From: adash Date: Fri, 18 Apr 2008 00:16:43 +0000 (+0000) Subject: Add java version of Crypt benchmark X-Git-Tag: preEdgeChange~144 X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=a5558559291ef1fada78df87473775c5be5dae4c;p=IRC.git Add java version of Crypt benchmark --- diff --git a/Robust/src/Benchmarks/Prefetch/Crypt/java/JGFCryptBench.java b/Robust/src/Benchmarks/Prefetch/Crypt/java/JGFCryptBench.java new file mode 100644 index 00000000..f40598fd --- /dev/null +++ b/Robust/src/Benchmarks/Prefetch/Crypt/java/JGFCryptBench.java @@ -0,0 +1,389 @@ +/************************************************************************** + * * + * Java Grande Forum Benchmark Suite - Thread Version 1.0 * + * * + * produced by * + * * + * Java Grande Benchmarking Project * + * * + * at * + * * + * Edinburgh Parallel Computing Centre * + * * + * email: epcc-javagrande@epcc.ed.ac.uk * + * * + * * + * This version copyright (c) The University of Edinburgh, 2001. * + * All rights reserved. * + * * + **************************************************************************/ +/************************************************************************** + * Ported for DSTM Benchmark * + **************************************************************************/ +import java.util.*; + +public class JGFCryptBench { + + private int size; + private int datasizes[]; + public int nthreads; + int array_rows; + + byte [] plain1; // Buffer for plaintext data. + byte [] crypt1; // Buffer for encrypted data. + byte [] plain2; // Buffer for decrypted data. + + short [] userkey; // Key for encryption/decryption. + int [] Z; // Encryption subkey (userkey derived). + int [] DK; // Decryption subkey (userkey derived). + + + // + // buildTestData + //Builds the data used for the test -- each time the test is run. + void buildTestData() + { + + + // Create three byte arrays that will be used (and reused) for + // encryption/decryption operations. + + + plain1 = new byte [array_rows]; + crypt1 = new byte [array_rows]; + plain2 = new byte [array_rows]; + + + Random rndnum = new Random(136506717L); // Create random number generator. + + + // Allocate three arrays to hold keys: userkey is the 128-bit key. + // Z is the set of 16-bit encryption subkeys derived from userkey, + // while DK is the set of 16-bit decryption subkeys also derived + // from userkey. NOTE: The 16-bit values are stored here in + // 32-bit int arrays so that the values may be used in calculations + // as if they are unsigned. Each 64-bit block of plaintext goes + // through eight processing rounds involving six of the subkeys + // then a final output transform with four of the keys; (8 * 6) + // + 4 = 52 subkeys. + + userkey = new short [8]; // User key has 8 16-bit shorts. + Z = new int [52]; // Encryption subkey (user key derived). + DK = new int [52]; // Decryption subkey (user key derived). + + // Generate user key randomly; eight 16-bit values in an array. + + for (int i = 0; i < 8; i++) + { + // Again, the random number function returns int. Converting + // to a short type preserves the bit pattern in the lower 16 + // bits of the int and discards the rest. + + userkey[i] = (short) rndnum.nextInt(); + } + + // Compute encryption and decryption subkeys. + + calcEncryptKey(); + calcDecryptKey(); + + // Fill plain1 with "text." + for (int i = 0; i < array_rows; i++) + { + plain1[i] = (byte) i; + + // Converting to a byte + // type preserves the bit pattern in the lower 8 bits of the + // int and discards the rest. + } + } + + + // calcEncryptKey + + // Builds the 52 16-bit encryption subkeys Z[] from the user key and + //stores in 32-bit int array. The routing corrects an error in the + //source code in the Schnier book. Basically, the sense of the 7- + //and 9-bit shifts are reversed. It still works reversed, but would + //encrypted code would not decrypt with someone else's IDEA code. + // + + private void calcEncryptKey() + { + int j; // Utility variable. + + for (int i = 0; i < 52; i++) // Zero out the 52-int Z array. + Z[i] = 0; + + for (int i = 0; i < 8; i++) // First 8 subkeys are userkey itself. + { + Z[i] = userkey[i] & 0xffff; // Convert "unsigned" + // short to int. + } + + // Each set of 8 subkeys thereafter is derived from left rotating + // the whole 128-bit key 25 bits to left (once between each set of + // eight keys and then before the last four). Instead of actually + // rotating the whole key, this routine just grabs the 16 bits + // that are 25 bits to the right of the corresponding subkey + // eight positions below the current subkey. That 16-bit extent + // straddles two array members, so bits are shifted left in one + // member and right (with zero fill) in the other. For the last + // two subkeys in any group of eight, those 16 bits start to + // wrap around to the first two members of the previous eight. + + for (int i = 8; i < 52; i++) + { + int flag1 = 0; + j = i % 8; + if (j < 6) + { + Z[i] = ((Z[i -7]>>>9) | (Z[i-6]<<7)) // Shift and combine. + & 0xFFFF; // Just 16 bits. + //continue; // Next iteration. + flag1 = 1; + } + + if(flag1 == 0) { + int flag2 = 0; + + if (j == 6) // Wrap to beginning for second chunk. + { + Z[i] = ((Z[i -7]>>>9) | (Z[i-14]<<7)) + & 0xFFFF; + //continue; + flag2 = 1; + } + + if(flag2 == 0) { + // j == 7 so wrap to beginning for both chunks. + Z[i] = ((Z[i -15]>>>9) | (Z[i-14]<<7)) + & 0xFFFF; + } + } + } + } + + // + //calcDecryptKey + // + //Builds the 52 16-bit encryption subkeys DK[] from the encryption- + //subkeys Z[]. DK[] is a 32-bit int array holding 16-bit values as + //unsigned. + // + + private void calcDecryptKey() + { + int j, k; // Index counters. + int t1, t2, t3; // Temps to hold decrypt subkeys. + + t1 = inv(Z[0]); // Multiplicative inverse (mod x10001). + t2 = - Z[1] & 0xffff; // Additive inverse, 2nd encrypt subkey. + t3 = - Z[2] & 0xffff; // Additive inverse, 3rd encrypt subkey. + + DK[51] = inv(Z[3]); // Multiplicative inverse (mod x10001). + DK[50] = t3; + DK[49] = t2; + DK[48] = t1; + + j = 47; // Indices into temp and encrypt arrays. + k = 4; + for (int i = 0; i < 7; i++) + { + t1 = Z[k++]; + DK[j--] = Z[k++]; + DK[j--] = t1; + t1 = inv(Z[k++]); + t2 = -Z[k++] & 0xffff; + t3 = -Z[k++] & 0xffff; + DK[j--] = inv(Z[k++]); + DK[j--] = t2; + DK[j--] = t3; + DK[j--] = t1; + } + + t1 = Z[k++]; + DK[j--] = Z[k++]; + DK[j--] = t1; + t1 = inv(Z[k++]); + t2 = -Z[k++] & 0xffff; + t3 = -Z[k++] & 0xffff; + DK[j--] = inv(Z[k++]); + DK[j--] = t3; + DK[j--] = t2; + DK[j--] = t1; + } + + + // + //mul + // + // Performs multiplication, modulo (2**16)+1. This code is structured + // on the assumption that untaken branches are cheaper than taken + // branches, and that the compiler doesn't schedule branches. + // Java: Must work with 32-bit int and one 64-bit long to keep + // 16-bit values and their products "unsigned." The routine assumes + // that both a and b could fit in 16 bits even though they come in + // as 32-bit ints. Lots of "& 0xFFFF" masks here to keep things 16-bit. + // Also, because the routine stores mod (2**16)+1 results in a 2**16 + // space, the result is truncated to zero whenever the result would + // zero, be 2**16. And if one of the multiplicands is 0, the result + // is not zero, but (2**16) + 1 minus the other multiplicand (sort + // of an additive inverse mod 0x10001). + + // NOTE: The java conversion of this routine works correctly, but + // is half the speed of using Java's modulus division function (%) + // on the multiplication with a 16-bit masking of the result--running + // in the Symantec Caje IDE. So it's not called for now; the test + // uses Java % instead. + // + + private int mul(int a, int b) + { + int ret; + long p; // Large enough to catch 16-bit multiply + // without hitting sign bit. + if (a != 0) + { + if(b != 0) + { + p = (long) a * b; + b = (int) p & 0xFFFF; // Lower 16 bits. + a = (int) p >>> 16; // Upper 16 bits. + if (b < a) + return (b - a + 1) & 0xFFFF; + else + return (b - a) & 0xFFFF; + } + else + return ((1 - a) & 0xFFFF); // If b = 0, then same as + // 0x10001 - a. + } + else // If a = 0, then return + return((1 - b) & 0xFFFF); // same as 0x10001 - b. + } + + // + // inv + // + // Compute multiplicative inverse of x, modulo (2**16)+1 using + // extended Euclid's GCD (greatest common divisor) algorithm. + // It is unrolled twice to avoid swapping the meaning of + // the registers. And some subtracts are changed to adds. + // Java: Though it uses signed 32-bit ints, the interpretation + // of the bits within is strictly unsigned 16-bit. + // + + private int inv(int x) + { + int t0, t1; + int q, y; + + if (x <= 1) // Assumes positive x. + return(x); // 0 and 1 are self-inverse. + + t1 = 0x10001 / x; // (2**16+1)/x; x is >= 2, so fits 16 bits. + y = 0x10001 % x; + if (y == 1) + return((1 - t1) & 0xFFFF); + + t0 = 1; + do { + q = x / y; + x = x % y; + t0 += q * t1; + if (x == 1) return(t0); + q = y / x; + y = y % x; + t1 += q * t0; + } while (y != 1); + + return((1 - t1) & 0xFFFF); + } + + // + // freeTestData + // + // Nulls arrays and forces garbage collection to free up memory. + // + + void freeTestData(int array_rows) + { + for(int i = 0; i text1.length) iupper = text1.length; + + int i1 = ilow; // Index into first text array. + int i2 = ilow; // Index into second text array. + int ik; // Index into key array. + int x1, x2, x3, x4, t1, t2; // Four "16-bit" blocks, two temps. + int r; // Eight rounds of processing. + + for (int i =ilow ; i >> 8); + text2[i2++] = (byte) x3; // x3 and x2 are switched + text2[i2++] = (byte) (x3 >>> 8); // only in name. + text2[i2++] = (byte) x2; + text2[i2++] = (byte) (x2 >>> 8); + text2[i2++] = (byte) x4; + text2[i2++] = (byte) (x4 >>> 8); + + } // End for loop. + + } // End routine. + + public static void main(String argv[]){ + int nthreads; + if(argv.length != 0 ) { + nthreads = Integer.parseInt(argv[0]); + } else { + System.out.println("The no of threads has not been specified, defaulting to 1"); + System.out.println(" "); + nthreads = 1; + } + + /* Instruments output messages */ + JGFInstrumentor instr = new JGFInstrumentor(); + instr.printHeader(2,0,nthreads); + + JGFCryptBench cb; + int size = 0; + instr.addTimer("Section2:Crypt:Kernel", "Kbyte",size); + cb = new JGFCryptBench(nthreads); + cb.JGFsetsize(size); + cb.JGFinitialise(); + + /* Start computation */ + JGFCryptBenchSizeA[] th; + th = new JGFCryptBenchSizeA [nthreads]; + + // Start the stopwatch. + instr.startTimer("Section2:Crypt:Kernel"); + + // Encrypt plain1. + JGFCryptBenchSizeA tmp; + for(int i=1;i