From: yeom Date: Wed, 21 Jul 2010 22:08:10 +0000 (+0000) Subject: add IDEA crypt benchmark X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=5ab3e5d57ec6dc1aeb6393a97a0afe5e12837821;p=IRC.git add IDEA crypt benchmark --- diff --git a/Robust/src/Benchmarks/oooJava/crypt/IDEARunner.java b/Robust/src/Benchmarks/oooJava/crypt/IDEARunner.java new file mode 100644 index 00000000..f6ab6d0a --- /dev/null +++ b/Robust/src/Benchmarks/oooJava/crypt/IDEARunner.java @@ -0,0 +1,195 @@ +/************************************************************************** + * * + * Java Grande Forum Benchmark Suite - Thread Version 1.0 * + * * + * produced by * + * * + * Java Grande Benchmarking Project * + * * + * at * + * * + * Edinburgh Parallel Computing Centre * + * * + * email: epcc-javagrande@epcc.ed.ac.uk * + * * + * Original version of this code by * + * Gabriel Zachmann (zach@igd.fhg.de) * + * * + * This version copyright (c) The University of Edinburgh, 2001. * + * All rights reserved. * + * * + **************************************************************************/ + + +public class IDEARunner { + + int id, key[]; + byte text1[], text2[]; + int nthreads; + int local_size; + + public IDEARunner(int id, byte[] text1, byte[] text2, int local_size, int[] key, int nthreads) { + this.id = id; + this.text1 = text1; + this.text2 = text2; + this.key = key; + this.nthreads = nthreads; + this.local_size = local_size; + } + + // + // run() + // + // IDEA encryption/decryption algorithm. It processes plaintext in + // 64-bit blocks, one at a time, breaking the block into four 16-bit + // unsigned subblocks. It goes through eight rounds of processing + // using 6 new subkeys each time, plus four for last step. The source + // text is in array text1, the destination text goes into array text2 + // The routine represents 16-bit subblocks and subkeys as type int so + // that they can be treated more easily as unsigned. Multiplication + // modulo 0x10001 interprets a zero sub-block as 0x10000; it must to + // fit in 16 bits. + // + + public void run() { + int ilow, iupper, slice, tslice, ttslice; + + tslice = text1.length / 8; + ttslice = (tslice + nthreads - 1) / nthreads; + slice = ttslice * 8; + + ilow = id * slice; + iupper = (id + 1) * slice; + if (iupper > text1.length) + iupper = text1.length; + + int i1 = ilow; // Index into first text array. + // int i2 = ilow; // Index into second text array. + int i2 = 0; + + int ik; // Index into key array. + int x1, x2, x3, x4, t1, t2; // Four "16-bit" blocks, two temps. + int r; // Eight rounds of processing. + + for (int i = ilow; i < iupper; i += 8) { + + ik = 0; // Restart key index. + r = 8; // Eight rounds of processing. + + // Load eight plain1 bytes as four 16-bit "unsigned" integers. + // Masking with 0xff prevents sign extension with cast to int. + + x1 = text1[i1++] & 0xff; // Build 16-bit x1 from 2 bytes, + x1 |= (text1[i1++] & 0xff) << 8; // assuming low-order byte first. + x2 = text1[i1++] & 0xff; + x2 |= (text1[i1++] & 0xff) << 8; + x3 = text1[i1++] & 0xff; + x3 |= (text1[i1++] & 0xff) << 8; + x4 = text1[i1++] & 0xff; + x4 |= (text1[i1++] & 0xff) << 8; + + do { + // 1) Multiply (modulo 0x10001), 1st text sub-block + // with 1st key sub-block. + + x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff); + + // 2) Add (modulo 0x10000), 2nd text sub-block + // with 2nd key sub-block. + + x2 = x2 + key[ik++] & 0xffff; + + // 3) Add (modulo 0x10000), 3rd text sub-block + // with 3rd key sub-block. + + x3 = x3 + key[ik++] & 0xffff; + + // 4) Multiply (modulo 0x10001), 4th text sub-block + // with 4th key sub-block. + + x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff); + + // 5) XOR results from steps 1 and 3. + + t2 = x1 ^ x3; + + // 6) XOR results from steps 2 and 4. + // Included in step 8. + + // 7) Multiply (modulo 0x10001), result of step 5 + // with 5th key sub-block. + + t2 = (int) ((long) t2 * key[ik++] % 0x10001L & 0xffff); + + // 8) Add (modulo 0x10000), results of steps 6 and 7. + + t1 = t2 + (x2 ^ x4) & 0xffff; + + // 9) Multiply (modulo 0x10001), result of step 8 + // with 6th key sub-block. + + t1 = (int) ((long) t1 * key[ik++] % 0x10001L & 0xffff); + + // 10) Add (modulo 0x10000), results of steps 7 and 9. + + t2 = t1 + t2 & 0xffff; + + // 11) XOR results from steps 1 and 9. + + x1 ^= t1; + + // 14) XOR results from steps 4 and 10. (Out of order). + + x4 ^= t2; + + // 13) XOR results from steps 2 and 10. (Out of order). + + t2 ^= x2; + + // 12) XOR results from steps 3 and 9. (Out of order). + + x2 = x3 ^ t1; + + x3 = t2; // Results of x2 and x3 now swapped. + + } while (--r != 0); // Repeats seven more rounds. + + // Final output transform (4 steps). + + // 1) Multiply (modulo 0x10001), 1st text-block + // with 1st key sub-block. + + x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff); + + // 2) Add (modulo 0x10000), 2nd text sub-block + // with 2nd key sub-block. It says x3, but that is to undo swap + // of subblocks 2 and 3 in 8th processing round. + + x3 = x3 + key[ik++] & 0xffff; + + // 3) Add (modulo 0x10000), 3rd text sub-block + // with 3rd key sub-block. It says x2, but that is to undo swap + // of subblocks 2 and 3 in 8th processing round. + + x2 = x2 + key[ik++] & 0xffff; + + // 4) Multiply (modulo 0x10001), 4th text-block + // with 4th key sub-block. + + x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff); + + // Repackage from 16-bit sub-blocks to 8-bit byte array text2. + + text2[i2++] = (byte) x1; + text2[i2++] = (byte) (x1 >>> 8); + text2[i2++] = (byte) x3; // x3 and x2 are switched + text2[i2++] = (byte) (x3 >>> 8); // only in name. + text2[i2++] = (byte) x2; + text2[i2++] = (byte) (x2 >>> 8); + text2[i2++] = (byte) x4; + text2[i2++] = (byte) (x4 >>> 8); + } // End for loop. + + } // End routine. + +} // End of class diff --git a/Robust/src/Benchmarks/oooJava/crypt/JGFCryptBench.java b/Robust/src/Benchmarks/oooJava/crypt/JGFCryptBench.java new file mode 100644 index 00000000..37498d51 --- /dev/null +++ b/Robust/src/Benchmarks/oooJava/crypt/JGFCryptBench.java @@ -0,0 +1,389 @@ +/************************************************************************** + * * + * Java Grande Forum Benchmark Suite - Thread Version 1.0 * + * * + * produced by * + * * + * Java Grande Benchmarking Project * + * * + * at * + * * + * Edinburgh Parallel Computing Centre * + * * + * email: epcc-javagrande@epcc.ed.ac.uk * + * * + * Original version of this code by * + * Gabriel Zachmann (zach@igd.fhg.de) * + * * + * This version copyright (c) The University of Edinburgh, 2001. * + * All rights reserved. * + * * + **************************************************************************/ + +public class JGFCryptBench { + + private int nWorker; + private int size; + private int datasizes[]; + int array_rows; + + byte[] plain1; // Buffer for plaintext data. + + short[] userkey; // Key for encryption/decryption. + int[] Z; // Encryption subkey (userkey derived). + int[] DK; // Decryption subkey (userkey derived). + + // buildTestData + // Builds the data used for the test -- each time the test is run. + void buildTestData() { + + // Create three byte arrays that will be used (and reused) for + // encryption/decryption operations. + + plain1 = new byte[array_rows]; + + Random rndnum = new Random(136506717L); // Create random number generator. + + // Allocate three arrays to hold keys: userkey is the 128-bit key. + // Z is the set of 16-bit encryption subkeys derived from userkey, + // while DK is the set of 16-bit decryption subkeys also derived + // from userkey. NOTE: The 16-bit values are stored here in + // 32-bit int arrays so that the values may be used in calculations + // as if they are unsigned. Each 64-bit block of plaintext goes + // through eight processing rounds involving six of the subkeys + // then a final output transform with four of the keys; (8 * 6) + // + 4 = 52 subkeys. + + userkey = new short[8]; // User key has 8 16-bit shorts. + Z = new int[52]; // Encryption subkey (user key derived). + DK = new int[52]; // Decryption subkey (user key derived). + + // Generate user key randomly; eight 16-bit values in an array. + + for (int i = 0; i < 8; i++) { + // Again, the random number function returns int. Converting + // to a short type preserves the bit pattern in the lower 16 + // bits of the int and discards the rest. + + userkey[i] = (short) rndnum.nextInt(); + } + + // Compute encryption and decryption subkeys. + + calcEncryptKey(); + calcDecryptKey(); + + // Fill plain1 with "text." + for (int i = 0; i < array_rows; i++) { + plain1[i] = (byte) i; + + // Converting to a byte + // type preserves the bit pattern in the lower 8 bits of the + // int and discards the rest. + } + } + + // calcEncryptKey + + // Builds the 52 16-bit encryption subkeys Z[] from the user key and + // stores in 32-bit int array. The routing corrects an error in the + // source code in the Schnier book. Basically, the sense of the 7- + // and 9-bit shifts are reversed. It still works reversed, but would + // encrypted code would not decrypt with someone else's IDEA code. + // + + private void calcEncryptKey() { + int j; // Utility variable. + + for (int i = 0; i < 52; i++) + // Zero out the 52-int Z array. + Z[i] = 0; + + for (int i = 0; i < 8; i++) // First 8 subkeys are userkey itself. + { + Z[i] = userkey[i] & 0xffff; // Convert "unsigned" + // short to int. + } + + // Each set of 8 subkeys thereafter is derived from left rotating + // the whole 128-bit key 25 bits to left (once between each set of + // eight keys and then before the last four). Instead of actually + // rotating the whole key, this routine just grabs the 16 bits + // that are 25 bits to the right of the corresponding subkey + // eight positions below the current subkey. That 16-bit extent + // straddles two array members, so bits are shifted left in one + // member and right (with zero fill) in the other. For the last + // two subkeys in any group of eight, those 16 bits start to + // wrap around to the first two members of the previous eight. + + for (int i = 8; i < 52; i++) { + int flag1 = 0; + j = i % 8; + if (j < 6) { + Z[i] = ((Z[i - 7] >>> 9) | (Z[i - 6] << 7)) // Shift and combine. + & 0xFFFF; // Just 16 bits. + // continue; // Next iteration. + flag1 = 1; + } + + if (flag1 == 0) { + int flag2 = 0; + + if (j == 6) // Wrap to beginning for second chunk. + { + Z[i] = ((Z[i - 7] >>> 9) | (Z[i - 14] << 7)) & 0xFFFF; + // continue; + flag2 = 1; + } + + if (flag2 == 0) { + // j == 7 so wrap to beginning for both chunks. + Z[i] = ((Z[i - 15] >>> 9) | (Z[i - 14] << 7)) & 0xFFFF; + } + } + } + } + + // + // calcDecryptKey + // + // Builds the 52 16-bit encryption subkeys DK[] from the encryption- + // subkeys Z[]. DK[] is a 32-bit int array holding 16-bit values as + // unsigned. + // + + private void calcDecryptKey() { + int j, k; // Index counters. + int t1, t2, t3; // Temps to hold decrypt subkeys. + + t1 = inv(Z[0]); // Multiplicative inverse (mod x10001). + t2 = -Z[1] & 0xffff; // Additive inverse, 2nd encrypt subkey. + t3 = -Z[2] & 0xffff; // Additive inverse, 3rd encrypt subkey. + + DK[51] = inv(Z[3]); // Multiplicative inverse (mod x10001). + DK[50] = t3; + DK[49] = t2; + DK[48] = t1; + + j = 47; // Indices into temp and encrypt arrays. + k = 4; + for (int i = 0; i < 7; i++) { + t1 = Z[k++]; + DK[j--] = Z[k++]; + DK[j--] = t1; + t1 = inv(Z[k++]); + t2 = -Z[k++] & 0xffff; + t3 = -Z[k++] & 0xffff; + DK[j--] = inv(Z[k++]); + DK[j--] = t2; + DK[j--] = t3; + DK[j--] = t1; + } + + t1 = Z[k++]; + DK[j--] = Z[k++]; + DK[j--] = t1; + t1 = inv(Z[k++]); + t2 = -Z[k++] & 0xffff; + t3 = -Z[k++] & 0xffff; + DK[j--] = inv(Z[k++]); + DK[j--] = t3; + DK[j--] = t2; + DK[j--] = t1; + } + + // + // mul + // + // Performs multiplication, modulo (2**16)+1. This code is structured + // on the assumption that untaken branches are cheaper than taken + // branches, and that the compiler doesn't schedule branches. + // Java: Must work with 32-bit int and one 64-bit long to keep + // 16-bit values and their products "unsigned." The routine assumes + // that both a and b could fit in 16 bits even though they come in + // as 32-bit ints. Lots of "& 0xFFFF" masks here to keep things 16-bit. + // Also, because the routine stores mod (2**16)+1 results in a 2**16 + // space, the result is truncated to zero whenever the result would + // zero, be 2**16. And if one of the multiplicands is 0, the result + // is not zero, but (2**16) + 1 minus the other multiplicand (sort + // of an additive inverse mod 0x10001). + + // NOTE: The java conversion of this routine works correctly, but + // is half the speed of using Java's modulus division function (%) + // on the multiplication with a 16-bit masking of the result--running + // in the Symantec Caje IDE. So it's not called for now; the test + // uses Java % instead. + // + + private int mul(int a, int b) { + int ret; + long p; // Large enough to catch 16-bit multiply + // without hitting sign bit. + if (a != 0) { + if (b != 0) { + p = (long) a * b; + b = (int) p & 0xFFFF; // Lower 16 bits. + a = (int) p >>> 16; // Upper 16 bits. + if (b < a) + return (b - a + 1) & 0xFFFF; + else + return (b - a) & 0xFFFF; + } else + return ((1 - a) & 0xFFFF); // If b = 0, then same as + // 0x10001 - a. + } else + // If a = 0, then return + return ((1 - b) & 0xFFFF); // same as 0x10001 - b. + } + + // + // inv + // + // Compute multiplicative inverse of x, modulo (2**16)+1 using + // extended Euclid's GCD (greatest common divisor) algorithm. + // It is unrolled twice to avoid swapping the meaning of + // the registers. And some subtracts are changed to adds. + // Java: Though it uses signed 32-bit ints, the interpretation + // of the bits within is strictly unsigned 16-bit. + // + + private int inv(int x) { + int t0, t1; + int q, y; + + if (x <= 1) // Assumes positive x. + return (x); // 0 and 1 are self-inverse. + + t1 = 0x10001 / x; // (2**16+1)/x; x is >= 2, so fits 16 bits. + y = 0x10001 % x; + if (y == 1) + return ((1 - t1) & 0xFFFF); + + t0 = 1; + do { + q = x / y; + x = x % y; + t0 += q * t1; + if (x == 1) + return (t0); + q = y / x; + y = y % x; + t1 += q * t0; + } while (y != 1); + + return ((1 - t1) & 0xFFFF); + } + + public JGFCryptBench() { + datasizes = new int[3]; + datasizes[0] = 3000000; + datasizes[1] = 20000000; + datasizes[2] = 50000000; + } + + public void JGFsetsize(int size, int nWorker) { + this.size = size; + this.nWorker = nWorker; + } + + public void JGFinitialise() { + array_rows = datasizes[size]; + buildTestData(); + } + + public void JGFkernel(){ + + byte [] crypt1 = new byte [array_rows]; + byte [] plain2 = new byte [array_rows]; + + int nW=nWorker; + // Encrypt plain1. + int ilow, iupper, slice, tslice, ttslice; + tslice = plain1.length / 8; + ttslice = (tslice + nWorker-1) / nWorker; + slice = ttslice*8; + + for(int i=0;i plain1.length) iupper = plain1.length; + int localSize=iupper-ilow; + byte local_crypt1[] = new byte [localSize]; + + sese parallel_e{ + IDEARunner runner=new IDEARunner(i,plain1,local_crypt1,localSize,Z,nWorker); + runner.run(); + } + + sese serial_e{ + for(int idx=0;idx crypt1.length) iupper = crypt1.length; + int localSize=iupper-ilow; + byte local_plain2[] = new byte [localSize]; + + IDEARunner runner=new IDEARunner(i,crypt1,local_plain2,localSize,DK,nWorker); + + sese parallel_d{ + runner.run(); + } + sese serial_d{ + for(int idx=0;idx 0) { + problem_size = Integer.parseInt(argv[0]); + } + + if (argv.length > 1) { + nWorker = Integer.parseInt(argv[1]); + } + + cb.JGFrun(problem_size, nWorker); + + } + +} diff --git a/Robust/src/Benchmarks/oooJava/crypt/makefile b/Robust/src/Benchmarks/oooJava/crypt/makefile new file mode 100644 index 00000000..8dfe092f --- /dev/null +++ b/Robust/src/Benchmarks/oooJava/crypt/makefile @@ -0,0 +1,32 @@ +#raytracer +PROGRAM=JGFCryptBench + +SOURCE_FILES=JGFCryptBench.java + +BUILDSCRIPT=../../../buildscript + +#USEOOO= -ooojava 8 2 -ooodebug +#BSFLAGS= -32bit -nooptimize -mainclass test -garbagestats -joptimize #-debug +USEOOO= -ooojava 24 2 -ooodebug +BSFLAGS= -64bit -mainclass $(PROGRAM) -garbagestats -joptimize +DISJOINT= -disjoint -disjoint-k 1 -enable-assertions + +default: + $(BUILDSCRIPT) -nojava $(USEOOO) $(BSFLAGS) $(DISJOINT) -o $(PROGRAM)p $(SOURCE_FILES) -builddir par + +single: + $(BUILDSCRIPT) $(BSFLAGS) -o $(PROGRAM)s -builddir sing $(SOURCE_FILES) + +ooo: + $(BUILDSCRIPT) $(USEOOO) $(BSFLAGS) $(DISJOINT) -o $(PROGRAM)p -builddir par $(SOURCE_FILES) + +clean: + rm -f $(PROGRAM)p.bin $(PROGRAM)s.bin + rm -fr par sing + rm -f *~ + rm -f *.dot + rm -f *.png + rm -f *.txt + rm -f aliases.txt + rm -f mlpReport*txt + rm -f results*txt