From: Chris Lattner Date: Sun, 6 Feb 2011 22:05:31 +0000 (+0000) Subject: teach instsimplify to transform (X / Y) * Y to X X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=c6ee9181a51fdfa3c07e1e53695681c55aa98ce4;p=oota-llvm.git teach instsimplify to transform (X / Y) * Y to X when the div is an exact udiv. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124994 91177308-0d34-0410-b5e6-96231b3b80d8 --- diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp index 220868fe1db..7bb8f699928 100644 --- a/lib/Analysis/InstructionSimplify.cpp +++ b/lib/Analysis/InstructionSimplify.cpp @@ -735,9 +735,11 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, // (X / Y) * Y -> X if the division is exact. Value *X = 0, *Y = 0; if ((match(Op0, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y - (match(Op1, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y) - BinaryOperator *SDiv = cast(Y == Op1 ? Op0 : Op1); - if (SDiv->isExact()) + (match(Op0, m_UDiv(m_Value(X), m_Value(Y))) && Y == Op1) || + (match(Op1, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op0) || // Y * (X / Y) + (match(Op1, m_UDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { + BinaryOperator *Div = cast(Y == Op1 ? Op0 : Op1); + if (Div->isExact()) return X; } diff --git a/test/Transforms/InstSimplify/reassociate.ll b/test/Transforms/InstSimplify/reassociate.ll index 928442ac56c..3c8169e5e28 100644 --- a/test/Transforms/InstSimplify/reassociate.ll +++ b/test/Transforms/InstSimplify/reassociate.ll @@ -137,6 +137,7 @@ define i32 @sdiv5(i32 %x, i32 %y) { ; CHECK: ret i32 %x } + define i32 @udiv1(i32 %x, i32 %y) { ; CHECK: @udiv1 ; (no overflow X * Y) / Y -> X @@ -164,3 +165,22 @@ define i32 @udiv3(i32 %x, i32 %y) { ret i32 %div ; CHECK: ret i32 0 } + +define i32 @udiv4(i32 %x, i32 %y) { +; CHECK: @udiv4 +; (X / Y) * Y -> X if the division is exact + %div = udiv exact i32 %x, %y + %mul = mul i32 %div, %y + ret i32 %mul +; CHECK: ret i32 %x +} + +define i32 @udiv5(i32 %x, i32 %y) { +; CHECK: @udiv5 +; Y * (X / Y) -> X if the division is exact + %div = udiv exact i32 %x, %y + %mul = mul i32 %y, %div + ret i32 %mul +; CHECK: ret i32 %x +} +