From: rtrimana Date: Tue, 28 Aug 2018 18:51:04 +0000 (-0700) Subject: Simple Python script to plot datapoints based on clusters. X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=ad218aaf80ad78427de84f09709f04739b0a04c1;p=pingpong.git Simple Python script to plot datapoints based on clusters. --- diff --git a/python_ml/plotting.py b/python_ml/plotting.py new file mode 100644 index 0000000..526bf8c --- /dev/null +++ b/python_ml/plotting.py @@ -0,0 +1,50 @@ +from sklearn.cluster import KMeans +import matplotlib.cm as cm +import numpy as np +import matplotlib.pyplot as plt + +# Create a subplot with 1 row and 2 columns +fig, (ax2) = plt.subplots(1, 1) +fig.set_size_inches(7, 7) + + +# Read from file +# TODO: Just change the following path and filename +# when needed to read from a different file +path = "/scratch/July-2018/Pairs/" +filename = "dlink-off.txt" + +# Read and create an array of pairs +with open(path + filename, "r") as pairs: + pairsArr = [] + for line in pairs: + # We will see a pair and we need to split it into xpoint and ypoint + xpoint, ypoint = line.split(", ") + pair = [int(xpoint), int(ypoint)] + pairsArr.append(pair) + +# Formed array of pairs +#print(pairsArr) +X = np.array(pairsArr); + +clusters = 9 + +# Plot the data points based on the clusters +clusterer = KMeans(n_clusters=clusters, random_state=10) +cluster_labels = clusterer.fit_predict(X) +# 2nd Plot showing the actual clusters formed +colors = cm.nipy_spectral(cluster_labels.astype(float) / clusters) +ax2.scatter(X[:, 0], X[:, 1], marker='o', s=100, lw=0, alpha=0.3, + c=colors, edgecolor='k') + +# Labeling the clusters +centers = clusterer.cluster_centers_ +# Label with cluster centers and frequencies +for i, c in enumerate(centers): + mark = '[' + str(int(c[0])) + ', ' + str(int(c[1])) + ']' + ', ' + str(clusterer.labels_.tolist().count(i)) + ax2.scatter(c[0], c[1], marker='$%s$' % mark, alpha=1, s=3000, edgecolor='k') + +ax2.set_title("The visualization of the clustered data.") +ax2.set_xlabel("Feature space for the 1st feature") +ax2.set_ylabel("Feature space for the 2nd feature") +plt.show()