From: Suresh Siddha Date: Thu, 19 Jun 2008 16:41:22 +0000 (-0700) Subject: x86: fix NULL pointer deref in __switch_to X-Git-Tag: firefly_0821_release~19780^2~12 X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=54481cf88bc59923ea30f2ca345a73c60155e901;p=firefly-linux-kernel-4.4.55.git x86: fix NULL pointer deref in __switch_to I am able to reproduce the oops reported by Simon in __switch_to() with lguest. My debug showed that there is at least one lguest specific issue (which should be present in 2.6.25 and before aswell) and it got exposed with a kernel oops with the recent fpu dynamic allocation patches. In addition to the previous possible scenario (with fpu_counter), in the presence of lguest, it is possible that the cpu's TS bit it still set and the lguest launcher task's thread_info has TS_USEDFPU still set. This is because of the way the lguest launcher handling the guest's TS bit. (look at lguest_set_ts() in lguest_arch_run_guest()). This can result in a DNA fault while doing unlazy_fpu() in __switch_to(). This will end up causing a DNA fault in the context of new process thats getting context switched in (as opossed to handling DNA fault in the context of lguest launcher/helper process). This is wrong in both pre and post 2.6.25 kernels. In the recent 2.6.26-rc series, this is showing up as NULL pointer dereferences or sleeping function called from atomic context(__switch_to()), as we free and dynamically allocate the FPU context for the newly created threads. Older kernels might show some FPU corruption for processes running inside of lguest. With the appended patch, my test system is running for more than 50 mins now. So atleast some of your oops (hopefully all!) should get fixed. Please give it a try. I will spend more time with this fix tomorrow. Reported-by: Simon Holm Thøgersen Reported-by: Patrick McHardy Signed-off-by: Suresh Siddha Signed-off-by: Ingo Molnar --- diff --git a/drivers/lguest/x86/core.c b/drivers/lguest/x86/core.c index 5126d5d9ea0e..2e554a4ab337 100644 --- a/drivers/lguest/x86/core.c +++ b/drivers/lguest/x86/core.c @@ -176,7 +176,7 @@ void lguest_arch_run_guest(struct lg_cpu *cpu) * we set it now, so we can trap and pass that trap to the Guest if it * uses the FPU. */ if (cpu->ts) - lguest_set_ts(); + unlazy_fpu(current); /* SYSENTER is an optimized way of doing system calls. We can't allow * it because it always jumps to privilege level 0. A normal Guest @@ -196,6 +196,10 @@ void lguest_arch_run_guest(struct lg_cpu *cpu) * trap made the switcher code come back, and an error code which some * traps set. */ + /* Restore SYSENTER if it's supposed to be on. */ + if (boot_cpu_has(X86_FEATURE_SEP)) + wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); + /* If the Guest page faulted, then the cr2 register will tell us the * bad virtual address. We have to grab this now, because once we * re-enable interrupts an interrupt could fault and thus overwrite @@ -203,13 +207,12 @@ void lguest_arch_run_guest(struct lg_cpu *cpu) if (cpu->regs->trapnum == 14) cpu->arch.last_pagefault = read_cr2(); /* Similarly, if we took a trap because the Guest used the FPU, - * we have to restore the FPU it expects to see. */ + * we have to restore the FPU it expects to see. + * math_state_restore() may sleep and we may even move off to + * a different CPU. So all the critical stuff should be done + * before this. */ else if (cpu->regs->trapnum == 7) math_state_restore(); - - /* Restore SYSENTER if it's supposed to be on. */ - if (boot_cpu_has(X86_FEATURE_SEP)) - wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); } /*H:130 Now we've examined the hypercall code; our Guest can make requests.