc: Metadata associated with taskfile to check
 + *
 + *	Allow low-level driver to filter ATA PACKET commands, returning
 + *	a status indicating whether or not it is OK to use DMA for the
 + *	supplied PACKET command.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + *
 + *	RETURNS: 0 when ATAPI DMA can be used
 + *               nonzero otherwise
 + */
 +int ata_check_atapi_dma(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +	int rc = 0; /* Assume ATAPI DMA is OK by default */
 +
 +	if (ap->ops->check_atapi_dma)
 +		rc = ap->ops->check_atapi_dma(qc);
 +
 +	return rc;
 +}
 +/**
 + *	ata_qc_prep - Prepare taskfile for submission
 + *	@qc: Metadata associated with taskfile to be prepared
 + *
 + *	Prepare ATA taskfile for submission.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + */
 +void ata_qc_prep(struct ata_queued_cmd *qc)
 +{
 +	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
 +		return;
 +
 +	ata_fill_sg(qc);
 +}
 +
 +void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
 +
 +/**
 + *	ata_sg_init_one - Associate command with memory buffer
 + *	@qc: Command to be associated
 + *	@buf: Memory buffer
 + *	@buflen: Length of memory buffer, in bytes.
 + *
 + *	Initialize the data-related elements of queued_cmd @qc
 + *	to point to a single memory buffer, @buf of byte length @buflen.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + */
 +
 +void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
 +{
 +	struct scatterlist *sg;
 +
 +	qc->flags |= ATA_QCFLAG_SINGLE;
 +
 +	memset(&qc->sgent, 0, sizeof(qc->sgent));
 +	qc->__sg = &qc->sgent;
 +	qc->n_elem = 1;
 +	qc->orig_n_elem = 1;
 +	qc->buf_virt = buf;
 +	qc->nbytes = buflen;
 +
 +	sg = qc->__sg;
 +	sg_init_one(sg, buf, buflen);
 +}
 +
 +/**
 + *	ata_sg_init - Associate command with scatter-gather table.
 + *	@qc: Command to be associated
 + *	@sg: Scatter-gather table.
 + *	@n_elem: Number of elements in s/g table.
 + *
 + *	Initialize the data-related elements of queued_cmd @qc
 + *	to point to a scatter-gather table @sg, containing @n_elem
 + *	elements.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + */
 +
 +void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
 +		 unsigned int n_elem)
 +{
 +	qc->flags |= ATA_QCFLAG_SG;
 +	qc->__sg = sg;
 +	qc->n_elem = n_elem;
 +	qc->orig_n_elem = n_elem;
 +}
 +
 +/**
 + *	ata_sg_setup_one - DMA-map the memory buffer associated with a command.
 + *	@qc: Command with memory buffer to be mapped.
 + *
 + *	DMA-map the memory buffer associated with queued_cmd @qc.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + *
 + *	RETURNS:
 + *	Zero on success, negative on error.
 + */
 +
 +static int ata_sg_setup_one(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +	int dir = qc->dma_dir;
 +	struct scatterlist *sg = qc->__sg;
 +	dma_addr_t dma_address;
 +	int trim_sg = 0;
 +
 +	/* we must lengthen transfers to end on a 32-bit boundary */
 +	qc->pad_len = sg->length & 3;
 +	if (qc->pad_len) {
 +		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
 +		struct scatterlist *psg = &qc->pad_sgent;
 +
 +		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
 +
 +		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
 +
 +		if (qc->tf.flags & ATA_TFLAG_WRITE)
 +			memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
 +			       qc->pad_len);
 +
 +		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
 +		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
 +		/* trim sg */
 +		sg->length -= qc->pad_len;
 +		if (sg->length == 0)
 +			trim_sg = 1;
 +
 +		DPRINTK("padding done, sg->length=%u pad_len=%u\n",
 +			sg->length, qc->pad_len);
 +	}
 +
 +	if (trim_sg) {
 +		qc->n_elem--;
 +		goto skip_map;
 +	}
 +
 +	dma_address = dma_map_single(ap->dev, qc->buf_virt,
 +				     sg->length, dir);
 +	if (dma_mapping_error(dma_address)) {
 +		/* restore sg */
 +		sg->length += qc->pad_len;
 +		return -1;
 +	}
 +
 +	sg_dma_address(sg) = dma_address;
 +	sg_dma_len(sg) = sg->length;
 +
 +skip_map:
 +	DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
 +		qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 +
 +	return 0;
 +}
 +
 +/**
 + *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
 + *	@qc: Command with scatter-gather table to be mapped.
 + *
 + *	DMA-map the scatter-gather table associated with queued_cmd @qc.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + *
 + *	RETURNS:
 + *	Zero on success, negative on error.
 + *
 + */
 +
 +static int ata_sg_setup(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +	struct scatterlist *sg = qc->__sg;
 +	struct scatterlist *lsg = &sg[qc->n_elem - 1];
 +	int n_elem, pre_n_elem, dir, trim_sg = 0;
 +
 +	VPRINTK("ENTER, ata%u\n", ap->id);
 +	WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
 +
 +	/* we must lengthen transfers to end on a 32-bit boundary */
 +	qc->pad_len = lsg->length & 3;
 +	if (qc->pad_len) {
 +		void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
 +		struct scatterlist *psg = &qc->pad_sgent;
 +		unsigned int offset;
 +
 +		WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
 +
 +		memset(pad_buf, 0, ATA_DMA_PAD_SZ);
 +
 +		/*
 +		 * psg->page/offset are used to copy to-be-written
 +		 * data in this function or read data in ata_sg_clean.
 +		 */
 +		offset = lsg->offset + lsg->length - qc->pad_len;
 +		psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
 +		psg->offset = offset_in_page(offset);
 +
 +		if (qc->tf.flags & ATA_TFLAG_WRITE) {
 +			void *addr = kmap_atomic(psg->page, KM_IRQ0);
 +			memcpy(pad_buf, addr + psg->offset, qc->pad_len);
 +			kunmap_atomic(addr, KM_IRQ0);
 +		}
 +
 +		sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
 +		sg_dma_len(psg) = ATA_DMA_PAD_SZ;
 +		/* trim last sg */
 +		lsg->length -= qc->pad_len;
 +		if (lsg->length == 0)
 +			trim_sg = 1;
 +
 +		DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
 +			qc->n_elem - 1, lsg->length, qc->pad_len);
 +	}
 +
 +	pre_n_elem = qc->n_elem;
 +	if (trim_sg && pre_n_elem)
 +		pre_n_elem--;
 +
 +	if (!pre_n_elem) {
 +		n_elem = 0;
 +		goto skip_map;
 +	}
 +
 +	dir = qc->dma_dir;
 +	n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
 +	if (n_elem < 1) {
 +		/* restore last sg */
 +		lsg->length += qc->pad_len;
 +		return -1;
 +	}
 +
 +	DPRINTK("%d sg elements mapped\n", n_elem);
 +
 +skip_map:
 +	qc->n_elem = n_elem;
 +
 +	return 0;
 +}
 +
 +/**
 + *	swap_buf_le16 - swap halves of 16-bit words in place
 + *	@buf:  Buffer to swap
 + *	@buf_words:  Number of 16-bit words in buffer.
 + *
 + *	Swap halves of 16-bit words if needed to convert from
 + *	little-endian byte order to native cpu byte order, or
 + *	vice-versa.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +void swap_buf_le16(u16 *buf, unsigned int buf_words)
 +{
 +#ifdef __BIG_ENDIAN
 +	unsigned int i;
 +
 +	for (i = 0; i < buf_words; i++)
 +		buf[i] = le16_to_cpu(buf[i]);
 +#endif /* __BIG_ENDIAN */
 +}
 +
 +/**
 + *	ata_mmio_data_xfer - Transfer data by MMIO
 + *	@adev: device for this I/O
 + *	@buf: data buffer
 + *	@buflen: buffer length
 + *	@write_data: read/write
 + *
 + *	Transfer data from/to the device data register by MMIO.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
 +			unsigned int buflen, int write_data)
 +{
 +	struct ata_port *ap = adev->ap;
 +	unsigned int i;
 +	unsigned int words = buflen >> 1;
 +	u16 *buf16 = (u16 *) buf;
 +	void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
 +
 +	/* Transfer multiple of 2 bytes */
 +	if (write_data) {
 +		for (i = 0; i < words; i++)
 +			writew(le16_to_cpu(buf16[i]), mmio);
 +	} else {
 +		for (i = 0; i < words; i++)
 +			buf16[i] = cpu_to_le16(readw(mmio));
 +	}
 +
 +	/* Transfer trailing 1 byte, if any. */
 +	if (unlikely(buflen & 0x01)) {
 +		u16 align_buf[1] = { 0 };
 +		unsigned char *trailing_buf = buf + buflen - 1;
 +
 +		if (write_data) {
 +			memcpy(align_buf, trailing_buf, 1);
 +			writew(le16_to_cpu(align_buf[0]), mmio);
 +		} else {
 +			align_buf[0] = cpu_to_le16(readw(mmio));
 +			memcpy(trailing_buf, align_buf, 1);
 +		}
 +	}
 +}
 +
 +/**
 + *	ata_pio_data_xfer - Transfer data by PIO
 + *	@adev: device to target
 + *	@buf: data buffer
 + *	@buflen: buffer length
 + *	@write_data: read/write
 + *
 + *	Transfer data from/to the device data register by PIO.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
 +		       unsigned int buflen, int write_data)
 +{
 +	struct ata_port *ap = adev->ap;
 +	unsigned int words = buflen >> 1;
 +
 +	/* Transfer multiple of 2 bytes */
 +	if (write_data)
 +		outsw(ap->ioaddr.data_addr, buf, words);
 +	else
 +		insw(ap->ioaddr.data_addr, buf, words);
 +
 +	/* Transfer trailing 1 byte, if any. */
 +	if (unlikely(buflen & 0x01)) {
 +		u16 align_buf[1] = { 0 };
 +		unsigned char *trailing_buf = buf + buflen - 1;
 +
 +		if (write_data) {
 +			memcpy(align_buf, trailing_buf, 1);
 +			outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
 +		} else {
 +			align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
 +			memcpy(trailing_buf, align_buf, 1);
 +		}
 +	}
 +}
 +
 +/**
 + *	ata_pio_data_xfer_noirq - Transfer data by PIO
 + *	@adev: device to target
 + *	@buf: data buffer
 + *	@buflen: buffer length
 + *	@write_data: read/write
 + *
 + *	Transfer data from/to the device data register by PIO. Do the
 + *	transfer with interrupts disabled.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
 +				    unsigned int buflen, int write_data)
 +{
 +	unsigned long flags;
 +	local_irq_save(flags);
 +	ata_pio_data_xfer(adev, buf, buflen, write_data);
 +	local_irq_restore(flags);
 +}
 +
 +
 +/**
 + *	ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
 + *	@qc: Command on going
 + *
 + *	Transfer ATA_SECT_SIZE of data from/to the ATA device.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +static void ata_pio_sector(struct ata_queued_cmd *qc)
 +{
 +	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 +	struct scatterlist *sg = qc->__sg;
 +	struct ata_port *ap = qc->ap;
 +	struct page *page;
 +	unsigned int offset;
 +	unsigned char *buf;
 +
 +	if (qc->cursect == (qc->nsect - 1))
 +		ap->hsm_task_state = HSM_ST_LAST;
 +
 +	page = sg[qc->cursg].page;
 +	offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
 +
 +	/* get the current page and offset */
 +	page = nth_page(page, (offset >> PAGE_SHIFT));
 +	offset %= PAGE_SIZE;
 +
 +	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 +
 +	if (PageHighMem(page)) {
 +		unsigned long flags;
 +
 +		/* FIXME: use a bounce buffer */
 +		local_irq_save(flags);
 +		buf = kmap_atomic(page, KM_IRQ0);
 +
 +		/* do the actual data transfer */
 +		ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
 +
 +		kunmap_atomic(buf, KM_IRQ0);
 +		local_irq_restore(flags);
 +	} else {
 +		buf = page_address(page);
 +		ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
 +	}
 +
 +	qc->cursect++;
 +	qc->cursg_ofs++;
 +
 +	if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
 +		qc->cursg++;
 +		qc->cursg_ofs = 0;
 +	}
 +}
 +
 +/**
 + *	ata_pio_sectors - Transfer one or many 512-byte sectors.
 + *	@qc: Command on going
 + *
 + *	Transfer one or many ATA_SECT_SIZE of data from/to the
 + *	ATA device for the DRQ request.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +static void ata_pio_sectors(struct ata_queued_cmd *qc)
 +{
 +	if (is_multi_taskfile(&qc->tf)) {
 +		/* READ/WRITE MULTIPLE */
 +		unsigned int nsect;
 +
 +		WARN_ON(qc->dev->multi_count == 0);
 +
 +		nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
 +		while (nsect--)
 +			ata_pio_sector(qc);
 +	} else
 +		ata_pio_sector(qc);
 +}
 +
 +/**
 + *	atapi_send_cdb - Write CDB bytes to hardware
 + *	@ap: Port to which ATAPI device is attached.
 + *	@qc: Taskfile currently active
 + *
 + *	When device has indicated its readiness to accept
 + *	a CDB, this function is called.  Send the CDB.
 + *
 + *	LOCKING:
 + *	caller.
 + */
 +
 +static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 +{
 +	/* send SCSI cdb */
 +	DPRINTK("send cdb\n");
 +	WARN_ON(qc->dev->cdb_len < 12);
 +
 +	ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
 +	ata_altstatus(ap); /* flush */
 +
 +	switch (qc->tf.protocol) {
 +	case ATA_PROT_ATAPI:
 +		ap->hsm_task_state = HSM_ST;
 +		break;
 +	case ATA_PROT_ATAPI_NODATA:
 +		ap->hsm_task_state = HSM_ST_LAST;
 +		break;
 +	case ATA_PROT_ATAPI_DMA:
 +		ap->hsm_task_state = HSM_ST_LAST;
 +		/* initiate bmdma */
 +		ap->ops->bmdma_start(qc);
 +		break;
 +	}
 +}
 +
 +/**
 + *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
 + *	@qc: Command on going
 + *	@bytes: number of bytes
 + *
 + *	Transfer Transfer data from/to the ATAPI device.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + *
 + */
 +
 +static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 +{
 +	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 +	struct scatterlist *sg = qc->__sg;
 +	struct ata_port *ap = qc->ap;
 +	struct page *page;
 +	unsigned char *buf;
 +	unsigned int offset, count;
 +
 +	if (qc->curbytes + bytes >= qc->nbytes)
 +		ap->hsm_task_state = HSM_ST_LAST;
 +
 +next_sg:
 +	if (unlikely(qc->cursg >= qc->n_elem)) {
 +		/*
 +		 * The end of qc->sg is reached and the device expects
 +		 * more data to transfer. In order not to overrun qc->sg
 +		 * and fulfill length specified in the byte count register,
 +		 *    - for read case, discard trailing data from the device
 +		 *    - for write case, padding zero data to the device
 +		 */
 +		u16 pad_buf[1] = { 0 };
 +		unsigned int words = bytes >> 1;
 +		unsigned int i;
 +
 +		if (words) /* warning if bytes > 1 */
 +			ata_dev_printk(qc->dev, KERN_WARNING,
 +				       "%u bytes trailing data\n", bytes);
 +
 +		for (i = 0; i < words; i++)
 +			ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
 +
 +		ap->hsm_task_state = HSM_ST_LAST;
 +		return;
 +	}
 +
 +	sg = &qc->__sg[qc->cursg];
 +
 +	page = sg->page;
 +	offset = sg->offset + qc->cursg_ofs;
 +
 +	/* get the current page and offset */
 +	page = nth_page(page, (offset >> PAGE_SHIFT));
 +	offset %= PAGE_SIZE;
 +
 +	/* don't overrun current sg */
 +	count = min(sg->length - qc->cursg_ofs, bytes);
 +
 +	/* don't cross page boundaries */
 +	count = min(count, (unsigned int)PAGE_SIZE - offset);
 +
 +	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 +
 +	if (PageHighMem(page)) {
 +		unsigned long flags;
 +
 +		/* FIXME: use bounce buffer */
 +		local_irq_save(flags);
 +		buf = kmap_atomic(page, KM_IRQ0);
 +
 +		/* do the actual data transfer */
 +		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
 +
 +		kunmap_atomic(buf, KM_IRQ0);
 +		local_irq_restore(flags);
 +	} else {
 +		buf = page_address(page);
 +		ap->ops->data_xfer(qc->dev,  buf + offset, count, do_write);
 +	}
 +
 +	bytes -= count;
 +	qc->curbytes += count;
 +	qc->cursg_ofs += count;
 +
 +	if (qc->cursg_ofs == sg->length) {
 +		qc->cursg++;
 +		qc->cursg_ofs = 0;
 +	}
 +
 +	if (bytes)
 +		goto next_sg;
 +}
 +
 +/**
 + *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
 + *	@qc: Command on going
 + *
 + *	Transfer Transfer data from/to the ATAPI device.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +	struct ata_device *dev = qc->dev;
 +	unsigned int ireason, bc_lo, bc_hi, bytes;
 +	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 +
 +	/* Abuse qc->result_tf for temp storage of intermediate TF
 +	 * here to save some kernel stack usage.
 +	 * For normal completion, qc->result_tf is not relevant. For
 +	 * error, qc->result_tf is later overwritten by ata_qc_complete().
 +	 * So, the correctness of qc->result_tf is not affected.
 +	 */
 +	ap->ops->tf_read(ap, &qc->result_tf);
 +	ireason = qc->result_tf.nsect;
 +	bc_lo = qc->result_tf.lbam;
 +	bc_hi = qc->result_tf.lbah;
 +	bytes = (bc_hi << 8) | bc_lo;
 +
 +	/* shall be cleared to zero, indicating xfer of data */
 +	if (ireason & (1 << 0))
 +		goto err_out;
 +
 +	/* make sure transfer direction matches expected */
 +	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
 +	if (do_write != i_write)
 +		goto err_out;
 +
 +	VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
 +
 +	__atapi_pio_bytes(qc, bytes);
 +
 +	return;
 +
 +err_out:
 +	ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
 +	qc->err_mask |= AC_ERR_HSM;
 +	ap->hsm_task_state = HSM_ST_ERR;
 +}
 +
 +/**
 + *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 + *	@ap: the target ata_port
 + *	@qc: qc on going
 + *
 + *	RETURNS:
 + *	1 if ok in workqueue, 0 otherwise.
 + */
 +
 +static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
 +{
 +	if (qc->tf.flags & ATA_TFLAG_POLLING)
 +		return 1;
 +
 +	if (ap->hsm_task_state == HSM_ST_FIRST) {
 +		if (qc->tf.protocol == ATA_PROT_PIO &&
 +		    (qc->tf.flags & ATA_TFLAG_WRITE))
 +		    return 1;
 +
 +		if (is_atapi_taskfile(&qc->tf) &&
 +		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 +			return 1;
 +	}
 +
 +	return 0;
 +}
 +
 +/**
 + *	ata_hsm_qc_complete - finish a qc running on standard HSM
 + *	@qc: Command to complete
 + *	@in_wq: 1 if called from workqueue, 0 otherwise
 + *
 + *	Finish @qc which is running on standard HSM.
 + *
 + *	LOCKING:
 + *	If @in_wq is zero, spin_lock_irqsave(host lock).
 + *	Otherwise, none on entry and grabs host lock.
 + */
 +static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 +{
 +	struct ata_port *ap = qc->ap;
 +	unsigned long flags;
 +
 +	if (ap->ops->error_handler) {
 +		if (in_wq) {
 +			spin_lock_irqsave(ap->lock, flags);
 +
 +			/* EH might have kicked in while host lock is
 +			 * released.
 +			 */
 +			qc = ata_qc_from_tag(ap, qc->tag);
 +			if (qc) {
 +				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
 +					ata_irq_on(ap);
 +					ata_qc_complete(qc);
 +				} else
 +					ata_port_freeze(ap);
 +			}
 +
 +			spin_unlock_irqrestore(ap->lock, flags);
 +		} else {
 +			if (likely(!(qc->err_mask & AC_ERR_HSM)))
 +				ata_qc_complete(qc);
 +			else
 +				ata_port_freeze(ap);
 +		}
 +	} else {
 +		if (in_wq) {
 +			spin_lock_irqsave(ap->lock, flags);
 +			ata_irq_on(ap);
 +			ata_qc_complete(qc);
 +			spin_unlock_irqrestore(ap->lock, flags);
 +		} else
 +			ata_qc_complete(qc);
 +	}
 +
 +	ata_altstatus(ap); /* flush */
 +}
 +
 +/**
 + *	ata_hsm_move - move the HSM to the next state.
 + *	@ap: the target ata_port
 + *	@qc: qc on going
 + *	@status: current device status
 + *	@in_wq: 1 if called from workqueue, 0 otherwise
 + *
 + *	RETURNS:
 + *	1 when poll next status needed, 0 otherwise.
 + */
 +int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
 +		 u8 status, int in_wq)
 +{
 +	unsigned long flags = 0;
 +	int poll_next;
 +
 +	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
 +
 +	/* Make sure ata_qc_issue_prot() does not throw things
 +	 * like DMA polling into the workqueue. Notice that
 +	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
 +	 */
 +	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
 +
 +fsm_start:
 +	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
 +		ap->id, qc->tf.protocol, ap->hsm_task_state, status);
 +
 +	switch (ap->hsm_task_state) {
 +	case HSM_ST_FIRST:
 +		/* Send first data block or PACKET CDB */
 +
 +		/* If polling, we will stay in the work queue after
 +		 * sending the data. Otherwise, interrupt handler
 +		 * takes over after sending the data.
 +		 */
 +		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
 +
 +		/* check device status */
 +		if (unlikely((status & ATA_DRQ) == 0)) {
 +			/* handle BSY=0, DRQ=0 as error */
 +			if (likely(status & (ATA_ERR | ATA_DF)))
 +				/* device stops HSM for abort/error */
 +				qc->err_mask |= AC_ERR_DEV;
 +			else
 +				/* HSM violation. Let EH handle this */
 +				qc->err_mask |= AC_ERR_HSM;
 +
 +			ap->hsm_task_state = HSM_ST_ERR;
 +			goto fsm_start;
 +		}
 +
 +		/* Device should not ask for data transfer (DRQ=1)
 +		 * when it finds something wrong.
 +		 * We ignore DRQ here and stop the HSM by
 +		 * changing hsm_task_state to HSM_ST_ERR and
 +		 * let the EH abort the command or reset the device.
 +		 */
 +		if (unlikely(status & (ATA_ERR | ATA_DF))) {
 +			printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
 +			       ap->id, status);
 +			qc->err_mask |= AC_ERR_HSM;
 +			ap->hsm_task_state = HSM_ST_ERR;
 +			goto fsm_start;
 +		}
 +
 +		/* Send the CDB (atapi) or the first data block (ata pio out).
 +		 * During the state transition, interrupt handler shouldn't
 +		 * be invoked before the data transfer is complete and
 +		 * hsm_task_state is changed. Hence, the following locking.
 +		 */
 +		if (in_wq)
 +			spin_lock_irqsave(ap->lock, flags);
 +
 +		if (qc->tf.protocol == ATA_PROT_PIO) {
 +			/* PIO data out protocol.
 +			 * send first data block.
 +			 */
 +
 +			/* ata_pio_sectors() might change the state
 +			 * to HSM_ST_LAST. so, the state is changed here
 +			 * before ata_pio_sectors().
 +			 */
 +			ap->hsm_task_state = HSM_ST;
 +			ata_pio_sectors(qc);
 +			ata_altstatus(ap); /* flush */
 +		} else
 +			/* send CDB */
 +			atapi_send_cdb(ap, qc);
 +
 +		if (in_wq)
 +			spin_unlock_irqrestore(ap->lock, flags);
 +
 +		/* if polling, ata_pio_task() handles the rest.
 +		 * otherwise, interrupt handler takes over from here.
 +		 */
 +		break;
 +
 +	case HSM_ST:
 +		/* complete command or read/write the data register */
 +		if (qc->tf.protocol == ATA_PROT_ATAPI) {
 +			/* ATAPI PIO protocol */
 +			if ((status & ATA_DRQ) == 0) {
 +				/* No more data to transfer or device error.
 +				 * Device error will be tagged in HSM_ST_LAST.
 +				 */
 +				ap->hsm_task_state = HSM_ST_LAST;
 +				goto fsm_start;
 +			}
 +
 +			/* Device should not ask for data transfer (DRQ=1)
 +			 * when it finds something wrong.
 +			 * We ignore DRQ here and stop the HSM by
 +			 * changing hsm_task_state to HSM_ST_ERR and
 +			 * let the EH abort the command or reset the device.
 +			 */
 +			if (unlikely(status & (ATA_ERR | ATA_DF))) {
 +				printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
 +				       ap->id, status);
 +				qc->err_mask |= AC_ERR_HSM;
 +				ap->hsm_task_state = HSM_ST_ERR;
 +				goto fsm_start;
 +			}
 +
 +			atapi_pio_bytes(qc);
 +
 +			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
 +				/* bad ireason reported by device */
 +				goto fsm_start;
 +
 +		} else {
 +			/* ATA PIO protocol */
 +			if (unlikely((status & ATA_DRQ) == 0)) {
 +				/* handle BSY=0, DRQ=0 as error */
 +				if (likely(status & (ATA_ERR | ATA_DF)))
 +					/* device stops HSM for abort/error */
 +					qc->err_mask |= AC_ERR_DEV;
 +				else
 +					/* HSM violation. Let EH handle this */
 +					qc->err_mask |= AC_ERR_HSM;
 +
 +				ap->hsm_task_state = HSM_ST_ERR;
 +				goto fsm_start;
 +			}
 +
 +			/* For PIO reads, some devices may ask for
 +			 * data transfer (DRQ=1) alone with ERR=1.
 +			 * We respect DRQ here and transfer one
 +			 * block of junk data before changing the
 +			 * hsm_task_state to HSM_ST_ERR.
 +			 *
 +			 * For PIO writes, ERR=1 DRQ=1 doesn't make
 +			 * sense since the data block has been
 +			 * transferred to the device.
 +			 */
 +			if (unlikely(status & (ATA_ERR | ATA_DF))) {
 +				/* data might be corrputed */
 +				qc->err_mask |= AC_ERR_DEV;
 +
 +				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
 +					ata_pio_sectors(qc);
 +					ata_altstatus(ap);
 +					status = ata_wait_idle(ap);
 +				}
 +
 +				if (status & (ATA_BUSY | ATA_DRQ))
 +					qc->err_mask |= AC_ERR_HSM;
 +
 +				/* ata_pio_sectors() might change the
 +				 * state to HSM_ST_LAST. so, the state
 +				 * is changed after ata_pio_sectors().
 +				 */
 +				ap->hsm_task_state = HSM_ST_ERR;
 +				goto fsm_start;
 +			}
 +
 +			ata_pio_sectors(qc);
 +
 +			if (ap->hsm_task_state == HSM_ST_LAST &&
 +			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
 +				/* all data read */
 +				ata_altstatus(ap);
 +				status = ata_wait_idle(ap);
 +				goto fsm_start;
 +			}
 +		}
 +
 +		ata_altstatus(ap); /* flush */
 +		poll_next = 1;
 +		break;
 +
 +	case HSM_ST_LAST:
 +		if (unlikely(!ata_ok(status))) {
 +			qc->err_mask |= __ac_err_mask(status);
 +			ap->hsm_task_state = HSM_ST_ERR;
 +			goto fsm_start;
 +		}
 +
 +		/* no more data to transfer */
 +		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
 +			ap->id, qc->dev->devno, status);
 +
 +		WARN_ON(qc->err_mask);
 +
 +		ap->hsm_task_state = HSM_ST_IDLE;
 +
 +		/* complete taskfile transaction */
 +		ata_hsm_qc_complete(qc, in_wq);
 +
 +		poll_next = 0;
 +		break;
 +
 +	case HSM_ST_ERR:
 +		/* make sure qc->err_mask is available to
 +		 * know what's wrong and recover
 +		 */
 +		WARN_ON(qc->err_mask == 0);
 +
 +		ap->hsm_task_state = HSM_ST_IDLE;
 +
 +		/* complete taskfile transaction */
 +		ata_hsm_qc_complete(qc, in_wq);
 +
 +		poll_next = 0;
 +		break;
 +	default:
 +		poll_next = 0;
 +		BUG();
 +	}
 +
 +	return poll_next;
 +}
 +
 +static void ata_pio_task(void *_data)
 +{
 +	struct ata_queued_cmd *qc = _data;
 +	struct ata_port *ap = qc->ap;
 +	u8 status;
 +	int poll_next;
 +
 +fsm_start:
 +	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
 +
 +	/*
 +	 * This is purely heuristic.  This is a fast path.
 +	 * Sometimes when we enter, BSY will be cleared in
 +	 * a chk-status or two.  If not, the drive is probably seeking
 +	 * or something.  Snooze for a couple msecs, then
 +	 * chk-status again.  If still busy, queue delayed work.
 +	 */
 +	status = ata_busy_wait(ap, ATA_BUSY, 5);
 +	if (status & ATA_BUSY) {
 +		msleep(2);
 +		status = ata_busy_wait(ap, ATA_BUSY, 10);
 +		if (status & ATA_BUSY) {
 +			ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
 +			return;
 +		}
 +	}
 +
 +	/* move the HSM */
 +	poll_next = ata_hsm_move(ap, qc, status, 1);
 +
 +	/* another command or interrupt handler
 +	 * may be running at this point.
 +	 */
 +	if (poll_next)
 +		goto fsm_start;
 +}
 +
 +/**
 + *	ata_qc_new - Request an available ATA command, for queueing
 + *	@ap: Port associated with device @dev
 + *	@dev: Device from whom we request an available command structure
 + *
 + *	LOCKING:
 + *	None.
 + */
 +
 +static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
 +{
 +	struct ata_queued_cmd *qc = NULL;
 +	unsigned int i;
 +
 +	/* no command while frozen */
 +	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
 +		return NULL;
 +
 +	/* the last tag is reserved for internal command. */
 +	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
 +		if (!test_and_set_bit(i, &ap->qc_allocated)) {
 +			qc = __ata_qc_from_tag(ap, i);
 +			break;
 +		}
 +
 +	if (qc)
 +		qc->tag = i;
 +
 +	return qc;
 +}
 +
 +/**
 + *	ata_qc_new_init - Request an available ATA command, and initialize it
 + *	@dev: Device from whom we request an available command structure
 + *
 + *	LOCKING:
 + *	None.
 + */
 +
 +struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
 +{
 +	struct ata_port *ap = dev->ap;
 +	struct ata_queued_cmd *qc;
 +
 +	qc = ata_qc_new(ap);
 +	if (qc) {
 +		qc->scsicmd = NULL;
 +		qc->ap = ap;
 +		qc->dev = dev;
 +
 +		ata_qc_reinit(qc);
 +	}
 +
 +	return qc;
 +}
 +
 +/**
 + *	ata_qc_free - free unused ata_queued_cmd
 + *	@qc: Command to complete
 + *
 + *	Designed to free unused ata_queued_cmd object
 + *	in case something prevents using it.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + */
 +void ata_qc_free(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +	unsigned int tag;
 +
 +	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
 +
 +	qc->flags = 0;
 +	tag = qc->tag;
 +	if (likely(ata_tag_valid(tag))) {
 +		qc->tag = ATA_TAG_POISON;
 +		clear_bit(tag, &ap->qc_allocated);
 +	}
 +}
 +
 +void __ata_qc_complete(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +
 +	WARN_ON(qc == NULL);	/* ata_qc_from_tag _might_ return NULL */
 +	WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
 +
 +	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
 +		ata_sg_clean(qc);
 +
 +	/* command should be marked inactive atomically with qc completion */
 +	if (qc->tf.protocol == ATA_PROT_NCQ)
 +		ap->sactive &= ~(1 << qc->tag);
 +	else
 +		ap->active_tag = ATA_TAG_POISON;
 +
 +	/* atapi: mark qc as inactive to prevent the interrupt handler
 +	 * from completing the command twice later, before the error handler
 +	 * is called. (when rc != 0 and atapi request sense is needed)
 +	 */
 +	qc->flags &= ~ATA_QCFLAG_ACTIVE;
 +	ap->qc_active &= ~(1 << qc->tag);
 +
 +	/* call completion callback */
 +	qc->complete_fn(qc);
 +}
 +
 +/**
 + *	ata_qc_complete - Complete an active ATA command
 + *	@qc: Command to complete
 + *	@err_mask: ATA Status register contents
 + *
 + *	Indicate to the mid and upper layers that an ATA
 + *	command has completed, with either an ok or not-ok status.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + */
 +void ata_qc_complete(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +
 +	/* XXX: New EH and old EH use different mechanisms to
 +	 * synchronize EH with regular execution path.
 +	 *
 +	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
 +	 * Normal execution path is responsible for not accessing a
 +	 * failed qc.  libata core enforces the rule by returning NULL
 +	 * from ata_qc_from_tag() for failed qcs.
 +	 *
 +	 * Old EH depends on ata_qc_complete() nullifying completion
 +	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
 +	 * not synchronize with interrupt handler.  Only PIO task is
 +	 * taken care of.
 +	 */
 +	if (ap->ops->error_handler) {
 +		WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
 +
 +		if (unlikely(qc->err_mask))
 +			qc->flags |= ATA_QCFLAG_FAILED;
 +
 +		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
 +			if (!ata_tag_internal(qc->tag)) {
 +				/* always fill result TF for failed qc */
 +				ap->ops->tf_read(ap, &qc->result_tf);
 +				ata_qc_schedule_eh(qc);
 +				return;
 +			}
 +		}
 +
 +		/* read result TF if requested */
 +		if (qc->flags & ATA_QCFLAG_RESULT_TF)
 +			ap->ops->tf_read(ap, &qc->result_tf);
 +
 +		__ata_qc_complete(qc);
 +	} else {
 +		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
 +			return;
 +
 +		/* read result TF if failed or requested */
 +		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
 +			ap->ops->tf_read(ap, &qc->result_tf);
 +
 +		__ata_qc_complete(qc);
 +	}
 +}
 +
 +/**
 + *	ata_qc_complete_multiple - Complete multiple qcs successfully
 + *	@ap: port in question
 + *	@qc_active: new qc_active mask
 + *	@finish_qc: LLDD callback invoked before completing a qc
 + *
 + *	Complete in-flight commands.  This functions is meant to be
 + *	called from low-level driver's interrupt routine to complete
 + *	requests normally.  ap->qc_active and @qc_active is compared
 + *	and commands are completed accordingly.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + *
 + *	RETURNS:
 + *	Number of completed commands on success, -errno otherwise.
 + */
 +int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
 +			     void (*finish_qc)(struct ata_queued_cmd *))
 +{
 +	int nr_done = 0;
 +	u32 done_mask;
 +	int i;
 +
 +	done_mask = ap->qc_active ^ qc_active;
 +
 +	if (unlikely(done_mask & qc_active)) {
 +		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
 +				"(%08x->%08x)\n", ap->qc_active, qc_active);
 +		return -EINVAL;
 +	}
 +
 +	for (i = 0; i < ATA_MAX_QUEUE; i++) {
 +		struct ata_queued_cmd *qc;
 +
 +		if (!(done_mask & (1 << i)))
 +			continue;
 +
 +		if ((qc = ata_qc_from_tag(ap, i))) {
 +			if (finish_qc)
 +				finish_qc(qc);
 +			ata_qc_complete(qc);
 +			nr_done++;
 +		}
 +	}
 +
 +	return nr_done;
 +}
 +
 +static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +
 +	switch (qc->tf.protocol) {
 +	case ATA_PROT_NCQ:
 +	case ATA_PROT_DMA:
 +	case ATA_PROT_ATAPI_DMA:
 +		return 1;
 +
 +	case ATA_PROT_ATAPI:
 +	case ATA_PROT_PIO:
 +		if (ap->flags & ATA_FLAG_PIO_DMA)
 +			return 1;
 +
 +		/* fall through */
 +
 +	default:
 +		return 0;
 +	}
 +
 +	/* never reached */
 +}
 +
 +/**
 + *	ata_qc_issue - issue taskfile to device
 + *	@qc: command to issue to device
 + *
 + *	Prepare an ATA command to submission to device.
 + *	This includes mapping the data into a DMA-able
 + *	area, filling in the S/G table, and finally
 + *	writing the taskfile to hardware, starting the command.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + */
 +void ata_qc_issue(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +
 +	/* Make sure only one non-NCQ command is outstanding.  The
 +	 * check is skipped for old EH because it reuses active qc to
 +	 * request ATAPI sense.
 +	 */
 +	WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
 +
 +	if (qc->tf.protocol == ATA_PROT_NCQ) {
 +		WARN_ON(ap->sactive & (1 << qc->tag));
 +		ap->sactive |= 1 << qc->tag;
 +	} else {
 +		WARN_ON(ap->sactive);
 +		ap->active_tag = qc->tag;
 +	}
 +
 +	qc->flags |= ATA_QCFLAG_ACTIVE;
 +	ap->qc_active |= 1 << qc->tag;
 +
 +	if (ata_should_dma_map(qc)) {
 +		if (qc->flags & ATA_QCFLAG_SG) {
 +			if (ata_sg_setup(qc))
 +				goto sg_err;
 +		} else if (qc->flags & ATA_QCFLAG_SINGLE) {
 +			if (ata_sg_setup_one(qc))
 +				goto sg_err;
 +		}
 +	} else {
 +		qc->flags &= ~ATA_QCFLAG_DMAMAP;
 +	}
 +
 +	ap->ops->qc_prep(qc);
 +
 +	qc->err_mask |= ap->ops->qc_issue(qc);
 +	if (unlikely(qc->err_mask))
 +		goto err;
 +	return;
 +
 +sg_err:
 +	qc->flags &= ~ATA_QCFLAG_DMAMAP;
 +	qc->err_mask |= AC_ERR_SYSTEM;
 +err:
 +	ata_qc_complete(qc);
 +}
 +
 +/**
 + *	ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
 + *	@qc: command to issue to device
 + *
 + *	Using various libata functions and hooks, this function
 + *	starts an ATA command.  ATA commands are grouped into
 + *	classes called "protocols", and issuing each type of protocol
 + *	is slightly different.
 + *
 + *	May be used as the qc_issue() entry in ata_port_operations.
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + *
 + *	RETURNS:
 + *	Zero on success, AC_ERR_* mask on failure
 + */
 +
 +unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
 +{
 +	struct ata_port *ap = qc->ap;
 +
 +	/* Use polling pio if the LLD doesn't handle
 +	 * interrupt driven pio and atapi CDB interrupt.
 +	 */
 +	if (ap->flags & ATA_FLAG_PIO_POLLING) {
 +		switch (qc->tf.protocol) {
 +		case ATA_PROT_PIO:
 +		case ATA_PROT_ATAPI:
 +		case ATA_PROT_ATAPI_NODATA:
 +			qc->tf.flags |= ATA_TFLAG_POLLING;
 +			break;
 +		case ATA_PROT_ATAPI_DMA:
 +			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
 +				/* see ata_dma_blacklisted() */
 +				BUG();
 +			break;
 +		default:
 +			break;
 +		}
 +	}
 +
 +	/* select the device */
 +	ata_dev_select(ap, qc->dev->devno, 1, 0);
 +
 +	/* start the command */
 +	switch (qc->tf.protocol) {
 +	case ATA_PROT_NODATA:
 +		if (qc->tf.flags & ATA_TFLAG_POLLING)
 +			ata_qc_set_polling(qc);
 +
 +		ata_tf_to_host(ap, &qc->tf);
 +		ap->hsm_task_state = HSM_ST_LAST;
 +
 +		if (qc->tf.flags & ATA_TFLAG_POLLING)
 +			ata_port_queue_task(ap, ata_pio_task, qc, 0);
 +
 +		break;
 +
 +	case ATA_PROT_DMA:
 +		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
 +
 +		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
 +		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
 +		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
 +		ap->hsm_task_state = HSM_ST_LAST;
 +		break;
 +
 +	case ATA_PROT_PIO:
 +		if (qc->tf.flags & ATA_TFLAG_POLLING)
 +			ata_qc_set_polling(qc);
 +
 +		ata_tf_to_host(ap, &qc->tf);
 +
 +		if (qc->tf.flags & ATA_TFLAG_WRITE) {
 +			/* PIO data out protocol */
 +			ap->hsm_task_state = HSM_ST_FIRST;
 +			ata_port_queue_task(ap, ata_pio_task, qc, 0);
 +
 +			/* always send first data block using
 +			 * the ata_pio_task() codepath.
 +			 */
 +		} else {
 +			/* PIO data in protocol */
 +			ap->hsm_task_state = HSM_ST;
 +
 +			if (qc->tf.flags & ATA_TFLAG_POLLING)
 +				ata_port_queue_task(ap, ata_pio_task, qc, 0);
 +
 +			/* if polling, ata_pio_task() handles the rest.
 +			 * otherwise, interrupt handler takes over from here.
 +			 */
 +		}
 +
 +		break;
 +
 +	case ATA_PROT_ATAPI:
 +	case ATA_PROT_ATAPI_NODATA:
 +		if (qc->tf.flags & ATA_TFLAG_POLLING)
 +			ata_qc_set_polling(qc);
 +
 +		ata_tf_to_host(ap, &qc->tf);
 +
 +		ap->hsm_task_state = HSM_ST_FIRST;
 +
 +		/* send cdb by polling if no cdb interrupt */
 +		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
 +		    (qc->tf.flags & ATA_TFLAG_POLLING))
 +			ata_port_queue_task(ap, ata_pio_task, qc, 0);
 +		break;
 +
 +	case ATA_PROT_ATAPI_DMA:
 +		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
 +
 +		ap->ops->tf_load(ap, &qc->tf);	 /* load tf registers */
 +		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
 +		ap->hsm_task_state = HSM_ST_FIRST;
 +
 +		/* send cdb by polling if no cdb interrupt */
 +		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 +			ata_port_queue_task(ap, ata_pio_task, qc, 0);
 +		break;
 +
 +	default:
 +		WARN_ON(1);
 +		return AC_ERR_SYSTEM;
 +	}
 +
 +	return 0;
 +}
 +
 +/**
 + *	ata_host_intr - Handle host interrupt for given (port, task)
 + *	@ap: Port on which interrupt arrived (possibly...)
 + *	@qc: Taskfile currently active in engine
 + *
 + *	Handle host interrupt for given queued command.  Currently,
 + *	only DMA interrupts are handled.  All other commands are
 + *	handled via polling with interrupts disabled (nIEN bit).
 + *
 + *	LOCKING:
 + *	spin_lock_irqsave(host lock)
 + *
 + *	RETURNS:
 + *	One if interrupt was handled, zero if not (shared irq).
 + */
 +
 +inline unsigned int ata_host_intr (struct ata_port *ap,
 +				   struct ata_queued_cmd *qc)
 +{
 +	u8 status, host_stat = 0;
 +
 +	VPRINTK("ata%u: protocol %d task_state %d\n",
 +		ap->id, qc->tf.protocol, ap->hsm_task_state);
 +
 +	/* Check whether we are expecting interrupt in this state */
 +	switch (ap->hsm_task_state) {
 +	case HSM_ST_FIRST:
 +		/* Some pre-ATAPI-4 devices assert INTRQ
 +		 * at this state when ready to receive CDB.
 +		 */
 +
 +		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
 +		 * The flag was turned on only for atapi devices.
 +		 * No need to check is_atapi_taskfile(&qc->tf) again.
 +		 */
 +		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 +			goto idle_irq;
 +		break;
 +	case HSM_ST_LAST:
 +		if (qc->tf.protocol == ATA_PROT_DMA ||
 +		    qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
 +			/* check status of DMA engine */
 +			host_stat = ap->ops->bmdma_status(ap);
 +			VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
 +
 +			/* if it's not our irq... */
 +			if (!(host_stat & ATA_DMA_INTR))
 +				goto idle_irq;
 +
 +			/* before we do anything else, clear DMA-Start bit */
 +			ap->ops->bmdma_stop(qc);
 +
 +			if (unlikely(host_stat & ATA_DMA_ERR)) {
 +				/* error when transfering data to/from memory */
 +				qc->err_mask |= AC_ERR_HOST_BUS;
 +				ap->hsm_task_state = HSM_ST_ERR;
 +			}
 +		}
 +		break;
 +	case HSM_ST:
 +		break;
 +	default:
 +		goto idle_irq;
 +	}
 +
 +	/* check altstatus */
 +	status = ata_altstatus(ap);
 +	if (status & ATA_BUSY)
 +		goto idle_irq;
 +
 +	/* check main status, clearing INTRQ */
 +	status = ata_chk_status(ap);
 +	if (unlikely(status & ATA_BUSY))
 +		goto idle_irq;
 +
 +	/* ack bmdma irq events */
 +	ap->ops->irq_clear(ap);
 +
 +	ata_hsm_move(ap, qc, status, 0);
 +	return 1;	/* irq handled */
 +
 +idle_irq:
 +	ap->stats.idle_irq++;
 +
 +#ifdef ATA_IRQ_TRAP
 +	if ((ap->stats.idle_irq % 1000) == 0) {
 +		ata_irq_ack(ap, 0); /* debug trap */
 +		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
 +		return 1;
 +	}
 +#endif
 +	return 0;	/* irq not handled */
 +}
 +
 +/**
 + *	ata_interrupt - Default ATA host interrupt handler
 + *	@irq: irq line (unused)
 + *	@dev_instance: pointer to our ata_host information structure
 + *	@regs: unused
 + *
 + *	Default interrupt handler for PCI IDE devices.  Calls
 + *	ata_host_intr() for each port that is not disabled.
 + *
 + *	LOCKING:
 + *	Obtains host lock during operation.
 + *
 + *	RETURNS:
 + *	IRQ_NONE or IRQ_HANDLED.
 + */
 +
 +irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
 +{
 +	struct ata_host *host = dev_instance;
 +	unsigned int i;
 +	unsigned int handled = 0;
 +	unsigned long flags;
 +
 +	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
 +	spin_lock_irqsave(&host->lock, flags);
 +
 +	for (i = 0; i < host->n_ports; i++) {
 +		struct ata_port *ap;
 +
 +		ap = host->ports[i];
 +		if (ap &&
 +		    !(ap->flags & ATA_FLAG_DISABLED)) {
 +			struct ata_queued_cmd *qc;
 +
 +			qc = ata_qc_from_tag(ap, ap->active_tag);
 +			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
 +			    (qc->flags & ATA_QCFLAG_ACTIVE))
 +				handled |= ata_host_intr(ap, qc);
 +		}
 +	}
 +
 +	spin_unlock_irqrestore(&host->lock, flags);
 +
 +	return IRQ_RETVAL(handled);
 +}
 +
 +/**
 + *	sata_scr_valid - test whether SCRs are accessible
 + *	@ap: ATA port to test SCR accessibility for
 + *
 + *	Test whether SCRs are accessible for @ap.
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	1 if SCRs are accessible, 0 otherwise.
 + */
 +int sata_scr_valid(struct ata_port *ap)
 +{
 +	return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
 +}
 +
 +/**
 + *	sata_scr_read - read SCR register of the specified port
 + *	@ap: ATA port to read SCR for
 + *	@reg: SCR to read
 + *	@val: Place to store read value
 + *
 + *	Read SCR register @reg of @ap into *@val.  This function is
 + *	guaranteed to succeed if the cable type of the port is SATA
 + *	and the port implements ->scr_read.
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	0 on success, negative errno on failure.
 + */
 +int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
 +{
 +	if (sata_scr_valid(ap)) {
 +		*val = ap->ops->scr_read(ap, reg);
 +		return 0;
 +	}
 +	return -EOPNOTSUPP;
 +}
 +
 +/**
 + *	sata_scr_write - write SCR register of the specified port
 + *	@ap: ATA port to write SCR for
 + *	@reg: SCR to write
 + *	@val: value to write
 + *
 + *	Write @val to SCR register @reg of @ap.  This function is
 + *	guaranteed to succeed if the cable type of the port is SATA
 + *	and the port implements ->scr_read.
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	0 on success, negative errno on failure.
 + */
 +int sata_scr_write(struct ata_port *ap, int reg, u32 val)
 +{
 +	if (sata_scr_valid(ap)) {
 +		ap->ops->scr_write(ap, reg, val);
 +		return 0;
 +	}
 +	return -EOPNOTSUPP;
 +}
 +
 +/**
 + *	sata_scr_write_flush - write SCR register of the specified port and flush
 + *	@ap: ATA port to write SCR for
 + *	@reg: SCR to write
 + *	@val: value to write
 + *
 + *	This function is identical to sata_scr_write() except that this
 + *	function performs flush after writing to the register.
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	0 on success, negative errno on failure.
 + */
 +int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
 +{
 +	if (sata_scr_valid(ap)) {
 +		ap->ops->scr_write(ap, reg, val);
 +		ap->ops->scr_read(ap, reg);
 +		return 0;
 +	}
 +	return -EOPNOTSUPP;
 +}
 +
 +/**
 + *	ata_port_online - test whether the given port is online
 + *	@ap: ATA port to test
 + *
 + *	Test whether @ap is online.  Note that this function returns 0
 + *	if online status of @ap cannot be obtained, so
 + *	ata_port_online(ap) != !ata_port_offline(ap).
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	1 if the port online status is available and online.
 + */
 +int ata_port_online(struct ata_port *ap)
 +{
 +	u32 sstatus;
 +
 +	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
 +		return 1;
 +	return 0;
 +}
 +
 +/**
 + *	ata_port_offline - test whether the given port is offline
 + *	@ap: ATA port to test
 + *
 + *	Test whether @ap is offline.  Note that this function returns
 + *	0 if offline status of @ap cannot be obtained, so
 + *	ata_port_online(ap) != !ata_port_offline(ap).
 + *
 + *	LOCKING:
 + *	None.
 + *
 + *	RETURNS:
 + *	1 if the port offline status is available and offline.
 + */
 +int ata_port_offline(struct ata_port *ap)
 +{
 +	u32 sstatus;
 +
 +	if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
 +		return 1;
 +	return 0;
 +}
 +
 +int ata_flush_cache(struct ata_device *dev)
 +{
 +	unsigned int err_mask;
 +	u8 cmd;
 +
 +	if (!ata_try_flush_cache(dev))
 +		return 0;
 +
 +	if (ata_id_has_flush_ext(dev->id))
 +		cmd = ATA_CMD_FLUSH_EXT;
 +	else
 +		cmd = ATA_CMD_FLUSH;
 +
 +	err_mask = ata_do_simple_cmd(dev, cmd);
 +	if (err_mask) {
 +		ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
 +		return -EIO;
 +	}
 +
 +	return 0;
 +}
 +
 +static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
 +			       unsigned int action, unsigned int ehi_flags,
 +			       int wait)
 +{
 +	unsigned long flags;
 +	int i, rc;
 +
 +	for (i = 0; i < host->n_ports; i++) {
 +		struct ata_port *ap = host->ports[i];
 +
 +		/* Previous resume operation might still be in
 +		 * progress.  Wait for PM_PENDING to clear.
 +		 */
 +		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
 +			ata_port_wait_eh(ap);
 +			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
 +		}
 +
 +		/* request PM ops to EH */
 +		spin_lock_irqsave(ap->lock, flags);
 +
 +		ap->pm_mesg = mesg;
 +		if (wait) {
 +			rc = 0;
 +			ap->pm_result = &rc;
 +		}
 +
 +		ap->pflags |= ATA_PFLAG_PM_PENDING;
 +		ap->eh_info.action |= action;
 +		ap->eh_info.flags |= ehi_flags;
 +
 +		ata_port_schedule_eh(ap);
 +
 +		spin_unlock_irqrestore(ap->lock, flags);
 +
 +		/* wait and check result */
 +		if (wait) {
 +			ata_port_wait_eh(ap);
 +			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
 +			if (rc)
 +				return rc;
 +		}
 +	}
 +
 +	return 0;
 +}
 +
 +/**
 + *	ata_host_suspend - suspend host
 + *	@host: host to suspend
 + *	@mesg: PM message
 + *
 + *	Suspend @host.  Actual operation is performed by EH.  This
 + *	function requests EH to perform PM operations and waits for EH
 + *	to finish.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep).
 + *
 + *	RETURNS:
 + *	0 on success, -errno on failure.
 + */
 +int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
 +{
 +	int i, j, rc;
 +
 +	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
 +	if (rc)
 +		goto fail;
 +
 +	/* EH is quiescent now.  Fail if we have any ready device.
 +	 * This happens if hotplug occurs between completion of device
 +	 * suspension and here.
 +	 */
 +	for (i = 0; i < host->n_ports; i++) {
 +		struct ata_port *ap = host->ports[i];
 +
 +		for (j = 0; j < ATA_MAX_DEVICES; j++) {
 +			struct ata_device *dev = &ap->device[j];
 +
 +			if (ata_dev_ready(dev)) {
 +				ata_port_printk(ap, KERN_WARNING,
 +						"suspend failed, device %d "
 +						"still active\n", dev->devno);
 +				rc = -EBUSY;
 +				goto fail;
 +			}
 +		}
 +	}
 +
 +	host->dev->power.power_state = mesg;
 +	return 0;
 +
 + fail:
 +	ata_host_resume(host);
 +	return rc;
 +}
 +
 +/**
 + *	ata_host_resume - resume host
 + *	@host: host to resume
 + *
 + *	Resume @host.  Actual operation is performed by EH.  This
 + *	function requests EH to perform PM operations and returns.
 + *	Note that all resume operations are performed parallely.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep).
 + */
 +void ata_host_resume(struct ata_host *host)
 +{
 +	ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
 +			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
 +	host->dev->power.power_state = PMSG_ON;
 +}
 +
 +/**
 + *	ata_port_start - Set port up for dma.
 + *	@ap: Port to initialize
 + *
 + *	Called just after data structures for each port are
 + *	initialized.  Allocates space for PRD table.
 + *
 + *	May be used as the port_start() entry in ata_port_operations.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +int ata_port_start (struct ata_port *ap)
 +{
 +	struct device *dev = ap->dev;
 +	int rc;
 +
 +	ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
 +	if (!ap->prd)
 +		return -ENOMEM;
 +
 +	rc = ata_pad_alloc(ap, dev);
 +	if (rc) {
 +		dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
 +		return rc;
 +	}
 +
 +	DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
 +
 +	return 0;
 +}
 +
 +
 +/**
 + *	ata_port_stop - Undo ata_port_start()
 + *	@ap: Port to shut down
 + *
 + *	Frees the PRD table.
 + *
 + *	May be used as the port_stop() entry in ata_port_operations.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +
 +void ata_port_stop (struct ata_port *ap)
 +{
 +	struct device *dev = ap->dev;
 +
 +	dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
 +	ata_pad_free(ap, dev);
 +}
 +
 +void ata_host_stop (struct ata_host *host)
 +{
 +	if (host->mmio_base)
 +		iounmap(host->mmio_base);
 +}
 +
 +/**
 + *	ata_dev_init - Initialize an ata_device structure
 + *	@dev: Device structure to initialize
 + *
 + *	Initialize @dev in preparation for probing.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +void ata_dev_init(struct ata_device *dev)
 +{
 +	struct ata_port *ap = dev->ap;
 +	unsigned long flags;
 +
 +	/* SATA spd limit is bound to the first device */
 +	ap->sata_spd_limit = ap->hw_sata_spd_limit;
 +
 +	/* High bits of dev->flags are used to record warm plug
 +	 * requests which occur asynchronously.  Synchronize using
 +	 * host lock.
 +	 */
 +	spin_lock_irqsave(ap->lock, flags);
 +	dev->flags &= ~ATA_DFLAG_INIT_MASK;
 +	spin_unlock_irqrestore(ap->lock, flags);
 +
 +	memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
 +	       sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
 +	dev->pio_mask = UINT_MAX;
 +	dev->mwdma_mask = UINT_MAX;
 +	dev->udma_mask = UINT_MAX;
 +}
 +
 +/**
 + *	ata_port_init - Initialize an ata_port structure
 + *	@ap: Structure to initialize
 + *	@host: Collection of hosts to which @ap belongs
 + *	@ent: Probe information provided by low-level driver
 + *	@port_no: Port number associated with this ata_port
 + *
 + *	Initialize a new ata_port structure.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +void ata_port_init(struct ata_port *ap, struct ata_host *host,
 +		   const struct ata_probe_ent *ent, unsigned int port_no)
 +{
 +	unsigned int i;
 +
 +	ap->lock = &host->lock;
 +	ap->flags = ATA_FLAG_DISABLED;
 +	ap->id = ata_unique_id++;
 +	ap->ctl = ATA_DEVCTL_OBS;
 +	ap->host = host;
 +	ap->dev = ent->dev;
 +	ap->port_no = port_no;
 +	if (port_no == 1 && ent->pinfo2) {
 +		ap->pio_mask = ent->pinfo2->pio_mask;
 +		ap->mwdma_mask = ent->pinfo2->mwdma_mask;
 +		ap->udma_mask = ent->pinfo2->udma_mask;
 +		ap->flags |= ent->pinfo2->flags;
 +		ap->ops = ent->pinfo2->port_ops;
 +	} else {
 +		ap->pio_mask = ent->pio_mask;
 +		ap->mwdma_mask = ent->mwdma_mask;
 +		ap->udma_mask = ent->udma_mask;
 +		ap->flags |= ent->port_flags;
 +		ap->ops = ent->port_ops;
 +	}
 +	ap->hw_sata_spd_limit = UINT_MAX;
 +	ap->active_tag = ATA_TAG_POISON;
 +	ap->last_ctl = 0xFF;
 +
 +#if defined(ATA_VERBOSE_DEBUG)
 +	/* turn on all debugging levels */
 +	ap->msg_enable = 0x00FF;
 +#elif defined(ATA_DEBUG)
 +	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
 +#else
 +	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
 +#endif
 +
 +	INIT_WORK(&ap->port_task, NULL, NULL);
 +	INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
 +	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
 +	INIT_LIST_HEAD(&ap->eh_done_q);
 +	init_waitqueue_head(&ap->eh_wait_q);
 +
 +	/* set cable type */
 +	ap->cbl = ATA_CBL_NONE;
 +	if (ap->flags & ATA_FLAG_SATA)
 +		ap->cbl = ATA_CBL_SATA;
 +
 +	for (i = 0; i < ATA_MAX_DEVICES; i++) {
 +		struct ata_device *dev = &ap->device[i];
 +		dev->ap = ap;
 +		dev->devno = i;
 +		ata_dev_init(dev);
 +	}
 +
 +#ifdef ATA_IRQ_TRAP
 +	ap->stats.unhandled_irq = 1;
 +	ap->stats.idle_irq = 1;
 +#endif
 +
 +	memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
 +}
 +
 +/**
 + *	ata_port_init_shost - Initialize SCSI host associated with ATA port
 + *	@ap: ATA port to initialize SCSI host for
 + *	@shost: SCSI host associated with @ap
 + *
 + *	Initialize SCSI host @shost associated with ATA port @ap.
 + *
 + *	LOCKING:
 + *	Inherited from caller.
 + */
 +static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
 +{
 +	ap->scsi_host = shost;
 +
 +	shost->unique_id = ap->id;
 +	shost->max_id = 16;
 +	shost->max_lun = 1;
 +	shost->max_channel = 1;
 +	shost->max_cmd_len = 12;
 +}
 +
 +/**
 + *	ata_port_add - Attach low-level ATA driver to system
 + *	@ent: Information provided by low-level driver
 + *	@host: Collections of ports to which we add
 + *	@port_no: Port number associated with this host
 + *
 + *	Attach low-level ATA driver to system.
 + *
 + *	LOCKING:
 + *	PCI/etc. bus probe sem.
 + *
 + *	RETURNS:
 + *	New ata_port on success, for NULL on error.
 + */
 +static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
 +				      struct ata_host *host,
 +				      unsigned int port_no)
 +{
 +	struct Scsi_Host *shost;
 +	struct ata_port *ap;
 +
 +	DPRINTK("ENTER\n");
 +
 +	if (!ent->port_ops->error_handler &&
 +	    !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
 +		printk(KERN_ERR "ata%u: no reset mechanism available\n",
 +		       port_no);
 +		return NULL;
 +	}
 +
 +	shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
 +	if (!shost)
 +		return NULL;
 +
 +	shost->transportt = &ata_scsi_transport_template;
 +
 +	ap = ata_shost_to_port(shost);
 +
 +	ata_port_init(ap, host, ent, port_no);
 +	ata_port_init_shost(ap, shost);
 +
 +	return ap;
 +}
 +
 +/**
 + *	ata_sas_host_init - Initialize a host struct
 + *	@host:	host to initialize
 + *	@dev:	device host is attached to
 + *	@flags:	host flags
 + *	@ops:	port_ops
 + *
 + *	LOCKING:
 + *	PCI/etc. bus probe sem.
 + *
 + */
 +
 +void ata_host_init(struct ata_host *host, struct device *dev,
 +		   unsigned long flags, const struct ata_port_operations *ops)
 +{
 +	spin_lock_init(&host->lock);
 +	host->dev = dev;
 +	host->flags = flags;
 +	host->ops = ops;
 +}
 +
 +/**
 + *	ata_device_add - Register hardware device with ATA and SCSI layers
 + *	@ent: Probe information describing hardware device to be registered
 + *
 + *	This function processes the information provided in the probe
 + *	information struct @ent, allocates the necessary ATA and SCSI
 + *	host information structures, initializes them, and registers
 + *	everything with requisite kernel subsystems.
 + *
 + *	This function requests irqs, probes the ATA bus, and probes
 + *	the SCSI bus.
 + *
 + *	LOCKING:
 + *	PCI/etc. bus probe sem.
 + *
 + *	RETURNS:
 + *	Number of ports registered.  Zero on error (no ports registered).
 + */
 +int ata_device_add(const struct ata_probe_ent *ent)
 +{
 +	unsigned int i;
 +	struct device *dev = ent->dev;
 +	struct ata_host *host;
 +	int rc;
 +
 +	DPRINTK("ENTER\n");
 +	/* alloc a container for our list of ATA ports (buses) */
 +	host = kzalloc(sizeof(struct ata_host) +
 +		       (ent->n_ports * sizeof(void *)), GFP_KERNEL);
 +	if (!host)
 +		return 0;
 +
 +	ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
 +	host->n_ports = ent->n_ports;
 +	host->irq = ent->irq;
 +	host->irq2 = ent->irq2;
 +	host->mmio_base = ent->mmio_base;
 +	host->private_data = ent->private_data;
 +
 +	/* register each port bound to this device */
 +	for (i = 0; i < host->n_ports; i++) {
 +		struct ata_port *ap;
 +		unsigned long xfer_mode_mask;
 +		int irq_line = ent->irq;
 +
 +		ap = ata_port_add(ent, host, i);
 +		if (!ap)
 +			goto err_out;
 +
 +		host->ports[i] = ap;
 +
 +		/* dummy? */
 +		if (ent->dummy_port_mask & (1 << i)) {
 +			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
 +			ap->ops = &ata_dummy_port_ops;
 +			continue;
 +		}
 +
 +		/* start port */
 +		rc = ap->ops->port_start(ap);
 +		if (rc) {
 +			host->ports[i] = NULL;
 +			scsi_host_put(ap->scsi_host);
 +			goto err_out;
 +		}
 +
 +		/* Report the secondary IRQ for second channel legacy */
 +		if (i == 1 && ent->irq2)
 +			irq_line = ent->irq2;
 +
 +		xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
 +				(ap->mwdma_mask << ATA_SHIFT_MWDMA) |
 +				(ap->pio_mask << ATA_SHIFT_PIO);
 +
 +		/* print per-port info to dmesg */
 +		ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
 +				"ctl 0x%lX bmdma 0x%lX irq %d\n",
 +				ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
 +				ata_mode_string(xfer_mode_mask),
 +				ap->ioaddr.cmd_addr,
 +				ap->ioaddr.ctl_addr,
 +				ap->ioaddr.bmdma_addr,
 +				irq_line);
 +
 +		ata_chk_status(ap);
 +		host->ops->irq_clear(ap);
 +		ata_eh_freeze_port(ap);	/* freeze port before requesting IRQ */
 +	}
 +
 +	/* obtain irq, that may be shared between channels */
 +	rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
 +			 DRV_NAME, host);
 +	if (rc) {
 +		dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
 +			   ent->irq, rc);
 +		goto err_out;
 +	}
 +
 +	/* do we have a second IRQ for the other channel, eg legacy mode */
 +	if (ent->irq2) {
 +		/* We will get weird core code crashes later if this is true
 +		   so trap it now */
 +		BUG_ON(ent->irq == ent->irq2);
 +
 +		rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
 +			 DRV_NAME, host);
 +		if (rc) {
 +			dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
 +				   ent->irq2, rc);
 +			goto err_out_free_irq;
 +		}
 +	}
 +
 +	/* perform each probe synchronously */
 +	DPRINTK("probe begin\n");
 +	for (i = 0; i < host->n_ports; i++) {
 +		struct ata_port *ap = host->ports[i];
 +		u32 scontrol;
 +		int rc;
 +
 +		/* init sata_spd_limit to the current value */
 +		if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
 +			int spd = (scontrol >> 4) & 0xf;
 +			ap->hw_sata_spd_limit &= (1 << spd) - 1;
 +		}
 +		ap->sata_spd_limit = ap->hw_sata_spd_limit;
 +
 +		rc = scsi_add_host(ap->scsi_host, dev);
 +		if (rc) {
 +			ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
 +			/* FIXME: do something useful here */
 +			/* FIXME: handle unconditional calls to
 +			 * scsi_scan_host and ata_host_remove, below,
 +			 * at the very least
 +			 */
 +		}
 +
 +		if (ap->ops->error_handler) {
 +			struct ata_eh_info *ehi = &ap->eh_info;
 +			unsigned long flags;
 +
 +			ata_port_probe(ap);
 +
 +			/* kick EH for boot probing */
 +			spin_lock_irqsave(ap->lock, flags);
 +
 +			ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
 +			ehi->action |= ATA_EH_SOFTRESET;
 +			ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
 +
 +			ap->pflags |= ATA_PFLAG_LOADING;
 +			ata_port_schedule_eh(ap);
 +
 +			spin_unlock_irqrestore(ap->lock, flags);
 +
 +			/* wait for EH to finish */
 +			ata_port_wait_eh(ap);
 +		} else {
 +			DPRINTK("ata%u: bus probe begin\n", ap->id);
 +			rc = ata_bus_probe(ap);
 +			DPRINTK("ata%u: bus probe end\n", ap->id);
 +
 +			if (rc) {
 +				/* FIXME: do something useful here?
 +				 * Current libata behavior will
 +				 * tear down everything when
 +				 * the module is removed
 +				 * or the h/w is unplugged.
 +				 */
 +			}
 +		}
 +	}
 +
 +	/* probes are done, now scan each port's disk(s) */
 +	DPRINTK("host probe begin\n");
 +	for (i = 0; i < host->n_ports; i++) {
 +		struct ata_port *ap = host->ports[i];
 +
 +		ata_scsi_scan_host(ap);
 +	}
 +
 +	dev_set_drvdata(dev, host);
 +
 +	VPRINTK("EXIT, returning %u\n", ent->n_ports);
 +	return ent->n_ports; /* success */
 +
 +err_out_free_irq:
 +	free_irq(ent->irq, host);
 +err_out:
 +	for (i = 0; i < host->n_ports; i++) {
 +		struct ata_port *ap = host->ports[i];
 +		if (ap) {
 +			ap->ops->port_stop(ap);
 +			scsi_host_put(ap->scsi_host);
 +		}
 +	}
 +
 +	kfree(host);
 +	VPRINTK("EXIT, returning 0\n");
 +	return 0;
 +}
 +
 +/**
 + *	ata_port_detach - Detach ATA port in prepration of device removal
 + *	@ap: ATA port to be detached
 + *
 + *	Detach all ATA devices and the associated SCSI devices of @ap;
 + *	then, remove the associated SCSI host.  @ap is guaranteed to
 + *	be quiescent on return from this function.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep).
 + */
 +void ata_port_detach(struct ata_port *ap)
 +{
 +	unsigned long flags;
 +	int i;
 +
 +	if (!ap->ops->error_handler)
 +		goto skip_eh;
 +
 +	/* tell EH we're leaving & flush EH */
 +	spin_lock_irqsave(ap->lock, flags);
 +	ap->pflags |= ATA_PFLAG_UNLOADING;
 +	spin_unlock_irqrestore(ap->lock, flags);
 +
 +	ata_port_wait_eh(ap);
 +
 +	/* EH is now guaranteed to see UNLOADING, so no new device
 +	 * will be attached.  Disable all existing devices.
 +	 */
 +	spin_lock_irqsave(ap->lock, flags);
 +
 +	for (i = 0; i < ATA_MAX_DEVICES; i++)
 +		ata_dev_disable(&ap->device[i]);
 +
 +	spin_unlock_irqrestore(ap->lock, flags);
 +
 +	/* Final freeze & EH.  All in-flight commands are aborted.  EH
 +	 * will be skipped and retrials will be terminated with bad
 +	 * target.
 +	 */
 +	spin_lock_irqsave(ap->lock, flags);
 +	ata_port_freeze(ap);	/* won't be thawed */
 +	spin_unlock_irqrestore(ap->lock, flags);
 +
 +	ata_port_wait_eh(ap);
 +
 +	/* Flush hotplug task.  The sequence is similar to
 +	 * ata_port_flush_task().
 +	 */
 +	flush_workqueue(ata_aux_wq);
 +	cancel_delayed_work(&ap->hotplug_task);
 +	flush_workqueue(ata_aux_wq);
 +
 + skip_eh:
 +	/* remove the associated SCSI host */
 +	scsi_remove_host(ap->scsi_host);
 +}
 +
 +/**
 + *	ata_host_remove - PCI layer callback for device removal
 + *	@host: ATA host set that was removed
 + *
 + *	Unregister all objects associated with this host set. Free those
 + *	objects.
 + *
 + *	LOCKING:
 + *	Inherited from calling layer (may sleep).
 + */
 +
 +void ata_host_remove(struct ata_host *host)
 +{
 +	unsigned int i;
 +
 +	for (i = 0; i < host->n_ports; i++)
 +		ata_port_detach(host->ports[i]);
 +
 +	free_irq(host->irq, host);
 +	if (host->irq2)
 +		free_irq(host->irq2, host);
 +
 +	for (i = 0; i < host->n_ports; i++) {
 +		struct ata_port *ap = host->ports[i];
 +
 +		ata_scsi_release(ap->scsi_host);
 +
 +		if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
 +			struct ata_ioports *ioaddr = &ap->ioaddr;
 +
 +			/* FIXME: Add -ac IDE pci mods to remove these special cases */
 +			if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
 +				release_region(ATA_PRIMARY_CMD, 8);
 +			else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
 +				release_region(ATA_SECONDARY_CMD, 8);
 +		}
 +
 +		scsi_host_put(ap->scsi_host);
 +	}
 +
 +	if (host->ops->host_stop)
 +		host->ops->host_stop(host);
 +
 +	kfree(host);
 +}
 +
 +/**
 + *	ata_scsi_release - SCSI layer callback hook for host unload
 + *	@host: libata host to be unloaded
 + *
 + *	Performs all duties necessary to shut down a libata port...
 + *	Kill port kthread, disable port, and release resources.
 + *
 + *	LOCKING:
 + *	Inherited from SCSI layer.
 + *
 + *	RETURNS:
 + *	One.
 + */
 +
 +int ata_scsi_release(struct Scsi_Host *shost)
 +{
 +	struct ata_port *ap = ata_shost_to_port(shost);
 +
 +	DPRINTK("ENTER\n");
 +
 +	ap->ops->port_disable(ap);
 +	ap->ops->port_stop(ap);
 +
 +	DPRINTK("EXIT\n");
 +	return 1;
 +}
 +
 +struct ata_probe_ent *
 +ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
 +{
 +	struct ata_probe_ent *probe_ent;
 +
 +	probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
 +	if (!probe_ent) {
 +		printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
 +		       kobject_name(&(dev->kobj)));
 +		return NULL;
 +	}
 +
 +	INIT_LIST_HEAD(&probe_ent->node);
 +	probe_ent->dev = dev;
 +
 +	probe_ent->sht = port->sht;
 +	probe_ent->port_flags = port->flags;
 +	probe_ent->pio_mask = port->pio_mask;
 +	probe_ent->mwdma_mask = port->mwdma_mask;
 +	probe_ent->udma_mask = port->udma_mask;
 +	probe_ent->port_ops = port->port_ops;
 +
 +	return probe_ent;
 +}
 +
 +/**
 + *	ata_std_ports - initialize ioaddr with standard port offsets.
 + *	@ioaddr: IO address structure to be initialized
 + *
 + *	Utility function which initializes data_addr, error_addr,
 + *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
 + *	device_addr, status_addr, and command_addr to standard offsets
 + *	relative to cmd_addr.
 + *
 + *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
 + */
 +
 +void ata_std_ports(struct ata_ioports *ioaddr)
 +{
 +	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
 +	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
 +	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
 +	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
 +	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
 +	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
 +	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
 +	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
 +	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
 +	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
 +}
 +
 +
 +#ifdef CONFIG_PCI
 +
 +void ata_pci_host_stop (struct ata_host *host)
 +{
 +	struct pci_dev *pdev = to_pci_dev(host->dev);
 +
 +	pci_iounmap(pdev, host->mmio_base);
 +}
 +
 +/**
 + *	ata_pci_remove_one - PCI layer callback for device removal
 + *	@pdev: PCI device that was removed
 + *
 + *	PCI layer indicates to libata via this hook that
 + *	hot-unplug or module unload event has occurred.
 + *	Handle this by unregistering all objects associated
 + *	with this PCI device.  Free those objects.  Then finally
 + *	release PCI resources and disable device.
 + *
 + *	LOCKING:
 + *	Inherited from PCI layer (may sleep).
 + */
 +
 +void ata_pci_remove_one (struct pci_dev *pdev)
 +{
 +	struct device *dev = pci_dev_to_dev(pdev);
 +	struct ata_host *host = dev_get_drvdata(dev);
 +
 +	ata_host_remove(host);
 +
 +	pci_release_regions(pdev);
 +	pci_disable_device(pdev);
 +	dev_set_drvdata(dev, NULL);
 +}
 +
 +/* move to PCI subsystem */
 +int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
 +{
 +	unsigned long tmp = 0;
 +
 +	switch (bits->width) {
 +	case 1: {
 +		u8 tmp8 = 0;
 +		pci_read_config_byte(pdev, bits->reg, &tmp8);
 +		tmp = tmp8;
 +		break;
 +	}
 +	case 2: {
 +		u16 tmp16 = 0;
 +		pci_read_config_word(pdev, bits->reg, &tmp16);
 +		tmp = tmp16;
 +		break;
 +	}
 +	case 4: {
 +		u32 tmp32 = 0;
 +		pci_read_config_dword(pdev, bits->reg, &tmp32);
 +		tmp = tmp32;
 +		break;
 +	}
 +
 +	default:
 +		return -EINVAL;
 +	}
 +
 +	tmp &= bits->mask;
 +
 +	return (tmp == bits->val) ? 1 : 0;
 +}
 +
 +void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
 +{
 +	pci_save_state(pdev);
 +
 +	if (mesg.event == PM_EVENT_SUSPEND) {
 +		pci_disable_device(pdev);
 +		pci_set_power_state(pdev, PCI_D3hot);
 +	}
 +}
 +
 +void ata_pci_device_do_resume(struct pci_dev *pdev)
 +{
 +	pci_set_power_state(pdev, PCI_D0);
 +	pci_restore_state(pdev);
 +	pci_enable_device(pdev);
 +	pci_set_master(pdev);
 +}
 +
 +int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
 +{
 +	struct ata_host *host = dev_get_drvdata(&pdev->dev);
 +	int rc = 0;
 +
 +	rc = ata_host_suspend(host, mesg);
 +	if (rc)
 +		return rc;
 +
 +	ata_pci_device_do_suspend(pdev, mesg);
 +
 +	return 0;
 +}
 +
 +int ata_pci_device_resume(struct pci_dev *pdev)
 +{
 +	struct ata_host *host = dev_get_drvdata(&pdev->dev);
 +
 +	ata_pci_device_do_resume(pdev);
 +	ata_host_resume(host);
 +	return 0;
 +}
 +#endif /* CONFIG_PCI */
 +
 +
 +static int __init ata_init(void)
 +{
 +	ata_probe_timeout *= HZ;
 +	ata_wq = create_workqueue("ata");
 +	if (!ata_wq)
 +		return -ENOMEM;
 +
 +	ata_aux_wq = create_singlethread_workqueue("ata_aux");
 +	if (!ata_aux_wq) {
 +		destroy_workqueue(ata_wq);
 +		return -ENOMEM;
 +	}
 +
 +	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
 +	return 0;
 +}
 +
 +static void __exit ata_exit(void)
 +{
 +	destroy_workqueue(ata_wq);
 +	destroy_workqueue(ata_aux_wq);
 +}
 +
 +module_init(ata_init);
 +module_exit(ata_exit);
 +
 +static unsigned long ratelimit_time;
 +static DEFINE_SPINLOCK(ata_ratelimit_lock);
 +
 +int ata_ratelimit(void)
 +{
 +	int rc;
 +	unsigned long flags;
 +
 +	spin_lock_irqsave(&ata_ratelimit_lock, flags);
 +
 +	if (time_after(jiffies, ratelimit_time)) {
 +		rc = 1;
 +		ratelimit_time = jiffies + (HZ/5);
 +	} else
 +		rc = 0;
 +
 +	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
 +
 +	return rc;
 +}
 +
 +/**
 + *	ata_wait_register - wait until register value changes
 + *	@reg: IO-mapped register
 + *	@mask: Mask to apply to read register value
 + *	@val: Wait condition
 + *	@interval_msec: polling interval in milliseconds
 + *	@timeout_msec: timeout in milliseconds
 + *
 + *	Waiting for some bits of register to change is a common
 + *	operation for ATA controllers.  This function reads 32bit LE
 + *	IO-mapped register @reg and tests for the following condition.
 + *
 + *	(*@reg & mask) != val
 + *
 + *	If the condition is met, it returns; otherwise, the process is
 + *	repeated after @interval_msec until timeout.
 + *
 + *	LOCKING:
 + *	Kernel thread context (may sleep)
 + *
 + *	RETURNS:
 + *	The final register value.
 + */
 +u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
 +		      unsigned long interval_msec,
 +		      unsigned long timeout_msec)
 +{
 +	unsigned long timeout;
 +	u32 tmp;
 +
 +	tmp = ioread32(reg);
 +
 +	/* Calculate timeout _after_ the first read to make sure
 +	 * preceding writes reach the controller before starting to
 +	 * eat away the timeout.
 +	 */
 +	timeout = jiffies + (timeout_msec * HZ) / 1000;
 +
 +	while ((tmp & mask) == val && time_before(jiffies, timeout)) {
 +		msleep(interval_msec);
 +		tmp = ioread32(reg);
 +	}
 +
 +	return tmp;
 +}
 +
 +/*
 + * Dummy port_ops
 + */
 +static void ata_dummy_noret(struct ata_port *ap)	{ }
 +static int ata_dummy_ret0(struct ata_port *ap)		{ return 0; }
 +static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
 +
 +static u8 ata_dummy_check_status(struct ata_port *ap)
 +{
 +	return ATA_DRDY;
 +}
 +
 +static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
 +{
 +	return AC_ERR_SYSTEM;
 +}
 +
 +const struct ata_port_operations ata_dummy_port_ops = {
 +	.port_disable		= ata_port_disable,
 +	.check_status		= ata_dummy_check_status,
 +	.check_altstatus	= ata_dummy_check_status,
 +	.dev_select		= ata_noop_dev_select,
 +	.qc_prep		= ata_noop_qc_prep,
 +	.qc_issue		= ata_dummy_qc_issue,
 +	.freeze			= ata_dummy_noret,
 +	.thaw			= ata_dummy_noret,
 +	.error_handler		= ata_dummy_noret,
 +	.post_internal_cmd	= ata_dummy_qc_noret,
 +	.irq_clear		= ata_dummy_noret,
 +	.port_start		= ata_dummy_ret0,
 +	.port_stop		= ata_dummy_noret,
 +};
 +
 +/*
 + * libata is essentially a library of internal helper functions for
 + * low-level ATA host controller drivers.  As such, the API/ABI is
 + * likely to change as new drivers are added and updated.
 + * Do not depend on ABI/API stability.
 + */
 +
 +EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
 +EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
 +EXPORT_SYMBOL_GPL(sata_deb_timing_long);
 +EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
 +EXPORT_SYMBOL_GPL(ata_std_bios_param);
 +EXPORT_SYMBOL_GPL(ata_std_ports);
 +EXPORT_SYMBOL_GPL(ata_host_init);
 +EXPORT_SYMBOL_GPL(ata_device_add);
 +EXPORT_SYMBOL_GPL(ata_port_detach);
 +EXPORT_SYMBOL_GPL(ata_host_remove);
 +EXPORT_SYMBOL_GPL(ata_sg_init);
 +EXPORT_SYMBOL_GPL(ata_sg_init_one);
 +EXPORT_SYMBOL_GPL(ata_hsm_move);
 +EXPORT_SYMBOL_GPL(ata_qc_complete);
 +EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
 +EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
 +EXPORT_SYMBOL_GPL(ata_tf_load);
 +EXPORT_SYMBOL_GPL(ata_tf_read);
 +EXPORT_SYMBOL_GPL(ata_noop_dev_select);
 +EXPORT_SYMBOL_GPL(ata_std_dev_select);
 +EXPORT_SYMBOL_GPL(ata_tf_to_fis);
 +EXPORT_SYMBOL_GPL(ata_tf_from_fis);
 +EXPORT_SYMBOL_GPL(ata_check_status);
 +EXPORT_SYMBOL_GPL(ata_altstatus);
 +EXPORT_SYMBOL_GPL(ata_exec_command);
 +EXPORT_SYMBOL_GPL(ata_port_start);
 +EXPORT_SYMBOL_GPL(ata_port_stop);
 +EXPORT_SYMBOL_GPL(ata_host_stop);
 +EXPORT_SYMBOL_GPL(ata_interrupt);
 +EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
 +EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
 +EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
 +EXPORT_SYMBOL_GPL(ata_qc_prep);
 +EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
 +EXPORT_SYMBOL_GPL(ata_bmdma_setup);
 +EXPORT_SYMBOL_GPL(ata_bmdma_start);
 +EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
 +EXPORT_SYMBOL_GPL(ata_bmdma_status);
 +EXPORT_SYMBOL_GPL(ata_bmdma_stop);
 +EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
 +EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
 +EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
 +EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
 +EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
 +EXPORT_SYMBOL_GPL(ata_port_probe);
 +EXPORT_SYMBOL_GPL(sata_set_spd);
 +EXPORT_SYMBOL_GPL(sata_phy_debounce);
 +EXPORT_SYMBOL_GPL(sata_phy_resume);
 +EXPORT_SYMBOL_GPL(sata_phy_reset);
 +EXPORT_SYMBOL_GPL(__sata_phy_reset);
 +EXPORT_SYMBOL_GPL(ata_bus_reset);
 +EXPORT_SYMBOL_GPL(ata_std_prereset);
 +EXPORT_SYMBOL_GPL(ata_std_softreset);
 +EXPORT_SYMBOL_GPL(sata_std_hardreset);
 +EXPORT_SYMBOL_GPL(ata_std_postreset);
 +EXPORT_SYMBOL_GPL(ata_dev_revalidate);
 +EXPORT_SYMBOL_GPL(ata_dev_classify);
 +EXPORT_SYMBOL_GPL(ata_dev_pair);
 +EXPORT_SYMBOL_GPL(ata_port_disable);
 +EXPORT_SYMBOL_GPL(ata_ratelimit);
 +EXPORT_SYMBOL_GPL(ata_wait_register);
 +EXPORT_SYMBOL_GPL(ata_busy_sleep);
 +EXPORT_SYMBOL_GPL(ata_port_queue_task);
 +EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
 +EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
 +EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
 +EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
 +EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
 +EXPORT_SYMBOL_GPL(ata_scsi_release);
 +EXPORT_SYMBOL_GPL(ata_host_intr);
 +EXPORT_SYMBOL_GPL(sata_scr_valid);
 +EXPORT_SYMBOL_GPL(sata_scr_read);
 +EXPORT_SYMBOL_GPL(sata_scr_write);
 +EXPORT_SYMBOL_GPL(sata_scr_write_flush);
 +EXPORT_SYMBOL_GPL(ata_port_online);
 +EXPORT_SYMBOL_GPL(ata_port_offline);
 +EXPORT_SYMBOL_GPL(ata_host_suspend);
 +EXPORT_SYMBOL_GPL(ata_host_resume);
 +EXPORT_SYMBOL_GPL(ata_id_string);
 +EXPORT_SYMBOL_GPL(ata_id_c_string);
 +EXPORT_SYMBOL_GPL(ata_scsi_simulate);
 +
 +EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
 +EXPORT_SYMBOL_GPL(ata_timing_compute);
 +EXPORT_SYMBOL_GPL(ata_timing_merge);
 +
 +#ifdef CONFIG_PCI
 +EXPORT_SYMBOL_GPL(pci_test_config_bits);
 +EXPORT_SYMBOL_GPL(ata_pci_host_stop);
 +EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
 +EXPORT_SYMBOL_GPL(ata_pci_init_one);
 +EXPORT_SYMBOL_GPL(ata_pci_remove_one);
 +EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
 +EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
 +EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
 +EXPORT_SYMBOL_GPL(ata_pci_device_resume);
 +EXPORT_SYMBOL_GPL(ata_pci_default_filter);
 +EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
 +#endif /* CONFIG_PCI */
 +
 +EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
 +EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
 +
 +EXPORT_SYMBOL_GPL(ata_eng_timeout);
 +EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
 +EXPORT_SYMBOL_GPL(ata_port_abort);
 +EXPORT_SYMBOL_GPL(ata_port_freeze);
 +EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
 +EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
 +EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
 +EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
 +EXPORT_SYMBOL_GPL(ata_do_eh);