From: Aneesh Kumar K.V Date: Wed, 21 Mar 2012 23:34:08 +0000 (-0700) Subject: hugetlbfs: avoid taking i_mutex from hugetlbfs_read() X-Git-Tag: firefly_0821_release~7541^2~1506 X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=b113a5a2f7c1a153a49b388fd8695219207fe669;p=firefly-linux-kernel-4.4.55.git hugetlbfs: avoid taking i_mutex from hugetlbfs_read() commit a05b0855fd15504972dba2358e5faa172a1e50ba upstream. Taking i_mutex in hugetlbfs_read() can result in deadlock with mmap as explained below Thread A: read() on hugetlbfs hugetlbfs_read() called i_mutex grabbed hugetlbfs_read_actor() called __copy_to_user() called page fault is triggered Thread B, sharing address space with A: mmap() the same file ->mmap_sem is grabbed on task_B->mm->mmap_sem hugetlbfs_file_mmap() is called attempt to grab ->i_mutex and block waiting for A to give it up Thread A: pagefault handled blocked on attempt to grab task_A->mm->mmap_sem, which happens to be the same thing as task_B->mm->mmap_sem. Block waiting for B to give it up. AFAIU the i_mutex locking was added to hugetlbfs_read() as per http://lkml.indiana.edu/hypermail/linux/kernel/0707.2/3066.html to take care of the race between truncate and read. This patch fixes this by looking at page->mapping under lock_page() (find_lock_page()) to ensure that the inode didn't get truncated in the range during a parallel read. Ideally we can extend the patch to make sure we don't increase i_size in mmap. But that will break userspace, because applications will now have to use truncate(2) to increase i_size in hugetlbfs. Based on the original patch from Hillf Danton. Signed-off-by: Aneesh Kumar K.V Cc: Hillf Danton Cc: KAMEZAWA Hiroyuki Cc: Al Viro Cc: Hugh Dickins Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- diff --git a/fs/hugetlbfs/inode.c b/fs/hugetlbfs/inode.c index 7aafeb8fa300..8b0c87530b04 100644 --- a/fs/hugetlbfs/inode.c +++ b/fs/hugetlbfs/inode.c @@ -238,17 +238,10 @@ static ssize_t hugetlbfs_read(struct file *filp, char __user *buf, loff_t isize; ssize_t retval = 0; - mutex_lock(&inode->i_mutex); - /* validate length */ if (len == 0) goto out; - isize = i_size_read(inode); - if (!isize) - goto out; - - end_index = (isize - 1) >> huge_page_shift(h); for (;;) { struct page *page; unsigned long nr, ret; @@ -256,18 +249,21 @@ static ssize_t hugetlbfs_read(struct file *filp, char __user *buf, /* nr is the maximum number of bytes to copy from this page */ nr = huge_page_size(h); + isize = i_size_read(inode); + if (!isize) + goto out; + end_index = (isize - 1) >> huge_page_shift(h); if (index >= end_index) { if (index > end_index) goto out; nr = ((isize - 1) & ~huge_page_mask(h)) + 1; - if (nr <= offset) { + if (nr <= offset) goto out; - } } nr = nr - offset; /* Find the page */ - page = find_get_page(mapping, index); + page = find_lock_page(mapping, index); if (unlikely(page == NULL)) { /* * We have a HOLE, zero out the user-buffer for the @@ -279,17 +275,18 @@ static ssize_t hugetlbfs_read(struct file *filp, char __user *buf, else ra = 0; } else { + unlock_page(page); + /* * We have the page, copy it to user space buffer. */ ra = hugetlbfs_read_actor(page, offset, buf, len, nr); ret = ra; + page_cache_release(page); } if (ra < 0) { if (retval == 0) retval = ra; - if (page) - page_cache_release(page); goto out; } @@ -299,16 +296,12 @@ static ssize_t hugetlbfs_read(struct file *filp, char __user *buf, index += offset >> huge_page_shift(h); offset &= ~huge_page_mask(h); - if (page) - page_cache_release(page); - /* short read or no more work */ if ((ret != nr) || (len == 0)) break; } out: *ppos = ((loff_t)index << huge_page_shift(h)) + offset; - mutex_unlock(&inode->i_mutex); return retval; }