From: Jakob Stoklund Olesen Date: Fri, 8 Oct 2010 22:14:41 +0000 (+0000) Subject: Extract method ProcessUses from LocalRewriter::RewriteMBB. Both parent and child X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=a32181a57d08f44767b6baf4e67e6860691b53fa;p=oota-llvm.git Extract method ProcessUses from LocalRewriter::RewriteMBB. Both parent and child are still way too long, but it's a start. No functional change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116116 91177308-0d34-0410-b5e6-96231b3b80d8 --- diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp index 240d28cf301..8b8fc73608b 100644 --- a/lib/CodeGen/VirtRegRewriter.cpp +++ b/lib/CodeGen/VirtRegRewriter.cpp @@ -1110,6 +1110,12 @@ private: bool InsertSpills(MachineInstr *MI); + void ProcessUses(MachineInstr &MI, AvailableSpills &Spills, + std::vector &MaybeDeadStores, + BitVector &RegKills, + ReuseInfo &ReusedOperands, + std::vector &KillOps); + void RewriteMBB(LiveIntervals *LIs, AvailableSpills &Spills, BitVector &RegKills, std::vector &KillOps); @@ -1828,7 +1834,7 @@ bool LocalRewriter::InsertRestores(MachineInstr *MI, return true; } -/// InsertEmergencySpills - Insert spills after MI if requested by VRM. Return +/// InsertSpills - Insert spills after MI if requested by VRM. Return /// true if spills were inserted. bool LocalRewriter::InsertSpills(MachineInstr *MI) { if (!VRM->isSpillPt(MI)) @@ -1856,6 +1862,334 @@ bool LocalRewriter::InsertSpills(MachineInstr *MI) { } +/// ProcessUses - Process all of MI's spilled operands and all available +/// operands. +void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills, + std::vector &MaybeDeadStores, + BitVector &RegKills, + ReuseInfo &ReusedOperands, + std::vector &KillOps) { + // Clear kill info. + SmallSet KilledMIRegs; + SmallVector VirtUseOps; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; // Ignore non-register operands. + + unsigned VirtReg = MO.getReg(); + if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { + // Ignore physregs for spilling, but remember that it is used by this + // function. + MRI->setPhysRegUsed(VirtReg); + continue; + } + + // We want to process implicit virtual register uses first. + if (MO.isImplicit()) + // If the virtual register is implicitly defined, emit a implicit_def + // before so scavenger knows it's "defined". + // FIXME: This is a horrible hack done the by register allocator to + // remat a definition with virtual register operand. + VirtUseOps.insert(VirtUseOps.begin(), i); + else + VirtUseOps.push_back(i); + } + + // Process all of the spilled uses and all non spilled reg references. + SmallVector PotentialDeadStoreSlots; + KilledMIRegs.clear(); + for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { + unsigned i = VirtUseOps[j]; + unsigned VirtReg = MI.getOperand(i).getReg(); + assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && + "Not a virtual register?"); + + unsigned SubIdx = MI.getOperand(i).getSubReg(); + if (VRM->isAssignedReg(VirtReg)) { + // This virtual register was assigned a physreg! + unsigned Phys = VRM->getPhys(VirtReg); + MRI->setPhysRegUsed(Phys); + if (MI.getOperand(i).isDef()) + ReusedOperands.markClobbered(Phys); + substitutePhysReg(MI.getOperand(i), Phys, *TRI); + if (VRM->isImplicitlyDefined(VirtReg)) + // FIXME: Is this needed? + BuildMI(*MBB, &MI, MI.getDebugLoc(), + TII->get(TargetOpcode::IMPLICIT_DEF), Phys); + continue; + } + + // This virtual register is now known to be a spilled value. + if (!MI.getOperand(i).isUse()) + continue; // Handle defs in the loop below (handle use&def here though) + + bool AvoidReload = MI.getOperand(i).isUndef(); + // Check if it is defined by an implicit def. It should not be spilled. + // Note, this is for correctness reason. e.g. + // 8 %reg1024 = IMPLICIT_DEF + // 12 %reg1024 = INSERT_SUBREG %reg1024, %reg1025, 2 + // The live range [12, 14) are not part of the r1024 live interval since + // it's defined by an implicit def. It will not conflicts with live + // interval of r1025. Now suppose both registers are spilled, you can + // easily see a situation where both registers are reloaded before + // the INSERT_SUBREG and both target registers that would overlap. + bool DoReMat = VRM->isReMaterialized(VirtReg); + int SSorRMId = DoReMat + ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); + int ReuseSlot = SSorRMId; + + // Check to see if this stack slot is available. + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); + + // If this is a sub-register use, make sure the reuse register is in the + // right register class. For example, for x86 not all of the 32-bit + // registers have accessible sub-registers. + // Similarly so for EXTRACT_SUBREG. Consider this: + // EDI = op + // MOV32_mr fi#1, EDI + // ... + // = EXTRACT_SUBREG fi#1 + // fi#1 is available in EDI, but it cannot be reused because it's not in + // the right register file. + if (PhysReg && !AvoidReload && SubIdx) { + const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); + if (!RC->contains(PhysReg)) + PhysReg = 0; + } + + if (PhysReg && !AvoidReload) { + // This spilled operand might be part of a two-address operand. If this + // is the case, then changing it will necessarily require changing the + // def part of the instruction as well. However, in some cases, we + // aren't allowed to modify the reused register. If none of these cases + // apply, reuse it. + bool CanReuse = true; + bool isTied = MI.isRegTiedToDefOperand(i); + if (isTied) { + // Okay, we have a two address operand. We can reuse this physreg as + // long as we are allowed to clobber the value and there isn't an + // earlier def that has already clobbered the physreg. + CanReuse = !ReusedOperands.isClobbered(PhysReg) && + Spills.canClobberPhysReg(PhysReg); + } + // If this is an asm, and a PhysReg alias is used elsewhere as an + // earlyclobber operand, we can't also use it as an input. + if (MI.isInlineAsm()) { + for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) { + MachineOperand &MOk = MI.getOperand(k); + if (MOk.isReg() && MOk.isEarlyClobber() && + TRI->regsOverlap(MOk.getReg(), PhysReg)) { + CanReuse = false; + DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg) + << " for vreg" << VirtReg << ": " << MOk << '\n'); + break; + } + } + } + + if (CanReuse) { + // If this stack slot value is already available, reuse it! + if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) + DEBUG(dbgs() << "Reusing RM#" + << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); + else + DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); + DEBUG(dbgs() << " from physreg " + << TRI->getName(PhysReg) << " for vreg" + << VirtReg <<" instead of reloading into physreg " + << TRI->getName(VRM->getPhys(VirtReg)) << '\n'); + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + + // The only technical detail we have is that we don't know that + // PhysReg won't be clobbered by a reloaded stack slot that occurs + // later in the instruction. In particular, consider 'op V1, V2'. + // If V1 is available in physreg R0, we would choose to reuse it + // here, instead of reloading it into the register the allocator + // indicated (say R1). However, V2 might have to be reloaded + // later, and it might indicate that it needs to live in R0. When + // this occurs, we need to have information available that + // indicates it is safe to use R1 for the reload instead of R0. + // + // To further complicate matters, we might conflict with an alias, + // or R0 and R1 might not be compatible with each other. In this + // case, we actually insert a reload for V1 in R1, ensuring that + // we can get at R0 or its alias. + ReusedOperands.addReuse(i, ReuseSlot, PhysReg, + VRM->getPhys(VirtReg), VirtReg); + if (isTied) + // Only mark it clobbered if this is a use&def operand. + ReusedOperands.markClobbered(PhysReg); + ++NumReused; + + if (MI.getOperand(i).isKill() && + ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { + + // The store of this spilled value is potentially dead, but we + // won't know for certain until we've confirmed that the re-use + // above is valid, which means waiting until the other operands + // are processed. For now we just track the spill slot, we'll + // remove it after the other operands are processed if valid. + + PotentialDeadStoreSlots.push_back(ReuseSlot); + } + + // Mark is isKill if it's there no other uses of the same virtual + // register and it's not a two-address operand. IsKill will be + // unset if reg is reused. + if (!isTied && KilledMIRegs.count(VirtReg) == 0) { + MI.getOperand(i).setIsKill(); + KilledMIRegs.insert(VirtReg); + } + + continue; + } // CanReuse + + // Otherwise we have a situation where we have a two-address instruction + // whose mod/ref operand needs to be reloaded. This reload is already + // available in some register "PhysReg", but if we used PhysReg as the + // operand to our 2-addr instruction, the instruction would modify + // PhysReg. This isn't cool if something later uses PhysReg and expects + // to get its initial value. + // + // To avoid this problem, and to avoid doing a load right after a store, + // we emit a copy from PhysReg into the designated register for this + // operand. + // + // This case also applies to an earlyclobber'd PhysReg. + unsigned DesignatedReg = VRM->getPhys(VirtReg); + assert(DesignatedReg && "Must map virtreg to physreg!"); + + // Note that, if we reused a register for a previous operand, the + // register we want to reload into might not actually be + // available. If this occurs, use the register indicated by the + // reuser. + if (ReusedOperands.hasReuses()) + DesignatedReg = ReusedOperands. + GetRegForReload(VirtReg, DesignatedReg, &MI, Spills, + MaybeDeadStores, RegKills, KillOps, *VRM); + + // If the mapped designated register is actually the physreg we have + // incoming, we don't need to inserted a dead copy. + if (DesignatedReg == PhysReg) { + // If this stack slot value is already available, reuse it! + if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) + DEBUG(dbgs() << "Reusing RM#" + << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); + else + DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); + DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg) + << " for vreg" << VirtReg + << " instead of reloading into same physreg.\n"); + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + ReusedOperands.markClobbered(RReg); + ++NumReused; + continue; + } + + MRI->setPhysRegUsed(DesignatedReg); + ReusedOperands.markClobbered(DesignatedReg); + + // Back-schedule reloads and remats. + MachineBasicBlock::iterator InsertLoc = + ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat, + SSorRMId, TII, *MBB->getParent()); + MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(), + TII->get(TargetOpcode::COPY), + DesignatedReg).addReg(PhysReg); + CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); + UpdateKills(*CopyMI, TRI, RegKills, KillOps); + + // This invalidates DesignatedReg. + Spills.ClobberPhysReg(DesignatedReg); + + Spills.addAvailable(ReuseSlot, DesignatedReg); + unsigned RReg = + SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + DEBUG(dbgs() << '\t' << *prior(InsertLoc)); + ++NumReused; + continue; + } // if (PhysReg) + + // Otherwise, reload it and remember that we have it. + PhysReg = VRM->getPhys(VirtReg); + assert(PhysReg && "Must map virtreg to physreg!"); + + // Note that, if we reused a register for a previous operand, the + // register we want to reload into might not actually be + // available. If this occurs, use the register indicated by the + // reuser. + if (ReusedOperands.hasReuses()) + PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, + Spills, MaybeDeadStores, RegKills, KillOps, *VRM); + + MRI->setPhysRegUsed(PhysReg); + ReusedOperands.markClobbered(PhysReg); + if (AvoidReload) + ++NumAvoided; + else { + // Back-schedule reloads and remats. + MachineBasicBlock::iterator InsertLoc = + ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat, + SSorRMId, TII, *MBB->getParent()); + + if (DoReMat) { + ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM); + } else { + const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); + TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI); + MachineInstr *LoadMI = prior(InsertLoc); + VRM->addSpillSlotUse(SSorRMId, LoadMI); + ++NumLoads; + DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); + } + // This invalidates PhysReg. + Spills.ClobberPhysReg(PhysReg); + + // Any stores to this stack slot are not dead anymore. + if (!DoReMat) + MaybeDeadStores[SSorRMId] = NULL; + Spills.addAvailable(SSorRMId, PhysReg); + // Assumes this is the last use. IsKill will be unset if reg is reused + // unless it's a two-address operand. + if (!MI.isRegTiedToDefOperand(i) && + KilledMIRegs.count(VirtReg) == 0) { + MI.getOperand(i).setIsKill(); + KilledMIRegs.insert(VirtReg); + } + + UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); + DEBUG(dbgs() << '\t' << *prior(InsertLoc)); + } + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + } + + // Ok - now we can remove stores that have been confirmed dead. + for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { + // This was the last use and the spilled value is still available + // for reuse. That means the spill was unnecessary! + int PDSSlot = PotentialDeadStoreSlots[j]; + MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; + if (DeadStore) { + DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); + InvalidateKills(*DeadStore, TRI, RegKills, KillOps); + VRM->RemoveMachineInstrFromMaps(DeadStore); + MBB->erase(DeadStore); + MaybeDeadStores[PDSSlot] = NULL; + ++NumDSE; + } + } + +} + /// rewriteMBB - Keep track of which spills are available even after the /// register allocator is done with them. If possible, avoid reloading vregs. void @@ -1880,9 +2214,6 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs, // ReMatDefs - These are rematerializable def MIs which are not deleted. SmallSet ReMatDefs; - // Clear kill info. - SmallSet KilledMIRegs; - // Keep track of the registers we have already spilled in case there are // multiple defs of the same register in MI. SmallSet SpilledMIRegs; @@ -1918,323 +2249,8 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs, /// ReusedOperands - Keep track of operand reuse in case we need to undo /// reuse. ReuseInfo ReusedOperands(MI, TRI); - SmallVector VirtUseOps; - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || MO.getReg() == 0) - continue; // Ignore non-register operands. - - unsigned VirtReg = MO.getReg(); - if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { - // Ignore physregs for spilling, but remember that it is used by this - // function. - MRI->setPhysRegUsed(VirtReg); - continue; - } - - // We want to process implicit virtual register uses first. - if (MO.isImplicit()) - // If the virtual register is implicitly defined, emit a implicit_def - // before so scavenger knows it's "defined". - // FIXME: This is a horrible hack done the by register allocator to - // remat a definition with virtual register operand. - VirtUseOps.insert(VirtUseOps.begin(), i); - else - VirtUseOps.push_back(i); - } - - // Process all of the spilled uses and all non spilled reg references. - SmallVector PotentialDeadStoreSlots; - KilledMIRegs.clear(); - for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { - unsigned i = VirtUseOps[j]; - unsigned VirtReg = MI.getOperand(i).getReg(); - assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && - "Not a virtual register?"); - - unsigned SubIdx = MI.getOperand(i).getSubReg(); - if (VRM->isAssignedReg(VirtReg)) { - // This virtual register was assigned a physreg! - unsigned Phys = VRM->getPhys(VirtReg); - MRI->setPhysRegUsed(Phys); - if (MI.getOperand(i).isDef()) - ReusedOperands.markClobbered(Phys); - substitutePhysReg(MI.getOperand(i), Phys, *TRI); - if (VRM->isImplicitlyDefined(VirtReg)) - // FIXME: Is this needed? - BuildMI(*MBB, &MI, MI.getDebugLoc(), - TII->get(TargetOpcode::IMPLICIT_DEF), Phys); - continue; - } - - // This virtual register is now known to be a spilled value. - if (!MI.getOperand(i).isUse()) - continue; // Handle defs in the loop below (handle use&def here though) - - bool AvoidReload = MI.getOperand(i).isUndef(); - // Check if it is defined by an implicit def. It should not be spilled. - // Note, this is for correctness reason. e.g. - // 8 %reg1024 = IMPLICIT_DEF - // 12 %reg1024 = INSERT_SUBREG %reg1024, %reg1025, 2 - // The live range [12, 14) are not part of the r1024 live interval since - // it's defined by an implicit def. It will not conflicts with live - // interval of r1025. Now suppose both registers are spilled, you can - // easily see a situation where both registers are reloaded before - // the INSERT_SUBREG and both target registers that would overlap. - bool DoReMat = VRM->isReMaterialized(VirtReg); - int SSorRMId = DoReMat - ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); - int ReuseSlot = SSorRMId; - - // Check to see if this stack slot is available. - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); - - // If this is a sub-register use, make sure the reuse register is in the - // right register class. For example, for x86 not all of the 32-bit - // registers have accessible sub-registers. - // Similarly so for EXTRACT_SUBREG. Consider this: - // EDI = op - // MOV32_mr fi#1, EDI - // ... - // = EXTRACT_SUBREG fi#1 - // fi#1 is available in EDI, but it cannot be reused because it's not in - // the right register file. - if (PhysReg && !AvoidReload && SubIdx) { - const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); - if (!RC->contains(PhysReg)) - PhysReg = 0; - } - - if (PhysReg && !AvoidReload) { - // This spilled operand might be part of a two-address operand. If this - // is the case, then changing it will necessarily require changing the - // def part of the instruction as well. However, in some cases, we - // aren't allowed to modify the reused register. If none of these cases - // apply, reuse it. - bool CanReuse = true; - bool isTied = MI.isRegTiedToDefOperand(i); - if (isTied) { - // Okay, we have a two address operand. We can reuse this physreg as - // long as we are allowed to clobber the value and there isn't an - // earlier def that has already clobbered the physreg. - CanReuse = !ReusedOperands.isClobbered(PhysReg) && - Spills.canClobberPhysReg(PhysReg); - } - // If this is an asm, and a PhysReg alias is used elsewhere as an - // earlyclobber operand, we can't also use it as an input. - if (MI.isInlineAsm()) { - for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) { - MachineOperand &MOk = MI.getOperand(k); - if (MOk.isReg() && MOk.isEarlyClobber() && - TRI->regsOverlap(MOk.getReg(), PhysReg)) { - CanReuse = false; - DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg) - << " for vreg" << VirtReg << ": " << MOk << '\n'); - break; - } - } - } - - if (CanReuse) { - // If this stack slot value is already available, reuse it! - if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) - DEBUG(dbgs() << "Reusing RM#" - << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); - else - DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); - DEBUG(dbgs() << " from physreg " - << TRI->getName(PhysReg) << " for vreg" - << VirtReg <<" instead of reloading into physreg " - << TRI->getName(VRM->getPhys(VirtReg)) << '\n'); - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - - // The only technical detail we have is that we don't know that - // PhysReg won't be clobbered by a reloaded stack slot that occurs - // later in the instruction. In particular, consider 'op V1, V2'. - // If V1 is available in physreg R0, we would choose to reuse it - // here, instead of reloading it into the register the allocator - // indicated (say R1). However, V2 might have to be reloaded - // later, and it might indicate that it needs to live in R0. When - // this occurs, we need to have information available that - // indicates it is safe to use R1 for the reload instead of R0. - // - // To further complicate matters, we might conflict with an alias, - // or R0 and R1 might not be compatible with each other. In this - // case, we actually insert a reload for V1 in R1, ensuring that - // we can get at R0 or its alias. - ReusedOperands.addReuse(i, ReuseSlot, PhysReg, - VRM->getPhys(VirtReg), VirtReg); - if (isTied) - // Only mark it clobbered if this is a use&def operand. - ReusedOperands.markClobbered(PhysReg); - ++NumReused; - - if (MI.getOperand(i).isKill() && - ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { - - // The store of this spilled value is potentially dead, but we - // won't know for certain until we've confirmed that the re-use - // above is valid, which means waiting until the other operands - // are processed. For now we just track the spill slot, we'll - // remove it after the other operands are processed if valid. - - PotentialDeadStoreSlots.push_back(ReuseSlot); - } - - // Mark is isKill if it's there no other uses of the same virtual - // register and it's not a two-address operand. IsKill will be - // unset if reg is reused. - if (!isTied && KilledMIRegs.count(VirtReg) == 0) { - MI.getOperand(i).setIsKill(); - KilledMIRegs.insert(VirtReg); - } - - continue; - } // CanReuse - - // Otherwise we have a situation where we have a two-address instruction - // whose mod/ref operand needs to be reloaded. This reload is already - // available in some register "PhysReg", but if we used PhysReg as the - // operand to our 2-addr instruction, the instruction would modify - // PhysReg. This isn't cool if something later uses PhysReg and expects - // to get its initial value. - // - // To avoid this problem, and to avoid doing a load right after a store, - // we emit a copy from PhysReg into the designated register for this - // operand. - // - // This case also applies to an earlyclobber'd PhysReg. - unsigned DesignatedReg = VRM->getPhys(VirtReg); - assert(DesignatedReg && "Must map virtreg to physreg!"); - - // Note that, if we reused a register for a previous operand, the - // register we want to reload into might not actually be - // available. If this occurs, use the register indicated by the - // reuser. - if (ReusedOperands.hasReuses()) - DesignatedReg = ReusedOperands. - GetRegForReload(VirtReg, DesignatedReg, &MI, Spills, - MaybeDeadStores, RegKills, KillOps, *VRM); - - // If the mapped designated register is actually the physreg we have - // incoming, we don't need to inserted a dead copy. - if (DesignatedReg == PhysReg) { - // If this stack slot value is already available, reuse it! - if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) - DEBUG(dbgs() << "Reusing RM#" - << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); - else - DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); - DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg) - << " for vreg" << VirtReg - << " instead of reloading into same physreg.\n"); - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - ReusedOperands.markClobbered(RReg); - ++NumReused; - continue; - } - - MRI->setPhysRegUsed(DesignatedReg); - ReusedOperands.markClobbered(DesignatedReg); - - // Back-schedule reloads and remats. - MachineBasicBlock::iterator InsertLoc = - ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat, - SSorRMId, TII, MF); - MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(), - TII->get(TargetOpcode::COPY), - DesignatedReg).addReg(PhysReg); - CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); - UpdateKills(*CopyMI, TRI, RegKills, KillOps); - - // This invalidates DesignatedReg. - Spills.ClobberPhysReg(DesignatedReg); - - Spills.addAvailable(ReuseSlot, DesignatedReg); - unsigned RReg = - SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - DEBUG(dbgs() << '\t' << *prior(MII)); - ++NumReused; - continue; - } // if (PhysReg) - - // Otherwise, reload it and remember that we have it. - PhysReg = VRM->getPhys(VirtReg); - assert(PhysReg && "Must map virtreg to physreg!"); - - // Note that, if we reused a register for a previous operand, the - // register we want to reload into might not actually be - // available. If this occurs, use the register indicated by the - // reuser. - if (ReusedOperands.hasReuses()) - PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, - Spills, MaybeDeadStores, RegKills, KillOps, *VRM); - - MRI->setPhysRegUsed(PhysReg); - ReusedOperands.markClobbered(PhysReg); - if (AvoidReload) - ++NumAvoided; - else { - // Back-schedule reloads and remats. - MachineBasicBlock::iterator InsertLoc = - ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, DoReMat, - SSorRMId, TII, MF); - - if (DoReMat) { - ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM); - } else { - const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); - TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI); - MachineInstr *LoadMI = prior(InsertLoc); - VRM->addSpillSlotUse(SSorRMId, LoadMI); - ++NumLoads; - DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); - } - // This invalidates PhysReg. - Spills.ClobberPhysReg(PhysReg); - - // Any stores to this stack slot are not dead anymore. - if (!DoReMat) - MaybeDeadStores[SSorRMId] = NULL; - Spills.addAvailable(SSorRMId, PhysReg); - // Assumes this is the last use. IsKill will be unset if reg is reused - // unless it's a two-address operand. - if (!MI.isRegTiedToDefOperand(i) && - KilledMIRegs.count(VirtReg) == 0) { - MI.getOperand(i).setIsKill(); - KilledMIRegs.insert(VirtReg); - } - - UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); - DEBUG(dbgs() << '\t' << *prior(InsertLoc)); - } - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - } - - // Ok - now we can remove stores that have been confirmed dead. - for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { - // This was the last use and the spilled value is still available - // for reuse. That means the spill was unnecessary! - int PDSSlot = PotentialDeadStoreSlots[j]; - MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; - if (DeadStore) { - DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); - InvalidateKills(*DeadStore, TRI, RegKills, KillOps); - VRM->RemoveMachineInstrFromMaps(DeadStore); - MBB->erase(DeadStore); - MaybeDeadStores[PDSSlot] = NULL; - ++NumDSE; - } - } + ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps); DEBUG(dbgs() << '\t' << MI);