From: Vikram S. Adve Date: Tue, 28 Aug 2001 23:12:57 +0000 (+0000) Subject: Major changes too hard to document :-) X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=d4228a50669a7b0050ce911f9f02812cf940b4e6;p=oota-llvm.git Major changes too hard to document :-) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@400 91177308-0d34-0410-b5e6-96231b3b80d8 --- diff --git a/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp b/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp index 83962537ce8..088d089d80c 100644 --- a/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp +++ b/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp @@ -7,8 +7,9 @@ // // History: // 7/02/01 - Vikram Adve - Created -//*************************************************************************** +//**************************************************************************/ +#include "llvm/Support/MathExtras.h" #include "llvm/Type.h" #include "llvm/DerivedTypes.h" #include "llvm/SymbolTable.h" @@ -94,21 +95,17 @@ static unsigned FixConstantOperands(const InstructionNode* vmInstrNode, unsigned numInstr, TargetMachine& target); -static unsigned InsertLoadConstInstructions(unsigned loadConstFlags, - const InstructionNode* vmInstrNode, - MachineInstr** mvec, - unsigned numInstr); - -static MachineInstr* MakeOneLoadConstInstr(Instruction* vmInstr, - Value* val, - TmpInstruction*& tmpReg); +static MachineInstr* MakeLoadConstInstr(Instruction* vmInstr, + Value* val, + TmpInstruction*& tmpReg, + MachineInstr*& getMinstr2); static void ForwardOperand (InstructionNode* treeNode, InstructionNode* parent, int operandNum); -//******************* Externally Visible Functions *************************/ +//************************ Internal Functions ******************************/ //------------------------------------------------------------------------ @@ -145,742 +142,93 @@ ThisIsAChainRule(int eruleno) } } -//------------------------------------------------------------------------ -// External Function: GetInstructionsByRule -// -// Purpose: -// Choose machine instructions for the SPARC according to the -// patterns chosen by the BURG-generated parser. -//------------------------------------------------------------------------ -unsigned -GetInstructionsByRule(InstructionNode* subtreeRoot, - int ruleForNode, - short* nts, - TargetMachine &target, - MachineInstr** mvec) +static inline MachineOpCode +ChooseBprInstruction(const InstructionNode* instrNode) { - int numInstr = 1; // initialize for common case - bool checkCast = false; // initialize here to use fall-through - Value *leftVal, *rightVal; - const Type* opType; - int nextRule; - int forwardOperandNum = -1; - BranchPattern brPattern; - int64_t s0 = 0; // variables holding zero to avoid - uint64_t u0 = 0; // overloading ambiguities below + MachineOpCode opCode; - mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety + Instruction* setCCInstr = + ((InstructionNode*) instrNode->leftChild())->getInstruction(); - switch(ruleForNode) { - case 1: // stmt: Ret - case 2: // stmt: RetValue(reg) - // NOTE: Prepass of register allocation is responsible - // for moving return value to appropriate register. - // Mark the return-address register as a hidden virtual reg. - { - Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, - subtreeRoot->getInstruction(), NULL); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg); - - mvec[0] = new MachineInstr(RETURN); - mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0); - - returnReg->addMachineInstruction(mvec[0]); - - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - break; - } - - case 3: // stmt: Store(reg,reg) - case 4: // stmt: Store(reg,ptrreg) - mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType())); - SetOperandsForMemInstr(mvec[0], subtreeRoot, target); - break; - - case 5: // stmt: BrUncond - mvec[0] = new MachineInstr(BA); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - break; - - case 6: // stmt: BrCond(boolconst) - // boolconst => boolean was computed with `%b = setCC type reg1 constant' - // If the constant is ZERO, we can use the branch-on-integer-register - // instructions and avoid the SUBcc instruction entirely. - // Otherwise this is just the same as case 5, so just fall through. + switch(setCCInstr->getOpcode()) { - InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); - assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); - ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue(); - bool isValidConst; - - if (constVal->getType()->isIntegral() - && GetConstantValueAsSignedInt(constVal, isValidConst) == 0 - && isValidConst) - { - // That constant ia a zero after all... - // Use the left child of the setCC instruction as the first argument! - mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot)); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); + case Instruction::SetEQ: opCode = BRZ; break; + case Instruction::SetNE: opCode = BRNZ; break; + case Instruction::SetLE: opCode = BRLEZ; break; + case Instruction::SetGE: opCode = BRGEZ; break; + case Instruction::SetLT: opCode = BRLZ; break; + case Instruction::SetGT: opCode = BRGZ; break; + default: + assert(0 && "Unrecognized VM instruction!"); + opCode = INVALID_OPCODE; + break; + } + + return opCode; +} - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - - // false branch - mvec[numInstr++] = new MachineInstr(BA); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - (Value*) NULL); - mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); - break; - } - // ELSE FALL THROUGH + +static inline MachineOpCode +ChooseBccInstruction(const InstructionNode* instrNode, + bool& isFPBranch) +{ + InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); + BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); + const Type* setCCType = setCCInstr->getOperand(0)->getType(); + + isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); + + if (isFPBranch) + return ChooseBFpccInstruction(instrNode, setCCInstr); + else + return ChooseBpccInstruction(instrNode, setCCInstr); +} + + +static inline MachineOpCode +ChooseBpccInstruction(const InstructionNode* instrNode, + const BinaryOperator* setCCInstr) +{ + MachineOpCode opCode = INVALID_OPCODE; + + bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); + + if (isSigned) + { + switch(setCCInstr->getOpcode()) + { + case Instruction::SetEQ: opCode = BE; break; + case Instruction::SetNE: opCode = BNE; break; + case Instruction::SetLE: opCode = BLE; break; + case Instruction::SetGE: opCode = BGE; break; + case Instruction::SetLT: opCode = BL; break; + case Instruction::SetGT: opCode = BG; break; + default: + assert(0 && "Unrecognized VM instruction!"); + break; + } } - - case 7: // stmt: BrCond(bool) - // bool => boolean was computed with `%b = setcc type reg1 reg2' - // Need to check whether the type was a FP, signed int or unsigned int, - // and check the branching condition in order to choose the branch to use. - // + else { - bool isFPBranch; - mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch)); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - - // false branch - mvec[numInstr++] = new MachineInstr(BA); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - (Value*) NULL); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); - break; - } - - case 8: // stmt: BrCond(boolreg) - // bool => boolean is stored in an existing register. - // Just use the branch-on-integer-register instruction! - // - mvec[0] = new MachineInstr(BRNZ); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - break; - - case 9: // stmt: Switch(reg) - assert(0 && "*** SWITCH instruction is not implemented yet."); - numInstr = 0; - break; - - case 10: // reg: VRegList(reg, reg) - assert(0 && "VRegList should never be the topmost non-chain rule"); - break; - - case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0 - mvec[0] = new MachineInstr(XNOR); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - break; - - case 22: // reg: ToBoolTy(reg): - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || opType == Type::BoolTy); - numInstr = 0; - forwardOperandNum = 0; - break; - - case 23: // reg: ToUByteTy(reg) - case 25: // reg: ToUShortTy(reg) - case 27: // reg: ToUIntTy(reg) - case 29: // reg: ToULongTy(reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || - opType->isPointerType() || - opType == Type::BoolTy && "Ignoring cast: illegal for other types"); - numInstr = 0; - forwardOperandNum = 0; - break; - - case 24: // reg: ToSByteTy(reg) - case 26: // reg: ToShortTy(reg) - case 28: // reg: ToIntTy(reg) - case 30: // reg: ToLongTy(reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - if (opType->isIntegral() || opType == Type::BoolTy) - { - numInstr = 0; - forwardOperandNum = 0; - } - else - { - mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType)); - Set2OperandsFromInstr(mvec[0], subtreeRoot, target); - } - break; - - case 31: // reg: ToFloatTy(reg): - case 32: // reg: ToDoubleTy(reg): - - // If this instruction has a parent (a user) in the tree - // and the user is translated as an FsMULd instruction, - // then the cast is unnecessary. So check that first. - // In the future, we'll want to do the same for the FdMULq instruction, - // so do the check here instead of only for ToFloatTy(reg). - // - if (subtreeRoot->parent() != NULL && - ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD) - { - numInstr = 0; - forwardOperandNum = 0; - } - else - { - opType = subtreeRoot->leftChild()->getValue()->getType(); - mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType)); - Set2OperandsFromInstr(mvec[0], subtreeRoot, target); - } - break; - - case 19: // reg: ToArrayTy(reg): - case 20: // reg: ToPointerTy(reg): - numInstr = 0; - forwardOperandNum = 0; - break; - - case 33: // reg: Add(reg, reg) - mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 34: // reg: Sub(reg, reg) - mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 135: // reg: Mul(todouble, todouble) - checkCast = true; - // FALL THROUGH - - case 35: // reg: Mul(reg, reg) - mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 36: // reg: Div(reg, reg) - mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 37: // reg: Rem(reg, reg) - assert(0 && "REM instruction unimplemented for the SPARC."); - break; - - case 38: // reg: And(reg, reg) - mvec[0] = new MachineInstr(AND); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 138: // reg: And(reg, not) - mvec[0] = new MachineInstr(ANDN); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 39: // reg: Or(reg, reg) - mvec[0] = new MachineInstr(ORN); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 139: // reg: Or(reg, not) - mvec[0] = new MachineInstr(ORN); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 40: // reg: Xor(reg, reg) - mvec[0] = new MachineInstr(XOR); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 140: // reg: Xor(reg, not) - mvec[0] = new MachineInstr(XNOR); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 41: // boolconst: SetCC(reg, Constant) - // Check if this is an integer comparison, and - // there is a parent, and the parent decided to use - // a branch-on-integer-register instead of branch-on-condition-code. - // If so, the SUBcc instruction is not required. - // (However, we must still check for constants to be loaded from - // the constant pool so that such a load can be associated with - // this instruction.) - // - // Otherwise this is just the same as case 42, so just fall through. - // - if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() && - subtreeRoot->parent() != NULL) - { - InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); - assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode); - const vector& - minstrVec = parentNode->getInstruction()->getMachineInstrVec(); - MachineOpCode parentOpCode; - if (parentNode->getInstruction()->getOpcode() == Instruction::Br && - (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ && - parentOpCode <= BRGEZ) - { - numInstr = 0; // don't forward the operand! - break; - } - } - // ELSE FALL THROUGH - - case 42: // bool: SetCC(reg, reg): - { - // If result of the SetCC is only used for a branch, we can - // discard the result. otherwise, it must go into an integer register. - // Note that the user may or may not be in the same tree, so we have - // to follow SSA def-use edges here, not BURG tree edges. - // - Instruction* result = subtreeRoot->getInstruction(); - Value* firstUse = (Value*) * result->use_begin(); - bool discardResult = - (result->use_size() == 1 - && firstUse->getValueType() == Value::InstructionVal - && ((Instruction*) firstUse)->getOpcode() == Instruction::Br); - - bool mustClearReg; - int valueToMove; - MachineOpCode movOpCode; - - if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral()) - { - // integer condition: destination should be %g0 or integer register - // if result must be saved but condition is not SetEQ then we need - // a separate instruction to compute the bool result, so discard - // result of SUBcc instruction anyway. - // - mvec[0] = new MachineInstr(SUBcc); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult); - - // mark the 4th operand as being a CC register, and a "result" - mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister, - subtreeRoot->getValue(), /*def*/ true); - - if (!discardResult) - { // recompute bool if needed, using the integer condition codes - if (result->getOpcode() == Instruction::SetNE) - discardResult = true; - else - movOpCode = - ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove); - } - } - else - { - // FP condition: dest of FCMP should be some FCCn register - mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - subtreeRoot->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->rightChild()->getValue()); - - if (!discardResult) - {// recompute bool using the FP condition codes - mustClearReg = true; - valueToMove = 1; - movOpCode = ChooseMovFpccInstruction(subtreeRoot); - } - } - - if (!discardResult) - { - if (mustClearReg) - {// Unconditionally set register to 0 - int n = numInstr++; - mvec[n] = new MachineInstr(SETHI); - mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0); - mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - } - - // Now conditionally move `valueToMove' (0 or 1) into the register - int n = numInstr++; - mvec[n] = new MachineInstr(movOpCode); - mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - subtreeRoot->getValue()); - mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, - valueToMove); - mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - } - break; - } - - case 43: // boolreg: VReg - case 44: // boolreg: Constant - numInstr = 0; - break; - - case 51: // reg: Load(reg) - case 52: // reg: Load(ptrreg) - case 53: // reg: LoadIdx(reg,reg) - case 54: // reg: LoadIdx(ptrreg,reg) - mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType())); - SetOperandsForMemInstr(mvec[0], subtreeRoot, target); - break; - - case 55: // reg: GetElemPtr(reg) - case 56: // reg: GetElemPtrIdx(reg,reg) - if (subtreeRoot->parent() != NULL) - { - // Check if the parent was an array access. - // If so, we still need to generate this instruction. - MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction(); - const PointerType* ptrType = - (const PointerType*) memInst->getPtrOperand()->getType(); - if (! ptrType->getValueType()->isArrayType()) - {// we don't need a separate instr - numInstr = 0; // don't forward operand! - break; - } - } - // else in all other cases we need to a separate ADD instruction - mvec[0] = new MachineInstr(ADD); - SetOperandsForMemInstr(mvec[0], subtreeRoot, target); - break; - - case 57: // reg: Alloca: Implement as 2 instructions: - // sub %sp, tmp -> %sp - { // add %sp, 0 -> result - Instruction* instr = subtreeRoot->getInstruction(); - const PointerType* instrType = (const PointerType*) instr->getType(); - assert(instrType->isPointerType()); - int tsize = (int) target.findOptimalStorageSize(instrType->getValueType()); - assert(tsize != 0 && "Just to check when this can happen"); - // if (tsize == 0) - // { - // numInstr = 0; - // break; - // } - //else go on to create the instructions needed... - - // Create a temporary Value to hold the constant type-size - ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize); - ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool(); - if (cpool.find(valueForTSize) == 0) - cpool.insert(valueForTSize); - - // Instruction 1: sub %sp, tsize -> %sp - // tsize is always constant, but it may have to be put into a - // register if it doesn't fit in the immediate field. - // - mvec[0] = new MachineInstr(SUB); - mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); - mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - - // Instruction 2: add %sp, 0 -> result - numInstr++; - mvec[1] = new MachineInstr(ADD); - mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); - break; - } - - case 58: // reg: Alloca(reg): Implement as 3 instructions: - // mul num, typeSz -> tmp - // sub %sp, tmp -> %sp - { // add %sp, 0 -> result - Instruction* instr = subtreeRoot->getInstruction(); - const PointerType* instrType = (const PointerType*) instr->getType(); - assert(instrType->isPointerType() && - instrType->getValueType()->isArrayType()); - const Type* eltType = - ((ArrayType*) instrType->getValueType())->getElementType(); - int tsize = (int) target.findOptimalStorageSize(eltType); - - assert(tsize != 0 && "Just to check when this can happen"); - // if (tsize == 0) - // { - // numInstr = 0; - // break; - // } - //else go on to create the instructions needed... - - // Create a temporary Value to hold the constant type-size - ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize); - ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool(); - if (cpool.find(valueForTSize) == 0) - cpool.insert(valueForTSize); - - // Create a temporary value to hold `tmp' - Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, - subtreeRoot->leftChild()->getValue(), - NULL /*could insert tsize here*/); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); - - // Instruction 1: mul numElements, typeSize -> tmp - mvec[0] = new MachineInstr(MULX); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr); - - tmpInstr->addMachineInstruction(mvec[0]); - - // Instruction 2: sub %sp, tmp -> %sp - numInstr++; - mvec[1] = new MachineInstr(SUB); - mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr); - mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - - // Instruction 3: add %sp, 0 -> result - numInstr++; - mvec[2] = new MachineInstr(ADD); - mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); - break; - } - - case 61: // reg: Call - // Generate a call-indirect (i.e., JMPL) for now to expose - // the potential need for registers. If an absolute address - // is available, replace this with a CALL instruction. - // Mark both the indirection register and the return-address - { // register as hidden virtual registers. - - Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1, - ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL); - Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1, - subtreeRoot->getValue(), NULL); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg); - - mvec[0] = new MachineInstr(JMPL); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, - (int64_t) 0); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg); - - // NOTE: jmpAddrReg will be loaded by a different instruction generated - // by the final code generator, so we just mark the CALL instruction - // as computing that value. - // The retAddrReg is actually computed by the CALL instruction. - // - jmpAddrReg->addMachineInstruction(mvec[0]); - retAddrReg->addMachineInstruction(mvec[0]); - - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - break; - } - - case 62: // reg: Shl(reg, reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || opType == Type::BoolTy); - mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 63: // reg: Shr(reg, reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || opType == Type::BoolTy); - mvec[0] = new MachineInstr((opType->isSigned() - ? ((opType == Type::LongTy)? SRAX : SRA) - : ((opType == Type::LongTy)? SRLX : SRL))); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 64: // reg: Phi(reg,reg) - { // This instruction has variable #operands, so resultPos is 0. - Instruction* phi = subtreeRoot->getInstruction(); - mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands()); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue(), true); - for (unsigned i=0, N=phi->getNumOperands(); i < N; i++) - mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister, - phi->getOperand(i)); - break; - } - case 71: // reg: VReg - case 72: // reg: Constant - numInstr = 0; // don't forward the value - break; - - case 111: // stmt: reg - case 112: // stmt: boolconst - case 113: // stmt: bool - case 121: - case 122: - case 123: - case 124: - case 125: - case 126: - case 127: - case 128: - case 129: - case 130: - case 131: - case 132: - case 153: - case 155: - // - // These are all chain rules, which have a single nonterminal on the RHS. - // Get the rule that matches the RHS non-terminal and use that instead. - // - assert(ThisIsAChainRule(ruleForNode)); - assert(nts[0] && ! nts[1] - && "A chain rule should have only one RHS non-terminal!"); - nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]); - nts = burm_nts[nextRule]; - numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec); - break; - - default: - assert(0 && "Unrecognized BURG rule"); - numInstr = 0; - break; - } - - if (forwardOperandNum >= 0) - { // We did not generate a machine instruction but need to use operand. - // If user is in the same tree, replace Value in its machine operand. - // If not, insert a copy instruction which should get coalesced away - // by register allocation. - if (subtreeRoot->parent() != NULL) - ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(), - forwardOperandNum); - else - { - int n = numInstr++; - mvec[n] = new MachineInstr(ADD); - mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->getInstruction()->getOperand(forwardOperandNum)); - mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->getInstruction()); - } - } - - if (! ThisIsAChainRule(ruleForNode)) - numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target); - - return numInstr; -} - - -//--------------------------------------------------------------------------- -// Private helper routines for SPARC instruction selection. -//--------------------------------------------------------------------------- - - -static MachineOpCode -ChooseBprInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode; - - Instruction* setCCInstr = - ((InstructionNode*) instrNode->leftChild())->getInstruction(); - - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = BRZ; break; - case Instruction::SetNE: opCode = BRNZ; break; - case Instruction::SetLE: opCode = BRLEZ; break; - case Instruction::SetGE: opCode = BRGEZ; break; - case Instruction::SetLT: opCode = BRLZ; break; - case Instruction::SetGT: opCode = BRGZ; break; - default: - assert(0 && "Unrecognized VM instruction!"); - opCode = INVALID_OPCODE; - break; - } - - return opCode; -} - - -static MachineOpCode -ChooseBccInstruction(const InstructionNode* instrNode, - bool& isFPBranch) -{ - InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); - BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); - const Type* setCCType = setCCInstr->getOperand(0)->getType(); - - isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); - - if (isFPBranch) - return ChooseBFpccInstruction(instrNode, setCCInstr); - else - return ChooseBpccInstruction(instrNode, setCCInstr); -} - - -static MachineOpCode -ChooseBpccInstruction(const InstructionNode* instrNode, - const BinaryOperator* setCCInstr) -{ - MachineOpCode opCode = INVALID_OPCODE; - - bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); - - if (isSigned) - { - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = BE; break; - case Instruction::SetNE: opCode = BNE; break; - case Instruction::SetLE: opCode = BLE; break; - case Instruction::SetGE: opCode = BGE; break; - case Instruction::SetLT: opCode = BL; break; - case Instruction::SetGT: opCode = BG; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - } - else - { - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = BE; break; - case Instruction::SetNE: opCode = BNE; break; - case Instruction::SetLE: opCode = BLEU; break; - case Instruction::SetGE: opCode = BCC; break; - case Instruction::SetLT: opCode = BCS; break; - case Instruction::SetGT: opCode = BGU; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } + switch(setCCInstr->getOpcode()) + { + case Instruction::SetEQ: opCode = BE; break; + case Instruction::SetNE: opCode = BNE; break; + case Instruction::SetLE: opCode = BLEU; break; + case Instruction::SetGE: opCode = BCC; break; + case Instruction::SetLT: opCode = BCS; break; + case Instruction::SetGT: opCode = BGU; break; + default: + assert(0 && "Unrecognized VM instruction!"); + break; + } } return opCode; } -static MachineOpCode +static inline MachineOpCode ChooseBFpccInstruction(const InstructionNode* instrNode, const BinaryOperator* setCCInstr) { @@ -903,7 +251,7 @@ ChooseBFpccInstruction(const InstructionNode* instrNode, } -static MachineOpCode +static inline MachineOpCode ChooseMovFpccInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = INVALID_OPCODE; @@ -962,7 +310,7 @@ ChooseMovpccAfterSub(const InstructionNode* instrNode, } -static MachineOpCode +static inline MachineOpCode ChooseConvertToFloatInstr(const InstructionNode* instrNode, const Type* opType) { @@ -999,7 +347,7 @@ ChooseConvertToFloatInstr(const InstructionNode* instrNode, return opCode; } -static MachineOpCode +static inline MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode, const Type* opType) { @@ -1036,7 +384,7 @@ ChooseConvertToIntInstr(const InstructionNode* instrNode, } -static MachineOpCode +static inline MachineOpCode ChooseAddInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = INVALID_OPCODE; @@ -1064,7 +412,47 @@ ChooseAddInstruction(const InstructionNode* instrNode) return opCode; } -static MachineOpCode + +static inline MachineInstr* +CreateMovFloatInstruction(const InstructionNode* instrNode, + const Type* resultType) +{ + MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy) + ? FMOVS : FMOVD); + minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, + instrNode->getValue()); + return minstr; +} + +static inline MachineInstr* +CreateAddConstInstruction(const InstructionNode* instrNode) +{ + MachineInstr* minstr = NULL; + + Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); + assert(constOp->getValueType() == Value::ConstantVal); + + // Cases worth optimizing are: + // (1) Add with 0 for float or double: use an FMOV of appropriate type, + // instead of an FADD (1 vs 3 cycles). There is no integer MOV. + // + const Type* resultType = instrNode->getInstruction()->getType(); + + if (resultType == Type::FloatTy || + resultType == Type::DoubleTy) + { + double dval = ((ConstPoolFP*) constOp)->getValue(); + if (dval == 0.0) + minstr = CreateMovFloatInstruction(instrNode, resultType); + } + + return minstr; +} + + +static inline MachineOpCode ChooseSubInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = INVALID_OPCODE; @@ -1087,66 +475,232 @@ ChooseSubInstruction(const InstructionNode* instrNode) } } - return opCode; -} - - -static MachineOpCode -ChooseFcmpInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode = INVALID_OPCODE; - - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FCMPS; break; - case Type::DoubleTyID: opCode = FCMPD; break; - default: assert(0 && "Invalid type for ADD instruction"); break; - } + return opCode; +} + + +static inline MachineInstr* +CreateSubConstInstruction(const InstructionNode* instrNode) +{ + MachineInstr* minstr = NULL; + + Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); + assert(constOp->getValueType() == Value::ConstantVal); + + // Cases worth optimizing are: + // (1) Sub with 0 for float or double: use an FMOV of appropriate type, + // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. + // + const Type* resultType = instrNode->getInstruction()->getType(); + + if (resultType == Type::FloatTy || + resultType == Type::DoubleTy) + { + double dval = ((ConstPoolFP*) constOp)->getValue(); + if (dval == 0.0) + minstr = CreateMovFloatInstruction(instrNode, resultType); + } + + return minstr; +} + + +static inline MachineOpCode +ChooseFcmpInstruction(const InstructionNode* instrNode) +{ + MachineOpCode opCode = INVALID_OPCODE; + + Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); + switch(operand->getType()->getPrimitiveID()) + { + case Type::FloatTyID: opCode = FCMPS; break; + case Type::DoubleTyID: opCode = FCMPD; break; + default: assert(0 && "Invalid type for FCMP instruction"); break; + } + + return opCode; +} + + +// Assumes that leftArg and rightArg are both cast instructions. +// +static inline bool +BothFloatToDouble(const InstructionNode* instrNode) +{ + InstrTreeNode* leftArg = instrNode->leftChild(); + InstrTreeNode* rightArg = instrNode->rightChild(); + InstrTreeNode* leftArgArg = leftArg->leftChild(); + InstrTreeNode* rightArgArg = rightArg->leftChild(); + assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); + + // Check if both arguments are floats cast to double + return (leftArg->getValue()->getType() == Type::DoubleTy && + leftArgArg->getValue()->getType() == Type::FloatTy && + rightArgArg->getValue()->getType() == Type::FloatTy); +} + + +static inline MachineOpCode +ChooseMulInstruction(const InstructionNode* instrNode, + bool checkCasts) +{ + MachineOpCode opCode = INVALID_OPCODE; + + if (checkCasts && BothFloatToDouble(instrNode)) + { + return opCode = FSMULD; + } + // else fall through and use the regular multiply instructions + + const Type* resultType = instrNode->getInstruction()->getType(); + + if (resultType->isIntegral()) + { + opCode = MULX; + } + else + { + switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID()) + { + case Type::FloatTyID: opCode = FMULS; break; + case Type::DoubleTyID: opCode = FMULD; break; + default: assert(0 && "Invalid type for MUL instruction"); break; + } + } + + return opCode; +} + + +static inline MachineInstr* +CreateIntNegInstruction(Value* vreg) +{ + MachineInstr* minstr = new MachineInstr(SUB); + minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0); + minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg); + minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg); + return minstr; +} + + +static inline MachineInstr* +CreateMulConstInstruction(const InstructionNode* instrNode, + MachineInstr*& getMinstr2) +{ + MachineInstr* minstr = NULL; + getMinstr2 = NULL; + bool needNeg = false; + + Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); + assert(constOp->getValueType() == Value::ConstantVal); + + // Cases worth optimizing are: + // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) + // (2) Multiply by 2^x for integer types: replace with Shift + // + const Type* resultType = instrNode->getInstruction()->getType(); + + if (resultType->isIntegral()) + { + unsigned pow; + bool isValidConst; + int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); + if (isValidConst) + { + bool needNeg = false; + if (C < 0) + { + needNeg = true; + C = -C; + } + + if (C == 0 || C == 1) + { + minstr = new MachineInstr(ADD); + + if (C == 0) + minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0); + else + minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); + } + else if (IsPowerOf2(C, pow)) + { + minstr = new MachineInstr((resultType == Type::LongTy) + ? SLLX : SLL); + minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, + pow); + } + + if (minstr && needNeg) + { // insert after the instr to flip the sign + getMinstr2 = CreateIntNegInstruction(instrNode->getValue()); + } + } + } + else + { + if (resultType == Type::FloatTy || + resultType == Type::DoubleTy) + { + bool isValidConst; + double dval = ((ConstPoolFP*) constOp)->getValue(); + + if (isValidConst) + { + if (dval == 0) + { + minstr = new MachineInstr((resultType == Type::FloatTy) + ? FITOS : FITOD); + minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0); + } + else if (fabs(dval) == 1) + { + bool needNeg = (dval < 0); + + MachineOpCode opCode = needNeg + ? (resultType == Type::FloatTy? FNEGS : FNEGD) + : (resultType == Type::FloatTy? FMOVS : FMOVD); + + minstr = new MachineInstr(opCode); + minstr->SetMachineOperand(0, + MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + } + } + } + } + + if (minstr != NULL) + minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + instrNode->getValue()); - return opCode; + return minstr; } -static MachineOpCode -ChooseMulInstruction(const InstructionNode* instrNode, - bool checkCasts) +static inline MachineOpCode +ChooseDivInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = INVALID_OPCODE; - if (checkCasts) - { - // Assume that leftArg and rightArg are both cast instructions. - // - InstrTreeNode* leftArg = instrNode->leftChild(); - InstrTreeNode* rightArg = instrNode->rightChild(); - InstrTreeNode* leftArgArg = leftArg->leftChild(); - InstrTreeNode* rightArgArg = rightArg->leftChild(); - assert(leftArg->getValue()->getType() ==rightArg->getValue()->getType()); - - // If both arguments are floats cast to double, use FsMULd - if (leftArg->getValue()->getType() == Type::DoubleTy && - leftArgArg->getValue()->getType() == Type::FloatTy && - rightArgArg->getValue()->getType() == Type::FloatTy) - { - return opCode = FSMULD; - } - // else fall through and use the regular multiply instructions - } - const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isIntegral()) { - opCode = MULX; + opCode = resultType->isSigned()? SDIVX : UDIVX; } else { - switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID()) + Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); + switch(operand->getType()->getPrimitiveID()) { - case Type::FloatTyID: opCode = FMULS; break; - case Type::DoubleTyID: opCode = FMULD; break; - default: assert(0 && "Invalid type for MUL instruction"); break; + case Type::FloatTyID: opCode = FDIVS; break; + case Type::DoubleTyID: opCode = FDIVD; break; + default: assert(0 && "Invalid type for DIV instruction"); break; } } @@ -1154,33 +708,93 @@ ChooseMulInstruction(const InstructionNode* instrNode, } -static MachineOpCode -ChooseDivInstruction(const InstructionNode* instrNode) +static inline MachineInstr* +CreateDivConstInstruction(const InstructionNode* instrNode, + MachineInstr*& getMinstr2) { - MachineOpCode opCode = INVALID_OPCODE; + MachineInstr* minstr = NULL; + getMinstr2 = NULL; + Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); + assert(constOp->getValueType() == Value::ConstantVal); + + // Cases worth optimizing are: + // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) + // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} + // const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isIntegral()) { - opCode = resultType->isSigned()? SDIVX : UDIVX; + unsigned pow; + bool isValidConst; + int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); + if (isValidConst) + { + bool needNeg = false; + if (C < 0) + { + needNeg = true; + C = -C; + } + + if (C == 1) + { + minstr = new MachineInstr(ADD); + minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); + } + else if (IsPowerOf2(C, pow)) + { + MachineOpCode opCode= ((resultType->isSigned()) + ? (resultType==Type::LongTy)? SRAX : SRA + : (resultType==Type::LongTy)? SRLX : SRL); + minstr = new MachineInstr(opCode); + minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, + pow); + } + + if (minstr && needNeg) + { // insert after the instr to flip the sign + getMinstr2 = CreateIntNegInstruction(instrNode->getValue()); + } + } } else { - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) + if (resultType == Type::FloatTy || + resultType == Type::DoubleTy) { - case Type::FloatTyID: opCode = FDIVS; break; - case Type::DoubleTyID: opCode = FDIVD; break; - default: assert(0 && "Invalid type for DIV instruction"); break; + bool isValidConst; + double dval = ((ConstPoolFP*) constOp)->getValue(); + + if (isValidConst && fabs(dval) == 1) + { + bool needNeg = (dval < 0); + + MachineOpCode opCode = needNeg + ? (resultType == Type::FloatTy? FNEGS : FNEGD) + : (resultType == Type::FloatTy? FMOVS : FMOVD); + + minstr = new MachineInstr(opCode); + minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + instrNode->leftChild()->getValue()); + } } } - return opCode; + if (minstr != NULL) + minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + instrNode->getValue()); + + return minstr; } -static MachineOpCode +static inline MachineOpCode ChooseLoadInstruction(const Type* resultType) { MachineOpCode opCode = INVALID_OPCODE; @@ -1205,7 +819,7 @@ ChooseLoadInstruction(const Type* resultType) } -static MachineOpCode +static inline MachineOpCode ChooseStoreInstruction(const Type* valueType) { MachineOpCode opCode = INVALID_OPCODE; @@ -1270,378 +884,1113 @@ SetOperandsForMemInstr(MachineInstr* minstr, ? vmInstrNode->rightChild() : vmInstrNode->leftChild()); - if (ptrChild->getOpLabel() == Instruction::GetElementPtr || - ptrChild->getOpLabel() == GetElemPtrIdx) + if (ptrChild->getOpLabel() == Instruction::GetElementPtr || + ptrChild->getOpLabel() == GetElemPtrIdx) + { + // There is a GetElemPtr instruction and there may be a chain of + // more than one. Use the pointer value of the last one in the chain. + // Fold the index vectors from the entire chain and from the mem + // instruction into one single index vector. + // Finally, we never fold for an array instruction so make that NULL. + + newIdxVec = new vector; + ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec); + + newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end()); + idxVec = newIdxVec; + + assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType() + && "GetElemPtr cannot be folded into array refs in selection"); + } + else + { + // There is no GetElemPtr instruction. + // Use the pointer value and the index vector from the Mem instruction. + // If it is an array reference, get the array offset value. + // + ptrVal = memInst->getPtrOperand(); + + const Type* opType = + ((const PointerType*) ptrVal->getType())->getValueType(); + if (opType->isArrayType()) + { + assert((memInst->getNumOperands() + == (unsigned) 1 + memInst->getFirstOffsetIdx()) + && "Array refs must be lowered before Instruction Selection"); + + arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx()); + } + } + + SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal, + *idxVec, target); + + if (newIdxVec != NULL) + delete newIdxVec; +} + + +static void +SetMemOperands_Internal(MachineInstr* minstr, + const InstructionNode* vmInstrNode, + Value* ptrVal, + Value* arrayOffsetVal, + const vector& idxVec, + const TargetMachine& target) +{ + MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); + + // Initialize so we default to storing the offset in a register. + int64_t smallConstOffset; + Value* valueForRegOffset = NULL; + MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister; + + // Check if there is an index vector and if so, if it translates to + // a small enough constant to fit in the immediate-offset field. + // + if (idxVec.size() > 0) + { + bool isConstantOffset = false; + unsigned offset; + + const PointerType* ptrType = (PointerType*) ptrVal->getType(); + + if (ptrType->getValueType()->isStructType()) + { + // the offset is always constant for structs + isConstantOffset = true; + + // Compute the offset value using the index vector + offset = target.DataLayout.getIndexedOffset(ptrType, idxVec); + } + else + { + // It must be an array ref. Check if the offset is a constant, + // and that the indexing has been lowered to a single offset. + // + assert(ptrType->getValueType()->isArrayType()); + assert(arrayOffsetVal != NULL + && "Expect to be given Value* for array offsets"); + + if (ConstPoolVal *CPV = arrayOffsetVal->castConstant()) + { + isConstantOffset = true; // always constant for structs + assert(arrayOffsetVal->getType()->isIntegral()); + offset = (CPV->getType()->isSigned() + ? ((ConstPoolSInt*)CPV)->getValue() + : (int64_t) ((ConstPoolUInt*)CPV)->getValue()); + } + else + { + valueForRegOffset = arrayOffsetVal; + } + } + + if (isConstantOffset) + { + // create a virtual register for the constant + valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset); + } + } + else + { + offsetOpType = MachineOperand::MO_SignExtendedImmed; + smallConstOffset = 0; + } + + // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR + // It is the left child in the instruction tree in all cases. + Value* leftVal = vmInstrNode->leftChild()->getValue(); + minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal); + + // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR + // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR + // + unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1; + if (offsetOpType == MachineOperand::MO_VirtualRegister) + { + assert(valueForRegOffset != NULL); + minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); + } + else + minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset); + + if (memInst->getOpcode() == Instruction::Store) + minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal); + else + minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + vmInstrNode->getValue()); +} + + +// Special handling for constant operands: +// -- if the constant is 0, use the hardwired 0 register, if any; +// -- if the constant is of float or double type but has an integer value, +// use int-to-float conversion instruction instead of generating a load; +// -- if the constant fits in the IMMEDIATE field, use that field; +// -- else insert instructions to put the constant into a register, either +// directly or by loading explicitly from the constant pool. +// +static unsigned +FixConstantOperands(const InstructionNode* vmInstrNode, + MachineInstr** mvec, + unsigned numInstr, + TargetMachine& target) +{ + static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR]; + + unsigned numNew = 0; + Instruction* vmInstr = vmInstrNode->getInstruction(); + + for (unsigned i=0; i < numInstr; i++) + { + MachineInstr* minstr = mvec[i]; + const MachineInstrDescriptor& instrDesc = + target.getInstrInfo().getDescriptor(minstr->getOpCode()); + + for (unsigned op=0; op < minstr->getNumOperands(); op++) + { + const MachineOperand& mop = minstr->getOperand(op); + + // skip the result position (for efficiency below) and any other + // positions already marked as not a virtual register + if (instrDesc.resultPos == (int) op || + mop.getOperandType() != MachineOperand::MO_VirtualRegister || + mop.getVRegValue() == NULL) + { + break; + } + + Value* opValue = mop.getVRegValue(); + + if (opValue->getValueType() == Value::ConstantVal) + { + unsigned int machineRegNum; + int64_t immedValue; + MachineOperand::MachineOperandType opType = + ChooseRegOrImmed(opValue, minstr->getOpCode(), target, + /*canUseImmed*/ (op == 1), + machineRegNum, immedValue); + + if (opType == MachineOperand::MO_MachineRegister) + minstr->SetMachineOperand(op, machineRegNum); + else if (opType == MachineOperand::MO_VirtualRegister) + { + // value is constant and must be loaded into a register + TmpInstruction* tmpReg; + MachineInstr* minstr2; + loadConstVec[numNew++] = MakeLoadConstInstr(vmInstr, opValue, + tmpReg, minstr2); + minstr->SetMachineOperand(op, opType, tmpReg); + if (minstr2 != NULL) + loadConstVec[numNew++] = minstr2; + } + else + minstr->SetMachineOperand(op, opType, immedValue); + } + } + } + + if (numNew > 0) { - // There is a GetElemPtr instruction and there may be a chain of - // more than one. Use the pointer value of the last one in the chain. - // Fold the index vectors from the entire chain and from the mem - // instruction into one single index vector. - // Finally, we never fold for an array instruction so make that NULL. - - newIdxVec = new vector; - ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec); - - newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end()); - idxVec = newIdxVec; + // Insert the new instructions *before* the old ones by moving + // the old ones over `numNew' positions (last-to-first, of course!). + // We do check *after* returning that we did not exceed the vector mvec. + for (int i=numInstr-1; i >= 0; i--) + mvec[i+numNew] = mvec[i]; - assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType() - && "GetElemPtr cannot be folded into array refs in selection"); + for (unsigned i=0; i < numNew; i++) + mvec[i] = loadConstVec[i]; + } + + return (numInstr + numNew); +} + + +static inline MachineInstr* +MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest) +{ + MachineInstr* minstr; + if (isSigned) + { + minstr = new MachineInstr(SETSW); + minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C); } else { - // There is no GetElemPtr instruction. - // Use the pointer value and the index vector from the Mem instruction. - // If it is an array reference, get the array offset value. - // - ptrVal = memInst->getPtrOperand(); - - const Type* opType = - ((const PointerType*) ptrVal->getType())->getValueType(); - if (opType->isArrayType()) - { - assert((memInst->getNumOperands() - == (unsigned) 1 + memInst->getFirstOffsetIdx()) - && "Array refs must be lowered before Instruction Selection"); - - arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx()); - } + minstr = new MachineInstr(SETUW); + minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C); } - SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal, - *idxVec, target); + minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest); - if (newIdxVec != NULL) - delete newIdxVec; + return minstr; } -static void -SetMemOperands_Internal(MachineInstr* minstr, - const InstructionNode* vmInstrNode, - Value* ptrVal, - Value* arrayOffsetVal, - const vector& idxVec, - const TargetMachine& target) +static MachineInstr* +MakeLoadConstInstr(Instruction* vmInstr, + Value* val, + TmpInstruction*& tmpReg, + MachineInstr*& getMinstr2) { - MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); + assert(val->getValueType() == Value::ConstantVal); - // Initialize so we default to storing the offset in a register. - int64_t smallConstOffset; - Value* valueForRegOffset = NULL; - MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister; - - // Check if there is an index vector and if so, if it translates to - // a small enough constant to fit in the immediate-offset field. + MachineInstr* minstr; + + getMinstr2 = NULL; + + // Create a TmpInstruction to mark the hidden register used for the constant + tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL); + vmInstr->getMachineInstrVec().addTempValue(tmpReg); + + // Use a "set" instruction for known constants that can go in an integer reg. + // Use a "set" instruction followed by a int-to-float conversion for known + // constants that must go in a floating point reg but have an integer value. + // Use a "load" instruction for all other constants, in particular, + // floating point constants. // - if (idxVec.size() > 0) + const Type* valType = val->getType(); + + if (valType->isIntegral() || + valType->isPointerType() || + valType == Type::BoolTy) { - bool isConstantOffset = false; - unsigned offset; - - const PointerType* ptrType = (PointerType*) ptrVal->getType(); + bool isValidConstant; + int64_t C = GetConstantValueAsSignedInt(val, isValidConstant); + assert(isValidConstant && "Unrecognized constant"); - if (ptrType->getValueType()->isStructType()) - { - // the offset is always constant for structs - isConstantOffset = true; - - // Compute the offset value using the index vector - offset = target.DataLayout.getIndexedOffset(ptrType, idxVec); - } - else + minstr = MakeIntSetInstruction(C, valType->isSigned(), tmpReg); + } + else + { + assert(valType == Type::FloatTy || valType == Type::DoubleTy); + double dval = ((ConstPoolFP*) val)->getValue(); + if (dval == (int64_t) dval) { - // It must be an array ref. Check if the offset is a constant, - // and that the indexing has been lowered to a single offset. + // The constant actually has an integer value, so use a + // [set; int-to-float] sequence instead of a load instruction. // - assert(ptrType->getValueType()->isArrayType()); - assert(arrayOffsetVal != NULL - && "Expect to be given Value* for array offsets"); + TmpInstruction* tmpReg2 = NULL; + if (dval != 0.0) + { // First, create an integer constant of the same value as dval + ConstPoolSInt* ival = new ConstPoolSInt(Type::IntTy, + (int64_t) dval); + ConstantPool& cpool = + vmInstr->getParent()->getParent()->getConstantPool(); + ConstPoolVal* prev = cpool.find(ival); + if (prev == NULL) + cpool.insert(ival); + else + { + delete ival; + ival = (ConstPoolSInt*) prev; + } + + // Create another TmpInstruction for the hidden integer register + TmpInstruction* tmpReg2 = + new TmpInstruction(Instruction::UserOp1, ival, NULL); + vmInstr->getMachineInstrVec().addTempValue(tmpReg2); - if (ConstPoolVal *CPV = arrayOffsetVal->castConstant()) { - isConstantOffset = true; // always constant for structs - assert(arrayOffsetVal->getType()->isIntegral()); - offset = (CPV->getType()->isSigned()) - ? ((ConstPoolSInt*)CPV)->getValue() - : (int64_t) ((ConstPoolUInt*)CPV)->getValue(); + // Create the `SET' instruction + minstr = MakeIntSetInstruction((int64_t)dval, true, tmpReg2); } + + // In which variable do we put the second instruction? + MachineInstr*& instr2 = (minstr)? getMinstr2 : minstr; + + // Create the int-to-float instruction + instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD); + + if (dval == 0.0) + instr2->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0); else - { - valueForRegOffset = arrayOffsetVal; - } + instr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, + tmpReg2); + + instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, + tmpReg); } - - if (isConstantOffset) + else { - // create a virtual register for the constant - valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset); + // Make a Load instruction, and make `val' both the ptr value *and* + // the result value, and set the offset field to 0. Final code + // generation will have to generate the base+offset for the constant. + // + int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0 + minstr = new MachineInstr(ChooseLoadInstruction(val->getType())); + minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,val); + minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, + zeroOffset); + minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + tmpReg); } } - else + + tmpReg->addMachineInstruction(minstr); + + assert(minstr); + return minstr; +} + +// +// Substitute operand `operandNum' of the instruction in node `treeNode' +// in place the use(s) of that instruction in node `parent'. +// +static void +ForwardOperand(InstructionNode* treeNode, + InstructionNode* parent, + int operandNum) +{ + Instruction* unusedOp = treeNode->getInstruction(); + Value* fwdOp = unusedOp->getOperand(operandNum); + Instruction* userInstr = parent->getInstruction(); + MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec(); + for (unsigned i=0, N=mvec.size(); i < N; i++) { - offsetOpType = MachineOperand::MO_SignExtendedImmed; - smallConstOffset = 0; + MachineInstr* minstr = mvec[i]; + for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++) + { + const MachineOperand& mop = minstr->getOperand(i); + if (mop.getOperandType() == MachineOperand::MO_VirtualRegister && + mop.getVRegValue() == unusedOp) + { + minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister, + fwdOp); + } + } } +} + + +// This function is currently unused and incomplete but will be +// used if we have a linear layout of basic blocks in LLVM code. +// It decides which branch should fall-through, and whether an +// extra unconditional branch is needed (when neither falls through). +// +void +ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern) +{ + BranchInst* brInstr = (BranchInst*) vmInstr; - // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR - // It is the left child in the instruction tree in all cases. - Value* leftVal = vmInstrNode->leftChild()->getValue(); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal); + brPattern.flipCondition = false; + brPattern.targetBB = brInstr->getSuccessor(0); + brPattern.extraBranch = NULL; - // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR - // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR - // - unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1; - if (offsetOpType == MachineOperand::MO_VirtualRegister) + assert(brInstr->getNumSuccessors() > 1 && + "Unnecessary analysis for unconditional branch"); + + assert(0 && "Fold branches in peephole optimization"); +} + + +//******************* Externally Visible Functions *************************/ + + +//------------------------------------------------------------------------ +// External Function: GetInstructionsByRule +// +// Purpose: +// Choose machine instructions for the SPARC according to the +// patterns chosen by the BURG-generated parser. +//------------------------------------------------------------------------ + +unsigned +GetInstructionsByRule(InstructionNode* subtreeRoot, + int ruleForNode, + short* nts, + TargetMachine &target, + MachineInstr** mvec) +{ + int numInstr = 1; // initialize for common case + bool checkCast = false; // initialize here to use fall-through + Value *leftVal, *rightVal; + const Type* opType; + int nextRule; + int forwardOperandNum = -1; + BranchPattern brPattern; + int64_t s0 = 0; // variables holding zero to avoid + uint64_t u0 = 0; // overloading ambiguities below + + mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety + + switch(ruleForNode) { + case 1: // stmt: Ret + case 2: // stmt: RetValue(reg) + // NOTE: Prepass of register allocation is responsible + // for moving return value to appropriate register. + // Mark the return-address register as a hidden virtual reg. + { + Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, + subtreeRoot->getInstruction(), NULL); + subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg); + + mvec[0] = new MachineInstr(RETURN); + mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0); + + returnReg->addMachineInstruction(mvec[0]); + + mvec[numInstr++] = new MachineInstr(NOP); // delay slot + break; + } + + case 3: // stmt: Store(reg,reg) + case 4: // stmt: Store(reg,ptrreg) + mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType())); + SetOperandsForMemInstr(mvec[0], subtreeRoot, target); + break; + + case 5: // stmt: BrUncond + mvec[0] = new MachineInstr(BA); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + break; + + case 6: // stmt: BrCond(boolconst) + // boolconst => boolean was computed with `%b = setCC type reg1 constant' + // If the constant is ZERO, we can use the branch-on-integer-register + // instructions and avoid the SUBcc instruction entirely. + // Otherwise this is just the same as case 5, so just fall through. { - assert(valueForRegOffset != NULL); - minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); - } - else - minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset); - - if (memInst->getOpcode() == Instruction::Store) - minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal); - else - minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - vmInstrNode->getValue()); -} - + InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); + assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); + ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue(); + bool isValidConst; + + if (constVal->getType()->isIntegral() + && GetConstantValueAsSignedInt(constVal, isValidConst) == 0 + && isValidConst) + { + // That constant ia a zero after all... + // Use the left child of the setCC instruction as the first argument! + mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot)); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); -// Special handling for constant operands: -// -- if the constant is 0, use the hardwired 0 register, if any -// -- if the constant fits in the IMMEDIATE field, use that field -// -- else insert instructions to put the constant into a register, either -// directly or by loading explicitly from the constant pool. -// -static unsigned -FixConstantOperands(const InstructionNode* vmInstrNode, - MachineInstr** mvec, - unsigned numInstr, - TargetMachine& target) -{ - static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR]; + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + + // false branch + mvec[numInstr++] = new MachineInstr(BA); + mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + (Value*) NULL); + mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); - unsigned numNew = 0; - Instruction* vmInstr = vmInstrNode->getInstruction(); - - for (unsigned i=0; i < numInstr; i++) - { - MachineInstr* minstr = mvec[i]; - const MachineInstrDescriptor& instrDesc = - target.getInstrInfo().getDescriptor(minstr->getOpCode()); - - for (unsigned op=0; op < minstr->getNumOperands(); op++) - { - const MachineOperand& mop = minstr->getOperand(op); - - // skip the result position (for efficiency below) and any other - // positions already marked as not a virtual register - if (instrDesc.resultPos == (int) op || - mop.getOperandType() != MachineOperand::MO_VirtualRegister || - mop.getVRegValue() == NULL) - { - break; - } - - Value* opValue = mop.getVRegValue(); - - if (opValue->getValueType() == Value::ConstantVal) - { - unsigned int machineRegNum; - int64_t immedValue; - MachineOperand::MachineOperandType opType = - ChooseRegOrImmed(opValue, minstr->getOpCode(), target, - /*canUseImmed*/ (op == 1), - machineRegNum, immedValue); - - if (opType == MachineOperand::MO_MachineRegister) - minstr->SetMachineOperand(op, machineRegNum); - else if (opType == MachineOperand::MO_VirtualRegister) - { - // value is constant and must be loaded into a register - TmpInstruction* tmpReg; - loadConstVec[numNew++] = - MakeOneLoadConstInstr(vmInstr, opValue, tmpReg); - minstr->SetMachineOperand(op, opType, tmpReg); - } - else - minstr->SetMachineOperand(op, opType, immedValue); - } - } + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + + break; + } + // ELSE FALL THROUGH } - - if (numNew > 0) + + case 7: // stmt: BrCond(bool) + // bool => boolean was computed with `%b = setcc type reg1 reg2' + // Need to check whether the type was a FP, signed int or unsigned int, + // and check the branching condition in order to choose the branch to use. + // { - // Insert the new instructions *before* the old ones by moving - // the old ones over `numNew' positions (last-to-first, of course!). - // - for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--) - mvec[i+numNew] = mvec[i]; - - for (unsigned i=0; i < numNew; i++) - mvec[i] = loadConstVec[i]; + bool isFPBranch; + mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch)); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + + // false branch + mvec[numInstr++] = new MachineInstr(BA); + mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + (Value*) NULL); + mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + break; } - - return (numInstr + numNew); -} + + case 8: // stmt: BrCond(boolreg) + // bool => boolean is stored in an existing register. + // Just use the branch-on-integer-register instruction! + // + mvec[0] = new MachineInstr(BRNZ); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); // delay slot + // false branch + mvec[numInstr++] = new MachineInstr(BA); + mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + (Value*) NULL); + mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, + ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); + + // delay slot + mvec[numInstr++] = new MachineInstr(NOP); + break; + + case 9: // stmt: Switch(reg) + assert(0 && "*** SWITCH instruction is not implemented yet."); + numInstr = 0; + break; + + case 10: // reg: VRegList(reg, reg) + assert(0 && "VRegList should never be the topmost non-chain rule"); + break; + + case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0 + mvec[0] = new MachineInstr(XNOR); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); + mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + subtreeRoot->getValue()); + break; + + case 22: // reg: ToBoolTy(reg): + opType = subtreeRoot->leftChild()->getValue()->getType(); + assert(opType->isIntegral() || opType == Type::BoolTy); + numInstr = 0; + forwardOperandNum = 0; + break; + + case 23: // reg: ToUByteTy(reg) + case 25: // reg: ToUShortTy(reg) + case 27: // reg: ToUIntTy(reg) + case 29: // reg: ToULongTy(reg) + opType = subtreeRoot->leftChild()->getValue()->getType(); + assert(opType->isIntegral() || + opType->isPointerType() || + opType == Type::BoolTy && "Ignoring cast: illegal for other types"); + numInstr = 0; + forwardOperandNum = 0; + break; + + case 24: // reg: ToSByteTy(reg) + case 26: // reg: ToShortTy(reg) + case 28: // reg: ToIntTy(reg) + case 30: // reg: ToLongTy(reg) + opType = subtreeRoot->leftChild()->getValue()->getType(); + if (opType->isIntegral() || opType == Type::BoolTy) + { + numInstr = 0; + forwardOperandNum = 0; + } + else + { + mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType)); + Set2OperandsFromInstr(mvec[0], subtreeRoot, target); + } + break; + + case 31: // reg: ToFloatTy(reg): + case 32: // reg: ToDoubleTy(reg): + + // If this instruction has a parent (a user) in the tree + // and the user is translated as an FsMULd instruction, + // then the cast is unnecessary. So check that first. + // In the future, we'll want to do the same for the FdMULq instruction, + // so do the check here instead of only for ToFloatTy(reg). + // + if (subtreeRoot->parent() != NULL && + ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD) + { + numInstr = 0; + forwardOperandNum = 0; + } + else + { + opType = subtreeRoot->leftChild()->getValue()->getType(); + mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType)); + Set2OperandsFromInstr(mvec[0], subtreeRoot, target); + } + break; + + case 19: // reg: ToArrayTy(reg): + case 20: // reg: ToPointerTy(reg): + numInstr = 0; + forwardOperandNum = 0; + break; + + case 233: // reg: Add(reg, Constant) + mvec[0] = CreateAddConstInstruction(subtreeRoot); + if (mvec[0] != NULL) + break; + // ELSE FALL THROUGH + + case 33: // reg: Add(reg, reg) + mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 234: // reg: Sub(reg, Constant) + mvec[0] = CreateSubConstInstruction(subtreeRoot); + if (mvec[0] != NULL) + break; + // ELSE FALL THROUGH + + case 34: // reg: Sub(reg, reg) + mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 135: // reg: Mul(todouble, todouble) + checkCast = true; + // FALL THROUGH + + case 35: // reg: Mul(reg, reg) + mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; -#if 0 -// Create one or two load instructions to load constants from the -// constant pool. The first instructions is stored in instrA; -// the second (if any) in instrB. -// -static unsigned -InsertLoadConstInstructions(unsigned loadConstFlags, - const InstructionNode* vmInstrNode, - MachineInstr** mvec, - unsigned numInstr) -{ - MachineInstr *instrA = NULL, *instrB = NULL; + case 335: // reg: Mul(todouble, todoubleConst) + checkCast = true; + // FALL THROUGH + + case 235: // reg: Mul(reg, Constant) + mvec[0] = CreateMulConstInstruction(subtreeRoot, mvec[1]); + if (mvec[0] == NULL) + { + mvec[0]=new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + } + else + if (mvec[1] != NULL) + ++numInstr; + break; - unsigned numNew = 0; - - if (loadConstFlags & 0x01) - { - instrA = MakeOneLoadConstInstr(vmInstrNode->getInstruction(), - vmInstrNode->leftChild()->getValue()); - numNew++; - } + case 236: // reg: Div(reg, Constant) + mvec[0] = CreateDivConstInstruction(subtreeRoot, mvec[1]); + if (mvec[0] != NULL) + { + if (mvec[1] != NULL) + ++numInstr; + } + else + // ELSE FALL THROUGH + + case 36: // reg: Div(reg, reg) + mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot)); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 37: // reg: Rem(reg, reg) + case 237: // reg: Rem(reg, Constant) + assert(0 && "REM instruction unimplemented for the SPARC."); + break; + + case 38: // reg: And(reg, reg) + case 238: // reg: And(reg, Constant) + mvec[0] = new MachineInstr(AND); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 138: // reg: And(reg, not) + mvec[0] = new MachineInstr(ANDN); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 39: // reg: Or(reg, reg) + case 239: // reg: Or(reg, Constant) + mvec[0] = new MachineInstr(ORN); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 139: // reg: Or(reg, not) + mvec[0] = new MachineInstr(ORN); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 40: // reg: Xor(reg, reg) + case 240: // reg: Xor(reg, Constant) + mvec[0] = new MachineInstr(XOR); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 140: // reg: Xor(reg, not) + mvec[0] = new MachineInstr(XNOR); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 41: // boolconst: SetCC(reg, Constant) + // Check if this is an integer comparison, and + // there is a parent, and the parent decided to use + // a branch-on-integer-register instead of branch-on-condition-code. + // If so, the SUBcc instruction is not required. + // (However, we must still check for constants to be loaded from + // the constant pool so that such a load can be associated with + // this instruction.) + // + // Otherwise this is just the same as case 42, so just fall through. + // + if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() && + subtreeRoot->parent() != NULL) + { + InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); + assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode); + const vector& + minstrVec = parentNode->getInstruction()->getMachineInstrVec(); + MachineOpCode parentOpCode; + if (parentNode->getInstruction()->getOpcode() == Instruction::Br && + (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ && + parentOpCode <= BRGEZ) + { + numInstr = 0; // don't forward the operand! + break; + } + } + // ELSE FALL THROUGH + + case 42: // bool: SetCC(reg, reg): + { + // If result of the SetCC is only used for a branch, we can + // discard the result. otherwise, it must go into an integer register. + // Note that the user may or may not be in the same tree, so we have + // to follow SSA def-use edges here, not BURG tree edges. + // + Instruction* result = subtreeRoot->getInstruction(); + Value* firstUse = (Value*) * result->use_begin(); + bool discardResult = + (result->use_size() == 1 + && firstUse->getValueType() == Value::InstructionVal + && ((Instruction*) firstUse)->getOpcode() == Instruction::Br); + + bool mustClearReg; + int valueToMove; + MachineOpCode movOpCode; + + if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral()) + { + // integer condition: destination should be %g0 or integer register + // if result must be saved but condition is not SetEQ then we need + // a separate instruction to compute the bool result, so discard + // result of SUBcc instruction anyway. + // + mvec[0] = new MachineInstr(SUBcc); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult); + + // mark the 4th operand as being a CC register, and a "result" + mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister, + subtreeRoot->getValue(), /*def*/ true); + + if (!discardResult) + { // recompute bool if needed, using the integer condition codes + if (result->getOpcode() == Instruction::SetNE) + discardResult = true; + else + movOpCode = + ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove); + } + } + else + { + // FP condition: dest of FCMP should be some FCCn register + mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + subtreeRoot->getValue()); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + subtreeRoot->rightChild()->getValue()); + + if (!discardResult) + {// recompute bool using the FP condition codes + mustClearReg = true; + valueToMove = 1; + movOpCode = ChooseMovFpccInstruction(subtreeRoot); + } + } + + if (!discardResult) + { + if (mustClearReg) + {// Unconditionally set register to 0 + int n = numInstr++; + mvec[n] = new MachineInstr(SETHI); + mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0); + mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, + subtreeRoot->getValue()); + } + + // Now conditionally move `valueToMove' (0 or 1) into the register + int n = numInstr++; + mvec[n] = new MachineInstr(movOpCode); + mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, + subtreeRoot->getValue()); + mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, + valueToMove); + mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + subtreeRoot->getValue()); + } + break; + } - if (loadConstFlags & 0x02) - { - instrB = MakeOneLoadConstInstr(vmInstrNode->getInstruction(), - vmInstrNode->rightChild()->getValue()); - numNew++; + case 43: // boolreg: VReg + case 44: // boolreg: Constant + numInstr = 0; + break; + + case 51: // reg: Load(reg) + case 52: // reg: Load(ptrreg) + case 53: // reg: LoadIdx(reg,reg) + case 54: // reg: LoadIdx(ptrreg,reg) + mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType())); + SetOperandsForMemInstr(mvec[0], subtreeRoot, target); + break; + + case 55: // reg: GetElemPtr(reg) + case 56: // reg: GetElemPtrIdx(reg,reg) + if (subtreeRoot->parent() != NULL) + { + // Check if the parent was an array access. + // If so, we still need to generate this instruction. + MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction(); + const PointerType* ptrType = + (const PointerType*) memInst->getPtrOperand()->getType(); + if (! ptrType->getValueType()->isArrayType()) + {// we don't need a separate instr + numInstr = 0; // don't forward operand! + break; + } + } + // else in all other cases we need to a separate ADD instruction + mvec[0] = new MachineInstr(ADD); + SetOperandsForMemInstr(mvec[0], subtreeRoot, target); + break; + + case 57: // reg: Alloca: Implement as 2 instructions: + // sub %sp, tmp -> %sp + { // add %sp, 0 -> result + Instruction* instr = subtreeRoot->getInstruction(); + const PointerType* instrType = (const PointerType*) instr->getType(); + assert(instrType->isPointerType()); + int tsize = (int) target.findOptimalStorageSize(instrType->getValueType()); + assert(tsize != 0 && "Just to check when this can happen"); + // if (tsize == 0) + // { + // numInstr = 0; + // break; + // } + //else go on to create the instructions needed... + + // Create a temporary Value to hold the constant type-size + ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize); + ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool(); + if (cpool.find(valueForTSize) == 0) + cpool.insert(valueForTSize); + + // Instruction 1: sub %sp, tsize -> %sp + // tsize is always constant, but it may have to be put into a + // register if it doesn't fit in the immediate field. + // + mvec[0] = new MachineInstr(SUB); + mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); + mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); + + // Instruction 2: add %sp, 0 -> result + numInstr++; + mvec[1] = new MachineInstr(ADD); + mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); + mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); + mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); + break; } - // Now insert the new instructions *before* the old ones by - // moving the old ones over `numNew' positions (last-to-first, of course!). - // - for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--) - mvec[i+numNew] = mvec[i]; - - unsigned whichNew = 0; - if (instrA != NULL) - mvec[whichNew++] = instrA; - if (instrB != NULL) - mvec[whichNew++] = instrB; - assert(whichNew == numNew); + case 58: // reg: Alloca(reg): Implement as 3 instructions: + // mul num, typeSz -> tmp + // sub %sp, tmp -> %sp + { // add %sp, 0 -> result + Instruction* instr = subtreeRoot->getInstruction(); + const PointerType* instrType = (const PointerType*) instr->getType(); + assert(instrType->isPointerType() && + instrType->getValueType()->isArrayType()); + const Type* eltType = + ((ArrayType*) instrType->getValueType())->getElementType(); + int tsize = (int) target.findOptimalStorageSize(eltType); + + assert(tsize != 0 && "Just to check when this can happen"); + // if (tsize == 0) + // { + // numInstr = 0; + // break; + // } + //else go on to create the instructions needed... - return numInstr + numNew; -} -#endif + // Create a temporary Value to hold the constant type-size + ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize); + ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool(); + if (cpool.find(valueForTSize) == 0) + cpool.insert(valueForTSize); + + // Create a temporary value to hold `tmp' + Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, + subtreeRoot->leftChild()->getValue(), + NULL /*could insert tsize here*/); + subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); + // Instruction 1: mul numElements, typeSize -> tmp + mvec[0] = new MachineInstr(MULX); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->leftChild()->getValue()); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); + mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr); -static MachineInstr* -MakeOneLoadConstInstr(Instruction* vmInstr, - Value* val, - TmpInstruction*& tmpReg) -{ - assert(val->getValueType() == Value::ConstantVal); - - MachineInstr* minstr; - - // Create a TmpInstruction to mark the hidden register used for the constant - tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL); - vmInstr->getMachineInstrVec().addTempValue(tmpReg); - - // Use a "set" instruction for known constants that can go in an integer reg. - // Use a "load" instruction for all other constants, in particular, - // floating point constants. - // - const Type* valType = val->getType(); - if (valType->isIntegral() || - valType->isPointerType() || - valType == Type::BoolTy) - { - bool isValidConstant; - if (val->getType()->isSigned()) - { - minstr = new MachineInstr(SETSW); - minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, - GetSignedIntConstantValue(val, isValidConstant)); - } - else - { - minstr = new MachineInstr(SETUW); - minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, - GetUnsignedIntConstantValue(val, isValidConstant)); - } - minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, tmpReg); - assert(isValidConstant && "Unrecognized constant"); + tmpInstr->addMachineInstruction(mvec[0]); + + // Instruction 2: sub %sp, tmp -> %sp + numInstr++; + mvec[1] = new MachineInstr(SUB); + mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); + mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr); + mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); + + // Instruction 3: add %sp, 0 -> result + numInstr++; + mvec[2] = new MachineInstr(ADD); + mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); + mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); + mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); + break; } - else - { - assert(valType == Type::FloatTy || - valType == Type::DoubleTy); - - int64_t zeroOffset = 0; // to avoid overloading ambiguity with (Value*) 0 + + case 61: // reg: Call + // Generate a call-indirect (i.e., JMPL) for now to expose + // the potential need for registers. If an absolute address + // is available, replace this with a CALL instruction. + // Mark both the indirection register and the return-address + { // register as hidden virtual registers. - // Make a Load instruction, and make `val' both the ptr value *and* - // the result value, and set the offset field to 0. Final code - // generation will have to generate the base+offset for the constant. - // - minstr = new MachineInstr(ChooseLoadInstruction(val->getType())); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, val); - minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, - zeroOffset); - minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, tmpReg); + Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1, + ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL); + Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1, + subtreeRoot->getValue(), NULL); + subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg); + subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg); + + mvec[0] = new MachineInstr(JMPL); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg); + mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, + (int64_t) 0); + mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg); + + // NOTE: jmpAddrReg will be loaded by a different instruction generated + // by the final code generator, so we just mark the CALL instruction + // as computing that value. + // The retAddrReg is actually computed by the CALL instruction. + // + jmpAddrReg->addMachineInstruction(mvec[0]); + retAddrReg->addMachineInstruction(mvec[0]); + + mvec[numInstr++] = new MachineInstr(NOP); // delay slot + break; } - - tmpReg->addMachineInstruction(minstr); - - return minstr; -} + + case 62: // reg: Shl(reg, reg) + opType = subtreeRoot->leftChild()->getValue()->getType(); + assert(opType->isIntegral() || opType == Type::BoolTy); + mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 63: // reg: Shr(reg, reg) + opType = subtreeRoot->leftChild()->getValue()->getType(); + assert(opType->isIntegral() || opType == Type::BoolTy); + mvec[0] = new MachineInstr((opType->isSigned() + ? ((opType == Type::LongTy)? SRAX : SRA) + : ((opType == Type::LongTy)? SRLX : SRL))); + Set3OperandsFromInstr(mvec[0], subtreeRoot, target); + break; + + case 64: // reg: Phi(reg,reg) + { // This instruction has variable #operands, so resultPos is 0. + Instruction* phi = subtreeRoot->getInstruction(); + mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands()); + mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->getValue()); + for (unsigned i=0, N=phi->getNumOperands(); i < N; i++) + mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister, + phi->getOperand(i)); + break; + } + case 71: // reg: VReg + case 72: // reg: Constant + numInstr = 0; // don't forward the value + break; -// -// Substitute operand `operandNum' of the instruction in node `treeNode' -// in place the use(s) of that instruction in node `parent'. -// -static void -ForwardOperand(InstructionNode* treeNode, - InstructionNode* parent, - int operandNum) -{ - Instruction* unusedOp = treeNode->getInstruction(); - Value* fwdOp = unusedOp->getOperand(operandNum); - Instruction* userInstr = parent->getInstruction(); - MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec(); - for (unsigned i=0, N=mvec.size(); i < N; i++) - { - MachineInstr* minstr = mvec[i]; - for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++) + case 111: // stmt: reg + case 112: // stmt: boolconst + case 113: // stmt: bool + case 121: + case 122: + case 123: + case 124: + case 125: + case 126: + case 127: + case 128: + case 129: + case 130: + case 131: + case 132: + case 153: + case 155: + // + // These are all chain rules, which have a single nonterminal on the RHS. + // Get the rule that matches the RHS non-terminal and use that instead. + // + assert(ThisIsAChainRule(ruleForNode)); + assert(nts[0] && ! nts[1] + && "A chain rule should have only one RHS non-terminal!"); + nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]); + nts = burm_nts[nextRule]; + numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec); + break; + + default: + assert(0 && "Unrecognized BURG rule"); + numInstr = 0; + break; + } + + if (forwardOperandNum >= 0) + { // We did not generate a machine instruction but need to use operand. + // If user is in the same tree, replace Value in its machine operand. + // If not, insert a copy instruction which should get coalesced away + // by register allocation. + if (subtreeRoot->parent() != NULL) + ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(), + forwardOperandNum); + else { - const MachineOperand& mop = minstr->getOperand(i); - if (mop.getOperandType() == MachineOperand::MO_VirtualRegister && - mop.getVRegValue() == unusedOp) - { - minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister, - fwdOp); - } + int n = numInstr++; + mvec[n] = new MachineInstr(ADD); + mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, + subtreeRoot->getInstruction()->getOperand(forwardOperandNum)); + mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); + mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, + subtreeRoot->getInstruction()); } } -} - - -// This function is currently unused and incomplete but will be -// used if we have a linear layout of basic blocks in LLVM code. -// It decides which branch should fall-through, and whether an -// extra unconditional branch is needed (when neither falls through). -// -void -ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern) -{ - BranchInst* brInstr = (BranchInst*) vmInstr; - - brPattern.flipCondition = false; - brPattern.targetBB = brInstr->getSuccessor(0); - brPattern.extraBranch = NULL; - assert(brInstr->getNumSuccessors() > 1 && - "Unnecessary analysis for unconditional branch"); + if (! ThisIsAChainRule(ruleForNode)) + numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target); - assert(0 && "Fold branches in peephole optimization"); + return numInstr; } +