From: Christopher Dykes Date: Sat, 10 Jun 2017 02:48:51 +0000 (-0700) Subject: Reorganize the stats directory X-Git-Tag: v2017.06.12.00~2 X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=d8ed7cbc7118c84655fb51da6d1c0f32701dc763;p=folly.git Reorganize the stats directory Summary: The source and tests for the stats directory was spread across folly/detail and folly/test, move them into folly/stats directly instead. Reviewed By: yfeldblum Differential Revision: D5216810 fbshipit-source-id: 00a8bb95a4f7830d0bc46b3f914f256a37833b78 --- diff --git a/folly/Makefile.am b/folly/Makefile.am index 0b1a10d7..435b93a9 100644 --- a/folly/Makefile.am +++ b/folly/Makefile.am @@ -7,7 +7,7 @@ MAYBE_EXCEPTION_TRACER = experimental/exception_tracer endif SUBDIRS = . experimental $(MAYBE_INIT) test io/test experimental/io/test \ - $(MAYBE_EXCEPTION_TRACER) + stats/test $(MAYBE_EXCEPTION_TRACER) ACLOCAL_AMFLAGS = -I m4 @@ -82,7 +82,6 @@ nobase_follyinclude_HEADERS = \ detail/SlowFingerprint.h \ detail/SocketFastOpen.h \ detail/StaticSingletonManager.h \ - detail/Stats.h \ detail/ThreadLocalDetail.h \ detail/TryDetail.h \ detail/TurnSequencer.h \ @@ -367,6 +366,7 @@ nobase_follyinclude_HEADERS = \ ssl/OpenSSLVersionFinder.h \ ssl/SSLSession.h \ ssl/detail/SSLSessionImpl.h \ + stats/detail/Bucket.h \ stats/BucketedTimeSeries-defs.h \ stats/BucketedTimeSeries.h \ stats/Histogram-defs.h \ @@ -534,7 +534,10 @@ libfolly_la_SOURCES = \ ssl/OpenSSLCertUtils.cpp \ ssl/OpenSSLHash.cpp \ ssl/detail/SSLSessionImpl.cpp \ - stats/Instantiations.cpp \ + stats/BucketedTimeSeries.cpp \ + stats/Histogram.cpp \ + stats/MultiLevelTimeSeries.cpp \ + stats/TimeseriesHistogram.cpp \ Subprocess.cpp \ ThreadCachedArena.cpp \ ThreadName.cpp \ diff --git a/folly/detail/Stats.h b/folly/detail/Stats.h deleted file mode 100644 index 691ad2da..00000000 --- a/folly/detail/Stats.h +++ /dev/null @@ -1,126 +0,0 @@ -/* - * Copyright 2017 Facebook, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include -#include -#include - -namespace folly { namespace detail { - -/* - * Helper function to compute the average, given a specified input type and - * return type. - */ - -// If the input is long double, divide using long double to avoid losing -// precision. -template -ReturnType avgHelper(long double sum, uint64_t count) { - if (count == 0) { return ReturnType(0); } - const long double countf = count; - return static_cast(sum / countf); -} - -// In all other cases divide using double precision. -// This should be relatively fast, and accurate enough for most use cases. -template -typename std::enable_if::type, - long double>::value, - ReturnType>::type -avgHelper(ValueType sum, uint64_t count) { - if (count == 0) { return ReturnType(0); } - const double sumf = double(sum); - const double countf = double(count); - return static_cast(sumf / countf); -} - -/* - * Helper function to compute the rate per Interval, - * given the specified count recorded over the elapsed time period. - */ -template < - typename ReturnType = double, - typename Duration = std::chrono::seconds, - typename Interval = Duration> -ReturnType rateHelper(ReturnType count, Duration elapsed) { - if (elapsed == Duration(0)) { - return 0; - } - - // Use std::chrono::duration_cast to convert between the native - // duration and the desired interval. However, convert the rates, - // rather than just converting the elapsed duration. Converting the - // elapsed time first may collapse it down to 0 if the elapsed interval - // is less than the desired interval, which will incorrectly result in - // an infinite rate. - typedef std::chrono::duration< - ReturnType, - std::ratio> - NativeRate; - typedef std::chrono::duration< - ReturnType, std::ratio> DesiredRate; - - NativeRate native(count / elapsed.count()); - DesiredRate desired = std::chrono::duration_cast(native); - return desired.count(); -} - - -template -struct Bucket { - public: - typedef T ValueType; - - Bucket() - : sum(ValueType()), - count(0) {} - - void clear() { - sum = ValueType(); - count = 0; - } - - void add(const ValueType& s, uint64_t c) { - // TODO: It would be nice to handle overflow here. - sum += s; - count += c; - } - - Bucket& operator+=(const Bucket& o) { - add(o.sum, o.count); - return *this; - } - - Bucket& operator-=(const Bucket& o) { - // TODO: It would be nice to handle overflow here. - sum -= o.sum; - count -= o.count; - return *this; - } - - template - ReturnType avg() const { - return avgHelper(sum, count); - } - - ValueType sum; - uint64_t count; -}; - -}} // folly::detail diff --git a/folly/stats/BucketedTimeSeries.cpp b/folly/stats/BucketedTimeSeries.cpp new file mode 100644 index 00000000..7eaf46e8 --- /dev/null +++ b/folly/stats/BucketedTimeSeries.cpp @@ -0,0 +1,22 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include + +namespace folly { +template class BucketedTimeSeries; +} diff --git a/folly/stats/BucketedTimeSeries.h b/folly/stats/BucketedTimeSeries.h index a31904da..73ec9e70 100644 --- a/folly/stats/BucketedTimeSeries.h +++ b/folly/stats/BucketedTimeSeries.h @@ -19,7 +19,7 @@ #include #include -#include +#include namespace folly { diff --git a/folly/stats/Histogram.cpp b/folly/stats/Histogram.cpp new file mode 100644 index 00000000..5a24f1ea --- /dev/null +++ b/folly/stats/Histogram.cpp @@ -0,0 +1,53 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* + * This file contains explicit instantiations of stats template types. + * + * This allows most users to avoid having to include the template definition + * header files. + */ + +#include +#include + +namespace folly { + +template class Histogram; +template class detail::HistogramBuckets::Bucket>; + +// Histogram::getPercentileBucketIdx(), Histogram::getPercentileEstimate() +// and Histogram::computeTotalCount() +// are implemented using template methods. Instantiate the default versions of +// these methods too, so anyone using them won't also need to explicitly +// include Histogram-defs.h +template size_t detail::HistogramBuckets::Bucket>:: + getPercentileBucketIdx::CountFromBucket>( + double pct, + Histogram::CountFromBucket countFromBucket, + double* lowPct, + double* highPct) const; +template int64_t detail::HistogramBuckets::Bucket> + ::getPercentileEstimate::CountFromBucket, + Histogram::AvgFromBucket>( + double pct, + Histogram::CountFromBucket countFromBucket, + Histogram::AvgFromBucket avgFromBucket) const; +template uint64_t detail::HistogramBuckets::Bucket> + ::computeTotalCount::CountFromBucket>( + Histogram::CountFromBucket countFromBucket) const; + +} // folly diff --git a/folly/stats/Histogram.h b/folly/stats/Histogram.h index ca45ba3b..effeceaa 100644 --- a/folly/stats/Histogram.h +++ b/folly/stats/Histogram.h @@ -25,7 +25,7 @@ #include #include -#include +#include namespace folly { diff --git a/folly/stats/Instantiations.cpp b/folly/stats/Instantiations.cpp deleted file mode 100644 index 20b4c2f1..00000000 --- a/folly/stats/Instantiations.cpp +++ /dev/null @@ -1,65 +0,0 @@ -/* - * Copyright 2017 Facebook, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* - * This file contains explicit instantiations of stats template types. - * - * This allows most users to avoid having to include the template definition - * header files. - */ - -#include -#include - -#include -#include - -#include -#include - -#include -#include - -namespace folly { - -template class BucketedTimeSeries; -template class Histogram; -template class detail::HistogramBuckets::Bucket>; -template class MultiLevelTimeSeries; -template class TimeseriesHistogram; - -// Histogram::getPercentileBucketIdx(), Histogram::getPercentileEstimate() -// and Histogram::computeTotalCount() -// are implemented using template methods. Instantiate the default versions of -// these methods too, so anyone using them won't also need to explicitly -// include Histogram-defs.h -template size_t detail::HistogramBuckets::Bucket>:: - getPercentileBucketIdx::CountFromBucket>( - double pct, - Histogram::CountFromBucket countFromBucket, - double* lowPct, - double* highPct) const; -template int64_t detail::HistogramBuckets::Bucket> - ::getPercentileEstimate::CountFromBucket, - Histogram::AvgFromBucket>( - double pct, - Histogram::CountFromBucket countFromBucket, - Histogram::AvgFromBucket avgFromBucket) const; -template uint64_t detail::HistogramBuckets::Bucket> - ::computeTotalCount::CountFromBucket>( - Histogram::CountFromBucket countFromBucket) const; - -} // folly diff --git a/folly/stats/MultiLevelTimeSeries.cpp b/folly/stats/MultiLevelTimeSeries.cpp new file mode 100644 index 00000000..404a4d1e --- /dev/null +++ b/folly/stats/MultiLevelTimeSeries.cpp @@ -0,0 +1,22 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include + +namespace folly { +template class MultiLevelTimeSeries; +} diff --git a/folly/stats/TimeseriesHistogram.cpp b/folly/stats/TimeseriesHistogram.cpp new file mode 100644 index 00000000..22c972fb --- /dev/null +++ b/folly/stats/TimeseriesHistogram.cpp @@ -0,0 +1,22 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include + +namespace folly { +template class TimeseriesHistogram; +} diff --git a/folly/stats/detail/Bucket.h b/folly/stats/detail/Bucket.h new file mode 100644 index 00000000..691ad2da --- /dev/null +++ b/folly/stats/detail/Bucket.h @@ -0,0 +1,126 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +#include +#include +#include + +namespace folly { namespace detail { + +/* + * Helper function to compute the average, given a specified input type and + * return type. + */ + +// If the input is long double, divide using long double to avoid losing +// precision. +template +ReturnType avgHelper(long double sum, uint64_t count) { + if (count == 0) { return ReturnType(0); } + const long double countf = count; + return static_cast(sum / countf); +} + +// In all other cases divide using double precision. +// This should be relatively fast, and accurate enough for most use cases. +template +typename std::enable_if::type, + long double>::value, + ReturnType>::type +avgHelper(ValueType sum, uint64_t count) { + if (count == 0) { return ReturnType(0); } + const double sumf = double(sum); + const double countf = double(count); + return static_cast(sumf / countf); +} + +/* + * Helper function to compute the rate per Interval, + * given the specified count recorded over the elapsed time period. + */ +template < + typename ReturnType = double, + typename Duration = std::chrono::seconds, + typename Interval = Duration> +ReturnType rateHelper(ReturnType count, Duration elapsed) { + if (elapsed == Duration(0)) { + return 0; + } + + // Use std::chrono::duration_cast to convert between the native + // duration and the desired interval. However, convert the rates, + // rather than just converting the elapsed duration. Converting the + // elapsed time first may collapse it down to 0 if the elapsed interval + // is less than the desired interval, which will incorrectly result in + // an infinite rate. + typedef std::chrono::duration< + ReturnType, + std::ratio> + NativeRate; + typedef std::chrono::duration< + ReturnType, std::ratio> DesiredRate; + + NativeRate native(count / elapsed.count()); + DesiredRate desired = std::chrono::duration_cast(native); + return desired.count(); +} + + +template +struct Bucket { + public: + typedef T ValueType; + + Bucket() + : sum(ValueType()), + count(0) {} + + void clear() { + sum = ValueType(); + count = 0; + } + + void add(const ValueType& s, uint64_t c) { + // TODO: It would be nice to handle overflow here. + sum += s; + count += c; + } + + Bucket& operator+=(const Bucket& o) { + add(o.sum, o.count); + return *this; + } + + Bucket& operator-=(const Bucket& o) { + // TODO: It would be nice to handle overflow here. + sum -= o.sum; + count -= o.count; + return *this; + } + + template + ReturnType avg() const { + return avgHelper(sum, count); + } + + ValueType sum; + uint64_t count; +}; + +}} // folly::detail diff --git a/folly/stats/test/BucketedTimeSeriesBenchmark.cpp b/folly/stats/test/BucketedTimeSeriesBenchmark.cpp new file mode 100644 index 00000000..835eda90 --- /dev/null +++ b/folly/stats/test/BucketedTimeSeriesBenchmark.cpp @@ -0,0 +1,77 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include +#include + +#include + +#include + +using std::chrono::seconds; +using folly::BenchmarkSuspender; +using folly::BucketedTimeSeries; + +void addValue(unsigned int iters, + seconds duration, size_t numBuckets, + size_t callsPerSecond) { + BenchmarkSuspender suspend; + BucketedTimeSeries ts(numBuckets, duration); + suspend.dismiss(); + + seconds currentTime(1342000000); + size_t timeCounter = 0; + for (unsigned int n = 0; n < iters; ++n, ++timeCounter) { + if (timeCounter >= callsPerSecond) { + timeCounter = 0; + ++currentTime; + } + ts.addValue(currentTime, n); + } +} + +BENCHMARK_NAMED_PARAM(addValue, AllTime_1perSec, seconds(0), 60, 1); +BENCHMARK_NAMED_PARAM(addValue, 3600x60_1perSec, seconds(3600), 60, 1); +BENCHMARK_NAMED_PARAM(addValue, 600x60_1perSec, seconds(600), 60, 1); +BENCHMARK_NAMED_PARAM(addValue, 60x60_1perSec, seconds(60), 60, 1); +BENCHMARK_NAMED_PARAM(addValue, 100x10_1perSec, seconds(100), 10, 1); +BENCHMARK_NAMED_PARAM(addValue, 71x5_1perSec, seconds(71), 5, 1); +BENCHMARK_NAMED_PARAM(addValue, 1x1_1perSec, seconds(1), 1, 1); + +BENCHMARK_DRAW_LINE() + +BENCHMARK_NAMED_PARAM(addValue, AllTime_10perSec, seconds(0), 60, 10); +BENCHMARK_NAMED_PARAM(addValue, 3600x60_10perSec, seconds(3600), 60, 10); +BENCHMARK_NAMED_PARAM(addValue, 600x60_10perSec, seconds(600), 60, 10); +BENCHMARK_NAMED_PARAM(addValue, 60x60_10perSec, seconds(60), 60, 10); +BENCHMARK_NAMED_PARAM(addValue, 100x10_10perSec, seconds(100), 10, 10); +BENCHMARK_NAMED_PARAM(addValue, 71x5_10perSec, seconds(71), 5, 10); +BENCHMARK_NAMED_PARAM(addValue, 1x1_10perSec, seconds(1), 1, 10); + +BENCHMARK_DRAW_LINE() + +BENCHMARK_NAMED_PARAM(addValue, AllTime_100perSec, seconds(0), 60, 100); +BENCHMARK_NAMED_PARAM(addValue, 3600x60_100perSec, seconds(3600), 60, 100); +BENCHMARK_NAMED_PARAM(addValue, 600x60_100perSec, seconds(600), 60, 100); +BENCHMARK_NAMED_PARAM(addValue, 60x60_100perSec, seconds(60), 60, 100); +BENCHMARK_NAMED_PARAM(addValue, 100x10_100perSec, seconds(100), 10, 100); +BENCHMARK_NAMED_PARAM(addValue, 71x5_100perSec, seconds(71), 5, 100); +BENCHMARK_NAMED_PARAM(addValue, 1x1_100perSec, seconds(1), 1, 100); + +int main(int argc, char *argv[]) { + gflags::ParseCommandLineFlags(&argc, &argv, true); + folly::runBenchmarks(); + return 0; +} diff --git a/folly/stats/test/HistogramBenchmark.cpp b/folly/stats/test/HistogramBenchmark.cpp new file mode 100644 index 00000000..d708253b --- /dev/null +++ b/folly/stats/test/HistogramBenchmark.cpp @@ -0,0 +1,42 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include + +#include +#include +#include + +using folly::Histogram; + +void addValue(unsigned int n, int64_t bucketSize, int64_t min, int64_t max) { + Histogram hist(bucketSize, min, max); + int64_t num = min; + FOR_EACH_RANGE (i, 0, n) { + hist.addValue(num); + ++num; + if (num > max) { num = min; } + } +} + +BENCHMARK_NAMED_PARAM(addValue, 0_to_100, 1, 0, 100); +BENCHMARK_NAMED_PARAM(addValue, 0_to_1000, 10, 0, 1000); +BENCHMARK_NAMED_PARAM(addValue, 5k_to_20k, 250, 5000, 20000); + +int main(int argc, char *argv[]) { + gflags::ParseCommandLineFlags(&argc, &argv, true); + folly::runBenchmarks(); + return 0; +} diff --git a/folly/stats/test/HistogramTest.cpp b/folly/stats/test/HistogramTest.cpp new file mode 100644 index 00000000..c2997a35 --- /dev/null +++ b/folly/stats/test/HistogramTest.cpp @@ -0,0 +1,223 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include + +#include + +using folly::Histogram; + +// Insert 100 evenly distributed values into a histogram with 100 buckets +TEST(Histogram, Test100) { + Histogram h(1, 0, 100); + + for (unsigned int n = 0; n < 100; ++n) { + h.addValue(n); + } + + // 100 buckets, plus 1 for below min, and 1 for above max + EXPECT_EQ(h.getNumBuckets(), 102); + + double epsilon = 1e-6; + for (unsigned int n = 0; n <= 100; ++n) { + double pct = n / 100.0; + + // Floating point arithmetic isn't 100% accurate, and if we just divide + // (n / 100) the value should be exactly on a bucket boundary. Add espilon + // to ensure we fall in the upper bucket. + if (n < 100) { + double lowPct = -1.0; + double highPct = -1.0; + unsigned int bucketIdx = h.getPercentileBucketIdx(pct + epsilon, + &lowPct, &highPct); + EXPECT_EQ(n + 1, bucketIdx); + EXPECT_FLOAT_EQ(n / 100.0, lowPct); + EXPECT_FLOAT_EQ((n + 1) / 100.0, highPct); + } + + // Also test n - epsilon, to test falling in the lower bucket. + if (n > 0) { + double lowPct = -1.0; + double highPct = -1.0; + unsigned int bucketIdx = h.getPercentileBucketIdx(pct - epsilon, + &lowPct, &highPct); + EXPECT_EQ(n, bucketIdx); + EXPECT_FLOAT_EQ((n - 1) / 100.0, lowPct); + EXPECT_FLOAT_EQ(n / 100.0, highPct); + } + + // Check getPercentileEstimate() + EXPECT_EQ(n, h.getPercentileEstimate(pct)); + } +} + +// Test calling getPercentileBucketIdx() and getPercentileEstimate() on an +// empty histogram +TEST(Histogram, TestEmpty) { + Histogram h(1, 0, 100); + + for (unsigned int n = 0; n <= 100; ++n) { + double pct = n / 100.0; + + double lowPct = -1.0; + double highPct = -1.0; + unsigned int bucketIdx = h.getPercentileBucketIdx(pct, &lowPct, &highPct); + EXPECT_EQ(1, bucketIdx); + EXPECT_FLOAT_EQ(0.0, lowPct); + EXPECT_FLOAT_EQ(0.0, highPct); + + EXPECT_EQ(0, h.getPercentileEstimate(pct)); + } +} + +// Test calling getPercentileBucketIdx() and getPercentileEstimate() on a +// histogram with just a single value. +TEST(Histogram, Test1) { + Histogram h(1, 0, 100); + h.addValue(42); + + for (unsigned int n = 0; n < 100; ++n) { + double pct = n / 100.0; + + double lowPct = -1.0; + double highPct = -1.0; + unsigned int bucketIdx = h.getPercentileBucketIdx(pct, &lowPct, &highPct); + EXPECT_EQ(43, bucketIdx); + EXPECT_FLOAT_EQ(0.0, lowPct); + EXPECT_FLOAT_EQ(1.0, highPct); + + EXPECT_EQ(42, h.getPercentileEstimate(pct)); + } +} + +// Test adding enough numbers to make the sum value overflow in the +// "below min" bucket +TEST(Histogram, TestOverflowMin) { + Histogram h(1, 0, 100); + + for (unsigned int n = 0; n < 9; ++n) { + h.addValue(-0x0fffffffffffffff); + } + + // Compute a percentile estimate. We only added values to the "below min" + // bucket, so this should check that bucket. We're mainly verifying that the + // code doesn't crash here when the bucket average is larger than the max + // value that is supposed to be in the bucket. + int64_t estimate = h.getPercentileEstimate(0.05); + // The code will return the smallest possible value when it detects an + // overflow beyond the minimum value. + EXPECT_EQ(std::numeric_limits::min(), estimate); +} + +// Test adding enough numbers to make the sum value overflow in the +// "above max" bucket +TEST(Histogram, TestOverflowMax) { + Histogram h(1, 0, 100); + + for (unsigned int n = 0; n < 9; ++n) { + h.addValue(0x0fffffffffffffff); + } + + // The code will return the maximum possible value when it detects an + // overflow beyond the max value. + int64_t estimate = h.getPercentileEstimate(0.95); + EXPECT_EQ(std::numeric_limits::max(), estimate); +} + +// Test adding enough numbers to make the sum value overflow in one of the +// normal buckets +TEST(Histogram, TestOverflowBucket) { + Histogram h(0x0100000000000000, 0, 0x1000000000000000); + + for (unsigned int n = 0; n < 9; ++n) { + h.addValue(0x0fffffffffffffff); + } + + // The histogram code should return the bucket midpoint + // when it detects overflow. + int64_t estimate = h.getPercentileEstimate(0.95); + EXPECT_EQ(0x0f80000000000000, estimate); +} + +TEST(Histogram, TestDouble) { + // Insert 100 evenly spaced values into a histogram + Histogram h(100.0, 0.0, 5000.0); + for (double n = 50; n < 5000; n += 100) { + h.addValue(n); + } + EXPECT_EQ(52, h.getNumBuckets()); + EXPECT_EQ(2500.0, h.getPercentileEstimate(0.5)); + EXPECT_EQ(4500.0, h.getPercentileEstimate(0.9)); +} + +// Test where the bucket width is not an even multiple of the histogram range +TEST(Histogram, TestDoubleInexactWidth) { + Histogram h(100.0, 0.0, 4970.0); + for (double n = 50; n < 5000; n += 100) { + h.addValue(n); + } + EXPECT_EQ(52, h.getNumBuckets()); + EXPECT_EQ(2500.0, h.getPercentileEstimate(0.5)); + EXPECT_EQ(4500.0, h.getPercentileEstimate(0.9)); + + EXPECT_EQ(0, h.getBucketByIndex(51).count); + h.addValue(4990); + h.addValue(5100); + EXPECT_EQ(2, h.getBucketByIndex(51).count); + EXPECT_EQ(2600.0, h.getPercentileEstimate(0.5)); +} + +// Test where the bucket width is larger than the histogram range +// (There isn't really much point to defining a histogram this way, +// but we want to ensure that it still works just in case.) +TEST(Histogram, TestDoubleWidthTooBig) { + Histogram h(100.0, 0.0, 7.0); + EXPECT_EQ(3, h.getNumBuckets()); + + for (double n = 0; n < 7; n += 1) { + h.addValue(n); + } + EXPECT_EQ(0, h.getBucketByIndex(0).count); + EXPECT_EQ(7, h.getBucketByIndex(1).count); + EXPECT_EQ(0, h.getBucketByIndex(2).count); + EXPECT_EQ(3.0, h.getPercentileEstimate(0.5)); + + h.addValue(-1.0); + EXPECT_EQ(1, h.getBucketByIndex(0).count); + h.addValue(7.5); + EXPECT_EQ(1, h.getBucketByIndex(2).count); + EXPECT_EQ(3.0, h.getPercentileEstimate(0.5)); +} + +// Test that we get counts right +TEST(Histogram, Counts) { + Histogram h(1, 0, 10); + EXPECT_EQ(12, h.getNumBuckets()); + EXPECT_EQ(0, h.computeTotalCount()); + + // Add one to each bucket, make sure the counts match + for (int32_t i = 0; i < 10; i++) { + h.addValue(i); + EXPECT_EQ(i+1, h.computeTotalCount()); + } + + // Add a lot to one bucket, make sure the counts still make sense + for (int32_t i = 0; i < 100; i++) { + h.addValue(0); + } + EXPECT_EQ(110, h.computeTotalCount()); +} diff --git a/folly/stats/test/Makefile.am b/folly/stats/test/Makefile.am new file mode 100755 index 00000000..f6f47150 --- /dev/null +++ b/folly/stats/test/Makefile.am @@ -0,0 +1,12 @@ +ACLOCAL_AMFLAGS = -I m4 + +CPPFLAGS = -I$(top_srcdir)/test/gtest/googletest/include +ldadd = $(top_builddir)/test/libfollytestmain.la + +check_PROGRAMS = \ + histogram_test + +TESTS = $(check_PROGRAMS) + +histogram_test_SOURCES = HistogramTest.cpp +histogram_test_LDADD = $(ldadd) diff --git a/folly/stats/test/TimeSeriesTest.cpp b/folly/stats/test/TimeSeriesTest.cpp new file mode 100644 index 00000000..64928fe3 --- /dev/null +++ b/folly/stats/test/TimeSeriesTest.cpp @@ -0,0 +1,1280 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include +#include +#include +#include + +#include + +#include + +#include +#include + +using std::chrono::seconds; +using std::string; +using std::vector; +using folly::BucketedTimeSeries; + +using Bucket = folly::detail::Bucket; +using StatsClock = folly::LegacyStatsClock; +using TimePoint = StatsClock::time_point; +using Duration = StatsClock::duration; + +/* + * Helper functions to allow us to directly log time points and duration + */ +namespace std { +std::ostream& operator<<(std::ostream& os, std::chrono::seconds s) { + os << s.count(); + return os; +} +std::ostream& operator<<(std::ostream& os, TimePoint tp) { + os << tp.time_since_epoch().count(); + return os; +} +} + +namespace { +TimePoint mkTimePoint(int value) { + return TimePoint(StatsClock::duration(value)); +} + +struct TestData { + TestData(int d, int b, std::initializer_list starts) + : duration(d), numBuckets(b) { + bucketStarts.reserve(starts.size()); + for (int s : starts) { + bucketStarts.push_back(mkTimePoint(s)); + } + } + seconds duration; + size_t numBuckets; + vector bucketStarts; +}; +vector testData = { + // 71 seconds x 4 buckets + { 71, 4, {0, 18, 36, 54}}, + // 100 seconds x 10 buckets + { 100, 10, {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}}, + // 10 seconds x 10 buckets + { 10, 10, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, + // 10 seconds x 1 buckets + { 10, 1, {0}}, + // 1 second x 1 buckets + { 1, 1, {0}}, +}; +} + +TEST(BucketedTimeSeries, getBucketInfo) { + for (const auto& data : testData) { + BucketedTimeSeries ts(data.numBuckets, data.duration); + + for (uint32_t n = 0; n < 10000; n += 1234) { + seconds offset(n * data.duration); + + for (uint32_t idx = 0; idx < data.numBuckets; ++idx) { + auto bucketStart = data.bucketStarts[idx]; + TimePoint nextBucketStart; + if (idx + 1 < data.numBuckets) { + nextBucketStart = data.bucketStarts[idx + 1]; + } else { + nextBucketStart = TimePoint(data.duration); + } + + TimePoint expectedStart = offset + bucketStart; + TimePoint expectedNextStart = offset + nextBucketStart; + TimePoint midpoint = + expectedStart + (expectedNextStart - expectedStart) / 2; + + vector> timePoints = { + {"expectedStart", expectedStart}, + {"midpoint", midpoint}, + {"expectedEnd", expectedNextStart - seconds(1)}, + }; + + for (const auto& point : timePoints) { + // Check that getBucketIdx() returns the expected index + EXPECT_EQ(idx, ts.getBucketIdx(point.second)) + << data.duration << "x" << data.numBuckets << ": " << point.first + << "=" << point.second; + + // Check the data returned by getBucketInfo() + size_t returnedIdx; + TimePoint returnedStart; + TimePoint returnedNextStart; + ts.getBucketInfo(expectedStart, &returnedIdx, + &returnedStart, &returnedNextStart); + EXPECT_EQ(idx, returnedIdx) << data.duration << "x" << data.numBuckets + << ": " << point.first << "=" + << point.second; + EXPECT_EQ(expectedStart, returnedStart) + << data.duration << "x" << data.numBuckets << ": " << point.first + << "=" << point.second; + EXPECT_EQ(expectedNextStart, returnedNextStart) + << data.duration << "x" << data.numBuckets << ": " << point.first + << "=" << point.second; + } + } + } + } +} + +void testUpdate100x10(size_t offset) { + // This test code only works when offset is a multiple of the bucket width + CHECK_EQ(0, offset % 10); + + // Create a 100 second timeseries, with 10 buckets + BucketedTimeSeries ts(10, seconds(100)); + + auto setup = [&] { + ts.clear(); + // Add 1 value to each bucket + for (int n = 5; n <= 95; n += 10) { + ts.addValue(seconds(n + offset), 6); + } + + EXPECT_EQ(10, ts.count()); + EXPECT_EQ(60, ts.sum()); + EXPECT_EQ(6, ts.avg()); + }; + + // Update 2 buckets forwards. This should throw away 2 data points. + setup(); + ts.update(seconds(110 + offset)); + EXPECT_EQ(8, ts.count()); + EXPECT_EQ(48, ts.sum()); + EXPECT_EQ(6, ts.avg()); + + // The last time we added was 95. + // Try updating to 189. This should clear everything but the last bucket. + setup(); + ts.update(seconds(151 + offset)); + EXPECT_EQ(4, ts.count()); + //EXPECT_EQ(6, ts.sum()); + EXPECT_EQ(6, ts.avg()); + + // The last time we added was 95. + // Try updating to 193: This is nearly one full loop around, + // back to the same bucket. update() needs to clear everything + setup(); + ts.update(seconds(193 + offset)); + EXPECT_EQ(0, ts.count()); + EXPECT_EQ(0, ts.sum()); + EXPECT_EQ(0, ts.avg()); + + // The last time we added was 95. + // Try updating to 197: This is slightly over one full loop around, + // back to the same bucket. update() needs to clear everything + setup(); + ts.update(seconds(197 + offset)); + EXPECT_EQ(0, ts.count()); + EXPECT_EQ(0, ts.sum()); + EXPECT_EQ(0, ts.avg()); + + // The last time we added was 95. + // Try updating to 230: This is well over one full loop around, + // and everything should be cleared. + setup(); + ts.update(seconds(230 + offset)); + EXPECT_EQ(0, ts.count()); + EXPECT_EQ(0, ts.sum()); + EXPECT_EQ(0, ts.avg()); +} + +TEST(BucketedTimeSeries, update100x10) { + // Run testUpdate100x10() multiple times, with various offsets. + // This makes sure the update code works regardless of which bucket it starts + // at in the modulo arithmetic. + testUpdate100x10(0); + testUpdate100x10(50); + testUpdate100x10(370); + testUpdate100x10(1937090); +} + +TEST(BucketedTimeSeries, update71x5) { + // Create a 71 second timeseries, with 5 buckets + // This tests when the number of buckets does not divide evenly into the + // duration. + BucketedTimeSeries ts(5, seconds(71)); + + auto setup = [&] { + ts.clear(); + // Add 1 value to each bucket + ts.addValue(seconds(11), 6); + ts.addValue(seconds(24), 6); + ts.addValue(seconds(42), 6); + ts.addValue(seconds(43), 6); + ts.addValue(seconds(66), 6); + + EXPECT_EQ(5, ts.count()); + EXPECT_EQ(30, ts.sum()); + EXPECT_EQ(6, ts.avg()); + }; + + // Update 2 buckets forwards. This should throw away 2 data points. + setup(); + ts.update(seconds(99)); + EXPECT_EQ(3, ts.count()); + EXPECT_EQ(18, ts.sum()); + EXPECT_EQ(6, ts.avg()); + + // Update 3 buckets forwards. This should throw away 3 data points. + setup(); + ts.update(seconds(100)); + EXPECT_EQ(2, ts.count()); + EXPECT_EQ(12, ts.sum()); + EXPECT_EQ(6, ts.avg()); + + // Update 4 buckets forwards, just under the wrap limit. + // This should throw everything but the last bucket away. + setup(); + ts.update(seconds(127)); + EXPECT_EQ(1, ts.count()); + EXPECT_EQ(6, ts.sum()); + EXPECT_EQ(6, ts.avg()); + + // Update 5 buckets forwards, exactly at the wrap limit. + // This should throw everything away. + setup(); + ts.update(seconds(128)); + EXPECT_EQ(0, ts.count()); + EXPECT_EQ(0, ts.sum()); + EXPECT_EQ(0, ts.avg()); + + // Update very far forwards, wrapping multiple times. + // This should throw everything away. + setup(); + ts.update(seconds(1234)); + EXPECT_EQ(0, ts.count()); + EXPECT_EQ(0, ts.sum()); + EXPECT_EQ(0, ts.avg()); +} + +TEST(BucketedTimeSeries, elapsed) { + BucketedTimeSeries ts(60, seconds(600)); + + // elapsed() is 0 when no data points have been added + EXPECT_EQ(0, ts.elapsed().count()); + + // With exactly 1 data point, elapsed() should report 1 second of data + seconds start(239218); + ts.addValue(start + seconds(0), 200); + EXPECT_EQ(1, ts.elapsed().count()); + // Adding a data point 10 seconds later should result in an elapsed time of + // 11 seconds (the time range is [0, 10], inclusive). + ts.addValue(start + seconds(10), 200); + EXPECT_EQ(11, ts.elapsed().count()); + + // elapsed() returns to 0 after clear() + ts.clear(); + EXPECT_EQ(0, ts.elapsed().count()); + + // Restart, with the starting point on an easier number to work with + ts.addValue(seconds(10), 200); + EXPECT_EQ(1, ts.elapsed().count()); + ts.addValue(seconds(580), 200); + EXPECT_EQ(571, ts.elapsed().count()); + ts.addValue(seconds(590), 200); + EXPECT_EQ(581, ts.elapsed().count()); + ts.addValue(seconds(598), 200); + EXPECT_EQ(589, ts.elapsed().count()); + ts.addValue(seconds(599), 200); + EXPECT_EQ(590, ts.elapsed().count()); + ts.addValue(seconds(600), 200); + EXPECT_EQ(591, ts.elapsed().count()); + ts.addValue(seconds(608), 200); + EXPECT_EQ(599, ts.elapsed().count()); + ts.addValue(seconds(609), 200); + EXPECT_EQ(600, ts.elapsed().count()); + // Once we reach 600 seconds worth of data, when we move on to the next + // second a full bucket will get thrown out. Now we drop back down to 591 + // seconds worth of data + ts.addValue(seconds(610), 200); + EXPECT_EQ(591, ts.elapsed().count()); + ts.addValue(seconds(618), 200); + EXPECT_EQ(599, ts.elapsed().count()); + ts.addValue(seconds(619), 200); + EXPECT_EQ(600, ts.elapsed().count()); + ts.addValue(seconds(620), 200); + EXPECT_EQ(591, ts.elapsed().count()); + ts.addValue(seconds(123419), 200); + EXPECT_EQ(600, ts.elapsed().count()); + ts.addValue(seconds(123420), 200); + EXPECT_EQ(591, ts.elapsed().count()); + ts.addValue(seconds(123425), 200); + EXPECT_EQ(596, ts.elapsed().count()); + + // Time never moves backwards. + // Calling update with an old timestamp will just be ignored. + ts.update(seconds(29)); + EXPECT_EQ(596, ts.elapsed().count()); +} + +TEST(BucketedTimeSeries, rate) { + BucketedTimeSeries ts(60, seconds(600)); + + // Add 3 values every 2 seconds, until fill up the buckets + for (size_t n = 0; n < 600; n += 2) { + ts.addValue(seconds(n), 200, 3); + } + + EXPECT_EQ(900, ts.count()); + EXPECT_EQ(180000, ts.sum()); + EXPECT_EQ(200, ts.avg()); + + // Really we only entered 599 seconds worth of data: [0, 598] (inclusive) + EXPECT_EQ(599, ts.elapsed().count()); + EXPECT_NEAR(300.5, ts.rate(), 0.005); + EXPECT_NEAR(1.5, ts.countRate(), 0.005); + + // If we add 1 more second, now we will have 600 seconds worth of data + ts.update(seconds(599)); + EXPECT_EQ(600, ts.elapsed().count()); + EXPECT_NEAR(300, ts.rate(), 0.005); + EXPECT_EQ(300, ts.rate()); + EXPECT_NEAR(1.5, ts.countRate(), 0.005); + + // However, 1 more second after that and we will have filled up all the + // buckets, and have to drop one. + ts.update(seconds(600)); + EXPECT_EQ(591, ts.elapsed().count()); + EXPECT_NEAR(299.5, ts.rate(), 0.01); + EXPECT_EQ(299, ts.rate()); + EXPECT_NEAR(1.5, ts.countRate(), 0.005); +} + +TEST(BucketedTimeSeries, avgTypeConversion) { + // Make sure the computed average values are accurate regardless + // of the input type and return type. + + { + // Simple sanity tests for small positive integer values + BucketedTimeSeries ts(60, seconds(600)); + ts.addValue(seconds(0), 4, 100); + ts.addValue(seconds(0), 10, 200); + ts.addValue(seconds(0), 16, 100); + + EXPECT_DOUBLE_EQ(10.0, ts.avg()); + EXPECT_DOUBLE_EQ(10.0, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + } + + { + // Test signed integer types with negative values + BucketedTimeSeries ts(60, seconds(600)); + ts.addValue(seconds(0), -100); + ts.addValue(seconds(0), -200); + ts.addValue(seconds(0), -300); + ts.addValue(seconds(0), -200, 65535); + + EXPECT_DOUBLE_EQ(-200.0, ts.avg()); + EXPECT_DOUBLE_EQ(-200.0, ts.avg()); + EXPECT_EQ(-200, ts.avg()); + EXPECT_EQ(-200, ts.avg()); + EXPECT_EQ(-200, ts.avg()); + } + + { + // Test uint64_t values that would overflow int64_t + BucketedTimeSeries ts(60, seconds(600)); + ts.addValueAggregated(seconds(0), + std::numeric_limits::max(), + std::numeric_limits::max()); + + EXPECT_DOUBLE_EQ(1.0, ts.avg()); + EXPECT_DOUBLE_EQ(1.0, ts.avg()); + EXPECT_EQ(1, ts.avg()); + EXPECT_EQ(1, ts.avg()); + EXPECT_EQ(1, ts.avg()); + } + + { + // Test doubles with small-ish values that will fit in integer types + BucketedTimeSeries ts(60, seconds(600)); + ts.addValue(seconds(0), 4.0, 100); + ts.addValue(seconds(0), 10.0, 200); + ts.addValue(seconds(0), 16.0, 100); + + EXPECT_DOUBLE_EQ(10.0, ts.avg()); + EXPECT_DOUBLE_EQ(10.0, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + EXPECT_EQ(10, ts.avg()); + } + + { + // Test doubles with huge values + BucketedTimeSeries ts(60, seconds(600)); + ts.addValue(seconds(0), 1e19, 100); + ts.addValue(seconds(0), 2e19, 200); + ts.addValue(seconds(0), 3e19, 100); + + EXPECT_DOUBLE_EQ(ts.avg(), 2e19); + EXPECT_NEAR(ts.avg(), 2e19, 1e11); + } + + { + // Test doubles where the sum adds up larger than a uint64_t, + // but the average fits in an int64_t + BucketedTimeSeries ts(60, seconds(600)); + uint64_t value = 0x3fffffffffffffff; + FOR_EACH_RANGE(i, 0, 16) { + ts.addValue(seconds(0), value); + } + + EXPECT_DOUBLE_EQ(value, ts.avg()); + EXPECT_DOUBLE_EQ(value, ts.avg()); + // Some precision is lost here due to the huge sum, so the + // integer average returned is off by one. + EXPECT_NEAR(value, ts.avg(), 1); + EXPECT_NEAR(value, ts.avg(), 1); + } + + { + // Test BucketedTimeSeries with a smaller integer type + BucketedTimeSeries ts(60, seconds(600)); + FOR_EACH_RANGE(i, 0, 101) { + ts.addValue(seconds(0), i); + } + + EXPECT_DOUBLE_EQ(50.0, ts.avg()); + EXPECT_DOUBLE_EQ(50.0, ts.avg()); + EXPECT_EQ(50, ts.avg()); + EXPECT_EQ(50, ts.avg()); + EXPECT_EQ(50, ts.avg()); + EXPECT_EQ(50, ts.avg()); + } + + { + // Test BucketedTimeSeries with long double input + BucketedTimeSeries ts(60, seconds(600)); + ts.addValueAggregated(seconds(0), 1000.0L, 7); + + long double expected = 1000.0L / 7.0L; + EXPECT_DOUBLE_EQ(static_cast(expected), ts.avg()); + EXPECT_DOUBLE_EQ(static_cast(expected), ts.avg()); + EXPECT_DOUBLE_EQ(expected, ts.avg()); + EXPECT_EQ(static_cast(expected), ts.avg()); + EXPECT_EQ(static_cast(expected), ts.avg()); + } + + { + // Test BucketedTimeSeries with int64_t values, + // but using an average that requires a fair amount of precision. + BucketedTimeSeries ts(60, seconds(600)); + ts.addValueAggregated(seconds(0), 1000, 7); + + long double expected = 1000.0L / 7.0L; + EXPECT_DOUBLE_EQ(static_cast(expected), ts.avg()); + EXPECT_DOUBLE_EQ(static_cast(expected), ts.avg()); + EXPECT_DOUBLE_EQ(expected, ts.avg()); + EXPECT_EQ(static_cast(expected), ts.avg()); + EXPECT_EQ(static_cast(expected), ts.avg()); + } +} + +TEST(BucketedTimeSeries, forEachBucket) { + typedef BucketedTimeSeries::Bucket Bucket; + struct BucketInfo { + BucketInfo(const Bucket* b, TimePoint s, TimePoint ns) + : bucket(b), start(s), nextStart(ns) {} + + const Bucket* bucket; + TimePoint start; + TimePoint nextStart; + }; + + for (const auto& data : testData) { + BucketedTimeSeries ts(data.numBuckets, seconds(data.duration)); + + vector info; + auto fn = [&]( + const Bucket& bucket, + TimePoint bucketStart, + TimePoint bucketEnd) -> bool { + info.emplace_back(&bucket, bucketStart, bucketEnd); + return true; + }; + + // If we haven't yet added any data, the current bucket will start at 0, + // and all data previous buckets will have negative times. + ts.forEachBucket(fn); + + CHECK_EQ(data.numBuckets, info.size()); + + // Check the data passed in to the function + size_t infoIdx = 0; + size_t bucketIdx = 1; + seconds offset = -data.duration; + for (size_t n = 0; n < data.numBuckets; ++n) { + if (bucketIdx >= data.numBuckets) { + bucketIdx = 0; + offset += data.duration; + } + + EXPECT_EQ(data.bucketStarts[bucketIdx] + offset, info[infoIdx].start) + << data.duration << "x" << data.numBuckets + << ": bucketIdx=" << bucketIdx << ", infoIdx=" << infoIdx; + + size_t nextBucketIdx = bucketIdx + 1; + seconds nextOffset = offset; + if (nextBucketIdx >= data.numBuckets) { + nextBucketIdx = 0; + nextOffset += data.duration; + } + EXPECT_EQ( + data.bucketStarts[nextBucketIdx] + nextOffset, + info[infoIdx].nextStart) + << data.duration << "x" << data.numBuckets + << ": bucketIdx=" << bucketIdx << ", infoIdx=" << infoIdx; + + EXPECT_EQ(&ts.getBucketByIndex(bucketIdx), info[infoIdx].bucket); + + ++bucketIdx; + ++infoIdx; + } + } +} + +TEST(BucketedTimeSeries, queryByIntervalSimple) { + BucketedTimeSeries a(3, seconds(12)); + for (int i = 0; i < 8; i++) { + a.addValue(seconds(i), 1); + } + // We added 1 at each second from 0..7 + // Query from the time period 0..2. + // This is entirely in the first bucket, which has a sum of 4. + // The code knows only part of the bucket is covered, and correctly + // estimates the desired sum as 3. + EXPECT_EQ(2, a.sum(mkTimePoint(0), mkTimePoint(2))); +} + +TEST(BucketedTimeSeries, queryByInterval) { + // Set up a BucketedTimeSeries tracking 6 seconds in 3 buckets + const int kNumBuckets = 3; + const int kDuration = 6; + BucketedTimeSeries b(kNumBuckets, seconds(kDuration)); + + for (unsigned int i = 0; i < kDuration; ++i) { + // add value 'i' at time 'i' + b.addValue(mkTimePoint(i), i); + } + + // Current bucket state: + // 0: time=[0, 2): values=(0, 1), sum=1, count=2 + // 1: time=[2, 4): values=(2, 3), sum=5, count=1 + // 2: time=[4, 6): values=(4, 5), sum=9, count=2 + double expectedSums1[kDuration + 1][kDuration + 1] = { + {0, 4.5, 9, 11.5, 14, 14.5, 15}, + {0, 4.5, 7, 9.5, 10, 10.5, -1}, + {0, 2.5, 5, 5.5, 6, -1, -1}, + {0, 2.5, 3, 3.5, -1, -1, -1}, + {0, 0.5, 1, -1, -1, -1, -1}, + {0, 0.5, -1, -1, -1, -1, -1}, + {0, -1, -1, -1, -1, -1, -1} + }; + int expectedCounts1[kDuration + 1][kDuration + 1] = { + {0, 1, 2, 3, 4, 5, 6}, + {0, 1, 2, 3, 4, 5, -1}, + {0, 1, 2, 3, 4, -1, -1}, + {0, 1, 2, 3, -1, -1, -1}, + {0, 1, 2, -1, -1, -1, -1}, + {0, 1, -1, -1, -1, -1, -1}, + {0, -1, -1, -1, -1, -1, -1} + }; + + TimePoint currentTime = b.getLatestTime() + seconds(1); + for (int i = 0; i <= kDuration + 1; i++) { + for (int j = 0; j <= kDuration - i; j++) { + TimePoint start = currentTime - seconds(i + j); + TimePoint end = currentTime - seconds(i); + double expectedSum = expectedSums1[i][j]; + EXPECT_EQ(expectedSum, b.sum(start, end)) + << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end + << ")"; + + uint64_t expectedCount = expectedCounts1[i][j]; + EXPECT_EQ(expectedCount, b.count(start, end)) + << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end + << ")"; + + double expectedAvg = expectedCount ? expectedSum / expectedCount : 0; + EXPECT_EQ(expectedAvg, b.avg(start, end)) + << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end + << ")"; + + double expectedRate = j ? expectedSum / j : 0; + EXPECT_EQ(expectedRate, b.rate(start, end)) + << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end + << ")"; + } + } + + // Add 3 more values. + // This will overwrite 1 full bucket, and put us halfway through the next. + for (unsigned int i = kDuration; i < kDuration + 3; ++i) { + b.addValue(mkTimePoint(i), i); + } + EXPECT_EQ(mkTimePoint(4), b.getEarliestTime()); + + // Current bucket state: + // 0: time=[6, 8): values=(6, 7), sum=13, count=2 + // 1: time=[8, 10): values=(8), sum=8, count=1 + // 2: time=[4, 6): values=(4, 5), sum=9, count=2 + double expectedSums2[kDuration + 1][kDuration + 1] = { + {0, 8, 14.5, 21, 25.5, 30, 30}, + {0, 6.5, 13, 17.5, 22, 22, -1}, + {0, 6.5, 11, 15.5, 15.5, -1, -1}, + {0, 4.5, 9, 9, -1, -1, -1}, + {0, 4.5, 4.5, -1, -1, -1, -1}, + {0, 0, -1, -1, -1, -1, -1}, + {0, -1, -1, -1, -1, -1, -1} + }; + int expectedCounts2[kDuration + 1][kDuration + 1] = { + {0, 1, 2, 3, 4, 5, 5}, + {0, 1, 2, 3, 4, 4, -1}, + {0, 1, 2, 3, 3, -1, -1}, + {0, 1, 2, 2, -1, -1, -1}, + {0, 1, 1, -1, -1, -1, -1}, + {0, 0, -1, -1, -1, -1, -1}, + {0, -1, -1, -1, -1, -1, -1} + }; + + currentTime = b.getLatestTime() + seconds(1); + for (int i = 0; i <= kDuration + 1; i++) { + for (int j = 0; j <= kDuration - i; j++) { + TimePoint start = currentTime - seconds(i + j); + TimePoint end = currentTime - seconds(i); + double expectedSum = expectedSums2[i][j]; + EXPECT_EQ(expectedSum, b.sum(start, end)) + << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end + << ")"; + + uint64_t expectedCount = expectedCounts2[i][j]; + EXPECT_EQ(expectedCount, b.count(start, end)) + << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end + << ")"; + + double expectedAvg = expectedCount ? expectedSum / expectedCount : 0; + EXPECT_EQ(expectedAvg, b.avg(start, end)) + << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end + << ")"; + + TimePoint dataStart = std::max(start, b.getEarliestTime()); + TimePoint dataEnd = std::max(end, dataStart); + seconds expectedInterval = dataEnd - dataStart; + EXPECT_EQ(expectedInterval, b.elapsed(start, end)) + << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end + << ")"; + + double expectedRate = expectedInterval.count() ? + expectedSum / expectedInterval.count() : 0; + EXPECT_EQ(expectedRate, b.rate(start, end)) + << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end + << ")"; + } + } +} + +TEST(BucketedTimeSeries, rateByInterval) { + const int kNumBuckets = 5; + const seconds kDuration(10); + BucketedTimeSeries b(kNumBuckets, kDuration); + + // Add data points at a constant rate of 10 per second. + // Start adding data points at kDuration, and fill half of the buckets for + // now. + TimePoint start(kDuration); + TimePoint end(kDuration + (kDuration / 2)); + const double kFixedRate = 10.0; + for (TimePoint i = start; i < end; i += seconds(1)) { + b.addValue(i, kFixedRate); + } + + // Querying the rate should yield kFixedRate. + EXPECT_EQ(kFixedRate, b.rate()); + EXPECT_EQ(kFixedRate, b.rate(start, end)); + EXPECT_EQ(kFixedRate, b.rate(start, start + kDuration)); + EXPECT_EQ(kFixedRate, b.rate(end - kDuration, end)); + EXPECT_EQ(kFixedRate, b.rate(end - seconds(1), end)); + // We have been adding 1 data point per second, so countRate() + // should be 1. + EXPECT_EQ(1.0, b.countRate()); + EXPECT_EQ(1.0, b.countRate(start, end)); + EXPECT_EQ(1.0, b.countRate(start, start + kDuration)); + EXPECT_EQ(1.0, b.countRate(end - kDuration, end)); + EXPECT_EQ(1.0, b.countRate(end - seconds(1), end)); + + // We haven't added anything before time kDuration. + // Querying data earlier than this should result in a rate of 0. + EXPECT_EQ(0.0, b.rate(mkTimePoint(0), mkTimePoint(1))); + EXPECT_EQ(0.0, b.countRate(mkTimePoint(0), mkTimePoint(1))); + + // Fill the remainder of the timeseries from kDuration to kDuration*2 + start = end; + end = TimePoint(kDuration * 2); + for (TimePoint i = start; i < end; i += seconds(1)) { + b.addValue(i, kFixedRate); + } + + EXPECT_EQ(kFixedRate, b.rate()); + EXPECT_EQ(kFixedRate, b.rate(TimePoint(kDuration), TimePoint(kDuration * 2))); + EXPECT_EQ(kFixedRate, b.rate(TimePoint(), TimePoint(kDuration * 2))); + EXPECT_EQ(kFixedRate, b.rate(TimePoint(), TimePoint(kDuration * 10))); + EXPECT_EQ(1.0, b.countRate()); + EXPECT_EQ(1.0, b.countRate(TimePoint(kDuration), TimePoint(kDuration * 2))); + EXPECT_EQ(1.0, b.countRate(TimePoint(), TimePoint(kDuration * 2))); + EXPECT_EQ(1.0, b.countRate(TimePoint(), TimePoint(kDuration * 10))); +} + +TEST(BucketedTimeSeries, addHistorical) { + const int kNumBuckets = 5; + const seconds kDuration(10); + BucketedTimeSeries b(kNumBuckets, kDuration); + + // Initially fill with a constant rate of data + for (TimePoint i = mkTimePoint(0); i < mkTimePoint(10); i += seconds(1)) { + b.addValue(i, 10.0); + } + + EXPECT_EQ(10.0, b.rate()); + EXPECT_EQ(10.0, b.avg()); + EXPECT_EQ(10, b.count()); + + // Add some more data points to the middle bucket + b.addValue(mkTimePoint(4), 40.0); + b.addValue(mkTimePoint(5), 40.0); + EXPECT_EQ(15.0, b.avg()); + EXPECT_EQ(18.0, b.rate()); + EXPECT_EQ(12, b.count()); + + // Now start adding more current data points, until we are about to roll over + // the bucket where we added the extra historical data. + for (TimePoint i = mkTimePoint(10); i < mkTimePoint(14); i += seconds(1)) { + b.addValue(i, 10.0); + } + EXPECT_EQ(15.0, b.avg()); + EXPECT_EQ(18.0, b.rate()); + EXPECT_EQ(12, b.count()); + + // Now roll over the middle bucket + b.addValue(mkTimePoint(14), 10.0); + b.addValue(mkTimePoint(15), 10.0); + EXPECT_EQ(10.0, b.avg()); + EXPECT_EQ(10.0, b.rate()); + EXPECT_EQ(10, b.count()); + + // Add more historical values past the bucket window. + // These should be ignored. + EXPECT_FALSE(b.addValue(mkTimePoint(4), 40.0)); + EXPECT_FALSE(b.addValue(mkTimePoint(5), 40.0)); + EXPECT_EQ(10.0, b.avg()); + EXPECT_EQ(10.0, b.rate()); + EXPECT_EQ(10, b.count()); +} + +TEST(BucketedTimeSeries, reConstructEmptyTimeSeries) { + auto verify = [](auto timeSeries) { + EXPECT_TRUE(timeSeries.empty()); + EXPECT_EQ(0, timeSeries.sum()); + EXPECT_EQ(0, timeSeries.count()); + }; + + // Create a 100 second timeseries with 10 buckets_ + BucketedTimeSeries ts(10, seconds(100)); + + verify(ts); + + auto firstTime = ts.firstTime(); + auto latestTime = ts.latestTime(); + auto duration = ts.duration(); + auto buckets = ts.buckets(); + + // Reconstruct the timeseries + BucketedTimeSeries newTs(firstTime, latestTime, duration, buckets); + + verify(newTs); +} + +TEST(BucketedTimeSeries, reConstructWithValidData) { + // Create a 100 second timeseries with 10 buckets_ + BucketedTimeSeries ts(10, seconds(100)); + + auto setup = [&] { + ts.clear(); + // Add 1 value to each bucket + for (int n = 5; n <= 95; n += 10) { + ts.addValue(seconds(n), 6); + } + + EXPECT_EQ(10, ts.count()); + EXPECT_EQ(60, ts.sum()); + EXPECT_EQ(6, ts.avg()); + }; + + setup(); + + auto firstTime = ts.firstTime(); + auto latestTime = ts.latestTime(); + auto duration = ts.duration(); + auto buckets = ts.buckets(); + + // Reconstruct the timeseries + BucketedTimeSeries newTs(firstTime, latestTime, duration, buckets); + + auto compare = [&] { + EXPECT_EQ(ts.firstTime(), newTs.firstTime()); + EXPECT_EQ(ts.latestTime(), newTs.latestTime()); + EXPECT_EQ(ts.duration(), newTs.duration()); + EXPECT_EQ(ts.buckets().size(), newTs.buckets().size()); + EXPECT_EQ(ts.sum(), newTs.sum()); + EXPECT_EQ(ts.count(), newTs.count()); + + for (auto it1 = ts.buckets().begin(), it2 = newTs.buckets().begin(); + it1 != ts.buckets().end(); + it1++, it2++) { + EXPECT_EQ(it1->sum, it2->sum); + EXPECT_EQ(it1->count, it2->count); + } + }; + + compare(); +} + +TEST(BucketedTimeSeries, reConstructWithCorruptedData) { + // The total should have been 0 as firstTime > latestTime + EXPECT_THROW( + { + std::vector buckets(10); + buckets[0].sum = 1; + buckets[0].count = 1; + + BucketedTimeSeries ts( + mkTimePoint(1), mkTimePoint(0), Duration(10), buckets); + }, + std::invalid_argument); + + // The duration should be no less than latestTime - firstTime + EXPECT_THROW( + BucketedTimeSeries( + mkTimePoint(1), + mkTimePoint(100), + Duration(10), + std::vector(10)), + std::invalid_argument); +} + +namespace IntMHTS { + enum Levels { + MINUTE, + HOUR, + ALLTIME, + NUM_LEVELS, + }; + + const seconds kMinuteHourDurations[] = { + seconds(60), seconds(3600), seconds(0) + }; +}; + +TEST(MinuteHourTimeSeries, Basic) { + folly::MultiLevelTimeSeries mhts(60, IntMHTS::NUM_LEVELS, + IntMHTS::kMinuteHourDurations); + EXPECT_EQ(mhts.numLevels(), IntMHTS::NUM_LEVELS); + EXPECT_EQ(mhts.numLevels(), 3); + + EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 0); + EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 0); + EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 0); + + EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 0); + EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 0); + EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 0); + + EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 0); + EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 0); + EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 0); + + EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 0); + EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 0); + EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 0); + + seconds cur_time(0); + + mhts.addValue(cur_time++, 10); + mhts.flush(); + + EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 1); + EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 1); + EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 1); + + for (int i = 0; i < 299; ++i) { + mhts.addValue(cur_time++, 10); + } + mhts.flush(); + + EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 60); + EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 300); + EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 300); + + EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 600); + EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 300*10); + EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 300*10); + + EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 10); + EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 10); + EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 10); + + EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 10); + EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 10); + EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 10); + + for (int i = 0; i < 3600*3 - 300; ++i) { + mhts.addValue(cur_time++, 10); + } + mhts.flush(); + + EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 60); + EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 3600); + EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 3600*3); + + EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 600); + EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 3600*10); + EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 3600*3*10); + + EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 10); + EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 10); + EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 10); + + EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 10); + EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 10); + EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 10); + + for (int i = 0; i < 3600; ++i) { + mhts.addValue(cur_time++, 100); + } + mhts.flush(); + + EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 60*100); + EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 3600*100); + EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), + 3600*3*10 + 3600*100); + + EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 100); + EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 100); + EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 32.5); + EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 32); + + EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 100); + EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 100); + EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 32.5); + EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 32); + + for (int i = 0; i < 1800; ++i) { + mhts.addValue(cur_time++, 120); + } + mhts.flush(); + + EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 60*120); + EXPECT_EQ(mhts.sum(IntMHTS::HOUR), + 1800*100 + 1800*120); + EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), + 3600*3*10 + 3600*100 + 1800*120); + + for (int i = 0; i < 60; ++i) { + mhts.addValue(cur_time++, 1000); + } + mhts.flush(); + + EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 60*1000); + EXPECT_EQ(mhts.sum(IntMHTS::HOUR), + 1740*100 + 1800*120 + 60*1000); + EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), + 3600*3*10 + 3600*100 + 1800*120 + 60*1000); + + mhts.clear(); + EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 0); +} + +TEST(MinuteHourTimeSeries, QueryByInterval) { + folly::MultiLevelTimeSeries mhts(60, IntMHTS::NUM_LEVELS, + IntMHTS::kMinuteHourDurations); + + TimePoint curTime; + for (curTime = mkTimePoint(0); curTime < mkTimePoint(7200); + curTime += seconds(1)) { + mhts.addValue(curTime, 1); + } + for (curTime = mkTimePoint(7200); curTime < mkTimePoint(7200 + 3540); + curTime += seconds(1)) { + mhts.addValue(curTime, 10); + } + for (curTime = mkTimePoint(7200 + 3540); curTime < mkTimePoint(7200 + 3600); + curTime += seconds(1)) { + mhts.addValue(curTime, 100); + } + mhts.flush(); + + struct TimeInterval { + TimePoint start; + TimePoint end; + }; + TimeInterval intervals[12] = { + { curTime - seconds(60), curTime }, + { curTime - seconds(3600), curTime }, + { curTime - seconds(7200), curTime }, + { curTime - seconds(3600), curTime - seconds(60) }, + { curTime - seconds(7200), curTime - seconds(60) }, + { curTime - seconds(7200), curTime - seconds(3600) }, + { curTime - seconds(50), curTime - seconds(20) }, + { curTime - seconds(3020), curTime - seconds(20) }, + { curTime - seconds(7200), curTime - seconds(20) }, + { curTime - seconds(3000), curTime - seconds(1000) }, + { curTime - seconds(7200), curTime - seconds(1000) }, + { curTime - seconds(7200), curTime - seconds(3600) }, + }; + + int expectedSums[12] = { + 6000, 41400, 32400, 35400, 32130, 16200, 3000, 33600, 32310, 20000, 27900, + 16200 + }; + + int expectedCounts[12] = { + 60, 3600, 7200, 3540, 7140, 3600, 30, 3000, 7180, 2000, 6200, 3600 + }; + + for (int i = 0; i < 12; ++i) { + TimeInterval interval = intervals[i]; + + int s = mhts.sum(interval.start, interval.end); + EXPECT_EQ(expectedSums[i], s); + + int c = mhts.count(interval.start, interval.end); + EXPECT_EQ(expectedCounts[i], c); + + int a = mhts.avg(interval.start, interval.end); + EXPECT_EQ(expectedCounts[i] ? + (expectedSums[i] / expectedCounts[i]) : 0, + a); + + int r = mhts.rate(interval.start, interval.end); + int expectedRate = + expectedSums[i] / (interval.end - interval.start).count(); + EXPECT_EQ(expectedRate, r); + } +} + +TEST(MultiLevelTimeSeries, Basic) { + // using constructor with initializer_list parameter + folly::MultiLevelTimeSeries mhts( + 60, {seconds(60), seconds(3600), seconds(0)}); + EXPECT_EQ(mhts.numLevels(), 3); + + EXPECT_EQ(mhts.sum(seconds(60)), 0); + EXPECT_EQ(mhts.sum(seconds(3600)), 0); + EXPECT_EQ(mhts.sum(seconds(0)), 0); + + EXPECT_EQ(mhts.avg(seconds(60)), 0); + EXPECT_EQ(mhts.avg(seconds(3600)), 0); + EXPECT_EQ(mhts.avg(seconds(0)), 0); + + EXPECT_EQ(mhts.rate(seconds(60)), 0); + EXPECT_EQ(mhts.rate(seconds(3600)), 0); + EXPECT_EQ(mhts.rate(seconds(0)), 0); + + EXPECT_EQ(mhts.getLevelByDuration(seconds(60)).elapsed().count(), 0); + EXPECT_EQ(mhts.getLevelByDuration(seconds(3600)).elapsed().count(), 0); + EXPECT_EQ(mhts.getLevelByDuration(seconds(0)).elapsed().count(), 0); + + seconds cur_time(0); + + mhts.addValue(cur_time++, 10); + mhts.flush(); + + EXPECT_EQ(mhts.getLevelByDuration(seconds(60)).elapsed().count(), 1); + EXPECT_EQ(mhts.getLevelByDuration(seconds(3600)).elapsed().count(), 1); + EXPECT_EQ(mhts.getLevelByDuration(seconds(0)).elapsed().count(), 1); + + for (int i = 0; i < 299; ++i) { + mhts.addValue(cur_time++, 10); + } + mhts.flush(); + + EXPECT_EQ(mhts.getLevelByDuration(seconds(60)).elapsed().count(), 60); + EXPECT_EQ(mhts.getLevelByDuration(seconds(3600)).elapsed().count(), 300); + EXPECT_EQ(mhts.getLevelByDuration(seconds(0)).elapsed().count(), 300); + + EXPECT_EQ(mhts.sum(seconds(60)), 600); + EXPECT_EQ(mhts.sum(seconds(3600)), 300 * 10); + EXPECT_EQ(mhts.sum(seconds(0)), 300 * 10); + + EXPECT_EQ(mhts.avg(seconds(60)), 10); + EXPECT_EQ(mhts.avg(seconds(3600)), 10); + EXPECT_EQ(mhts.avg(seconds(0)), 10); + + EXPECT_EQ(mhts.rate(seconds(60)), 10); + EXPECT_EQ(mhts.rate(seconds(3600)), 10); + EXPECT_EQ(mhts.rate(seconds(0)), 10); + + for (int i = 0; i < 3600 * 3 - 300; ++i) { + mhts.addValue(cur_time++, 10); + } + mhts.flush(); + + EXPECT_EQ(mhts.getLevelByDuration(seconds(60)).elapsed().count(), 60); + EXPECT_EQ(mhts.getLevelByDuration(seconds(3600)).elapsed().count(), 3600); + EXPECT_EQ(mhts.getLevelByDuration(seconds(0)).elapsed().count(), 3600 * 3); + + EXPECT_EQ(mhts.sum(seconds(60)), 600); + EXPECT_EQ(mhts.sum(seconds(3600)), 3600 * 10); + EXPECT_EQ(mhts.sum(seconds(0)), 3600 * 3 * 10); + + EXPECT_EQ(mhts.avg(seconds(60)), 10); + EXPECT_EQ(mhts.avg(seconds(3600)), 10); + EXPECT_EQ(mhts.avg(seconds(0)), 10); + + EXPECT_EQ(mhts.rate(seconds(60)), 10); + EXPECT_EQ(mhts.rate(seconds(3600)), 10); + EXPECT_EQ(mhts.rate(seconds(0)), 10); + + for (int i = 0; i < 3600; ++i) { + mhts.addValue(cur_time++, 100); + } + mhts.flush(); + + EXPECT_EQ(mhts.sum(seconds(60)), 60 * 100); + EXPECT_EQ(mhts.sum(seconds(3600)), 3600 * 100); + EXPECT_EQ(mhts.sum(seconds(0)), 3600 * 3 * 10 + 3600 * 100); + + EXPECT_EQ(mhts.avg(seconds(60)), 100); + EXPECT_EQ(mhts.avg(seconds(3600)), 100); + EXPECT_EQ(mhts.avg(seconds(0)), 32.5); + EXPECT_EQ(mhts.avg(seconds(0)), 32); + + EXPECT_EQ(mhts.rate(seconds(60)), 100); + EXPECT_EQ(mhts.rate(seconds(3600)), 100); + EXPECT_EQ(mhts.rate(seconds(0)), 32.5); + EXPECT_EQ(mhts.rate(seconds(0)), 32); + + for (int i = 0; i < 1800; ++i) { + mhts.addValue(cur_time++, 120); + } + mhts.flush(); + + EXPECT_EQ(mhts.sum(seconds(60)), 60 * 120); + EXPECT_EQ(mhts.sum(seconds(3600)), 1800 * 100 + 1800 * 120); + EXPECT_EQ(mhts.sum(seconds(0)), 3600 * 3 * 10 + 3600 * 100 + 1800 * 120); + + for (int i = 0; i < 60; ++i) { + mhts.addValue(cur_time++, 1000); + } + mhts.flush(); + + EXPECT_EQ(mhts.sum(seconds(60)), 60 * 1000); + EXPECT_EQ(mhts.sum(seconds(3600)), 1740 * 100 + 1800 * 120 + 60 * 1000); + EXPECT_EQ( + mhts.sum(seconds(0)), + 3600 * 3 * 10 + 3600 * 100 + 1800 * 120 + 60 * 1000); + + mhts.clear(); + EXPECT_EQ(mhts.sum(seconds(0)), 0); +} + +TEST(MultiLevelTimeSeries, QueryByInterval) { + folly::MultiLevelTimeSeries mhts( + 60, {seconds(60), seconds(3600), seconds(0)}); + + TimePoint curTime; + for (curTime = mkTimePoint(0); curTime < mkTimePoint(7200); + curTime += seconds(1)) { + mhts.addValue(curTime, 1); + } + for (curTime = mkTimePoint(7200); curTime < mkTimePoint(7200 + 3540); + curTime += seconds(1)) { + mhts.addValue(curTime, 10); + } + for (curTime = mkTimePoint(7200 + 3540); curTime < mkTimePoint(7200 + 3600); + curTime += seconds(1)) { + mhts.addValue(curTime, 100); + } + mhts.flush(); + + struct TimeInterval { + TimePoint start; + TimePoint end; + }; + + std::array intervals = {{ + {curTime - seconds(60), curTime}, + {curTime - seconds(3600), curTime}, + {curTime - seconds(7200), curTime}, + {curTime - seconds(3600), curTime - seconds(60)}, + {curTime - seconds(7200), curTime - seconds(60)}, + {curTime - seconds(7200), curTime - seconds(3600)}, + {curTime - seconds(50), curTime - seconds(20)}, + {curTime - seconds(3020), curTime - seconds(20)}, + {curTime - seconds(7200), curTime - seconds(20)}, + {curTime - seconds(3000), curTime - seconds(1000)}, + {curTime - seconds(7200), curTime - seconds(1000)}, + {curTime - seconds(7200), curTime - seconds(3600)}, + }}; + + std::array expectedSums = {{6000, + 41400, + 32400, + 35400, + 32130, + 16200, + 3000, + 33600, + 32310, + 20000, + 27900, + 16200}}; + + std::array expectedCounts = { + {60, 3600, 7200, 3540, 7140, 3600, 30, 3000, 7180, 2000, 6200, 3600}}; + + for (size_t i = 0; i < intervals.size(); ++i) { + TimeInterval interval = intervals[i]; + + int s = mhts.sum(interval.start, interval.end); + EXPECT_EQ(expectedSums[i], s); + + int c = mhts.count(interval.start, interval.end); + EXPECT_EQ(expectedCounts[i], c); + + int a = mhts.avg(interval.start, interval.end); + EXPECT_EQ(expectedCounts[i] ? (expectedSums[i] / expectedCounts[i]) : 0, a); + + int r = mhts.rate(interval.start, interval.end); + int expectedRate = + expectedSums[i] / (interval.end - interval.start).count(); + EXPECT_EQ(expectedRate, r); + } +} diff --git a/folly/stats/test/TimeseriesHistogramTest.cpp b/folly/stats/test/TimeseriesHistogramTest.cpp new file mode 100644 index 00000000..4ee4a69c --- /dev/null +++ b/folly/stats/test/TimeseriesHistogramTest.cpp @@ -0,0 +1,540 @@ +/* + * Copyright 2017 Facebook, Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include + +#include + +#include + +using namespace std; +using namespace folly; +using std::chrono::seconds; + +namespace { +namespace IntMTMHTS { + enum Levels { + MINUTE, + TEN_MINUTE, + HOUR, + ALLTIME, + NUM_LEVELS, + }; + + const seconds kDurations[] = { + seconds(60), seconds(600), seconds(3600), seconds(0) + }; +}; + +namespace IntMHTS { + enum Levels { + MINUTE, + HOUR, + ALLTIME, + NUM_LEVELS, + }; + + const seconds kDurations[] = { + seconds(60), seconds(3600), seconds(0) + }; +}; + +typedef std::mt19937 RandomInt32; + +using StatsClock = folly::LegacyStatsClock; +StatsClock::time_point mkTimePoint(int value) { + return StatsClock::time_point(StatsClock::duration(value)); +} +} + +TEST(TimeseriesHistogram, Percentile) { + RandomInt32 random(5); + // [10, 109], 12 buckets including above and below + { + TimeseriesHistogram h(10, 10, 110, + MultiLevelTimeSeries( + 60, IntMTMHTS::NUM_LEVELS, + IntMTMHTS::kDurations)); + + EXPECT_EQ(0, h.getPercentileEstimate(0, IntMTMHTS::ALLTIME)); + + EXPECT_EQ(12, h.getNumBuckets()); + EXPECT_EQ(10, h.getBucketSize()); + EXPECT_EQ(10, h.getMin()); + EXPECT_EQ(110, h.getMax()); + + for (size_t i = 0; i < h.getNumBuckets(); ++i) { + EXPECT_EQ(4, h.getBucket(i).numLevels()); + } + + int maxVal = 120; + h.addValue(mkTimePoint(0), 0); + h.addValue(mkTimePoint(0), maxVal); + for (int i = 0; i < 98; i++) { + h.addValue(mkTimePoint(0), random() % maxVal); + } + + h.update(mkTimePoint(1500000000)); + // bucket 0 stores everything below min, so its minimum + // is the lowest possible number + EXPECT_EQ(std::numeric_limits::min(), + h.getPercentileBucketMin(1, IntMTMHTS::ALLTIME)); + EXPECT_EQ(110, h.getPercentileBucketMin(99, IntMTMHTS::ALLTIME)); + + EXPECT_EQ(-2, h.getPercentileEstimate(0, IntMTMHTS::ALLTIME)); + EXPECT_EQ(-1, h.getPercentileEstimate(1, IntMTMHTS::ALLTIME)); + EXPECT_EQ(119, h.getPercentileEstimate(99, IntMTMHTS::ALLTIME)); + EXPECT_EQ(120, h.getPercentileEstimate(100, IntMTMHTS::ALLTIME)); + } +} + +TEST(TimeseriesHistogram, String) { + RandomInt32 random(5); + // [10, 109], 12 buckets including above and below + { + TimeseriesHistogram hist(10, 10, 110, + MultiLevelTimeSeries( + 60, IntMTMHTS::NUM_LEVELS, + IntMTMHTS::kDurations)); + + int maxVal = 120; + hist.addValue(mkTimePoint(0), 0); + hist.addValue(mkTimePoint(0), maxVal); + for (int i = 0; i < 98; i++) { + hist.addValue(mkTimePoint(0), random() % maxVal); + } + + hist.update(mkTimePoint(0)); + + const char* const kStringValues1[IntMTMHTS::NUM_LEVELS] = { + "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," + "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", + "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," + "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", + "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," + "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", + "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," + "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", + }; + + CHECK_EQ(IntMTMHTS::NUM_LEVELS, hist.getNumLevels()); + + for (size_t level = 0; level < hist.getNumLevels(); ++level) { + EXPECT_EQ(kStringValues1[level], hist.getString(level)); + } + + const char* const kStringValues2[IntMTMHTS::NUM_LEVELS] = { + "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," + "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", + "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," + "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", + "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," + "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", + "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," + "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", + }; + + CHECK_EQ(IntMTMHTS::NUM_LEVELS, hist.getNumLevels()); + + for (size_t level = 0; level < hist.getNumLevels(); ++level) { + EXPECT_EQ(kStringValues2[level], hist.getString(level)); + } + } +} + +TEST(TimeseriesHistogram, Clear) { + { + TimeseriesHistogram hist(10, 0, 100, + MultiLevelTimeSeries( + 60, IntMTMHTS::NUM_LEVELS, + IntMTMHTS::kDurations)); + + for (int now = 0; now < 3600; now++) { + for (int i = 0; i < 100; i++) { + hist.addValue(mkTimePoint(now), i, 2); // adds each item 2 times + } + } + + // check clearing + hist.clear(); + + for (size_t b = 0; b < hist.getNumBuckets(); ++b) { + EXPECT_EQ(0, hist.getBucket(b).count(IntMTMHTS::MINUTE)); + EXPECT_EQ(0, hist.getBucket(b).count(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(0, hist.getBucket(b).count(IntMTMHTS::HOUR)); + EXPECT_EQ(0, hist.getBucket(b).count(IntMTMHTS::ALLTIME)); + } + + for (int pct = 0; pct <= 100; pct++) { + EXPECT_EQ(0, hist.getPercentileBucketMin(pct, IntMTMHTS::MINUTE)); + EXPECT_EQ(0, hist.getPercentileBucketMin(pct, IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(0, hist.getPercentileBucketMin(pct, IntMTMHTS::HOUR)); + EXPECT_EQ(0, hist.getPercentileBucketMin(pct, IntMTMHTS::ALLTIME)); + + EXPECT_EQ(0, hist.getPercentileEstimate(pct, IntMTMHTS::MINUTE)); + EXPECT_EQ(0, hist.getPercentileEstimate(pct, IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(0, hist.getPercentileEstimate(pct, IntMTMHTS::HOUR)); + EXPECT_EQ(0, hist.getPercentileEstimate(pct, IntMTMHTS::ALLTIME)); + } + } +} + + +TEST(TimeseriesHistogram, Basic) { + { + TimeseriesHistogram hist(10, 0, 100, + MultiLevelTimeSeries( + 60, IntMTMHTS::NUM_LEVELS, + IntMTMHTS::kDurations)); + + for (int now = 0; now < 3600; now++) { + for (int i = 0; i < 100; i++) { + hist.addValue(mkTimePoint(now), i); + } + } + + hist.update(mkTimePoint(3599)); + for (int pct = 1; pct <= 100; pct++) { + int expected = (pct - 1) / 10 * 10; + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::MINUTE)); + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, + IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::HOUR)); + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::ALLTIME)); + } + + for (size_t b = 1; (b + 1) < hist.getNumBuckets(); ++b) { + EXPECT_EQ(600, hist.getBucket(b).count(IntMTMHTS::MINUTE)); + EXPECT_EQ(6000, hist.getBucket(b).count(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(36000, hist.getBucket(b).count(IntMTMHTS::HOUR)); + EXPECT_EQ(36000, hist.getBucket(b).count(IntMTMHTS::ALLTIME)); + } + EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::MINUTE)); + EXPECT_EQ(0, hist.getBucket(hist.getNumBuckets() - 1).count( + IntMTMHTS::MINUTE)); + + EXPECT_EQ(6000, hist.count(IntMTMHTS::MINUTE)); + EXPECT_EQ(60000, hist.count(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(360000, hist.count(IntMTMHTS::HOUR)); + EXPECT_EQ(360000, hist.count(IntMTMHTS::ALLTIME)); + + // Each second we added 4950 total over 100 data points + EXPECT_EQ(297000, hist.sum(IntMTMHTS::MINUTE)); + EXPECT_EQ(2970000, hist.sum(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(17820000, hist.sum(IntMTMHTS::HOUR)); + EXPECT_EQ(17820000, hist.sum(IntMTMHTS::ALLTIME)); + + EXPECT_EQ(49, hist.avg(IntMTMHTS::MINUTE)); + EXPECT_EQ(49, hist.avg(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(49, hist.avg(IntMTMHTS::HOUR)); + EXPECT_EQ(49, hist.avg(IntMTMHTS::ALLTIME)); + EXPECT_EQ(49.5, hist.avg(IntMTMHTS::MINUTE)); + EXPECT_EQ(49.5, hist.avg(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(49.5, hist.avg(IntMTMHTS::HOUR)); + EXPECT_EQ(49.5, hist.avg(IntMTMHTS::ALLTIME)); + + EXPECT_EQ(4950, hist.rate(IntMTMHTS::MINUTE)); + EXPECT_EQ(4950, hist.rate(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(4950, hist.rate(IntMTMHTS::HOUR)); + EXPECT_EQ(4950, hist.rate(IntMTMHTS::ALLTIME)); + EXPECT_EQ(4950, hist.rate(IntMTMHTS::MINUTE)); + EXPECT_EQ(4950, hist.rate(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(4950, hist.rate(IntMTMHTS::HOUR)); + EXPECT_EQ(4950, hist.rate(IntMTMHTS::ALLTIME)); + + EXPECT_EQ(1000, hist.count(mkTimePoint(10), mkTimePoint(20))); + EXPECT_EQ(49500, hist.sum(mkTimePoint(10), mkTimePoint(20))); + EXPECT_EQ(4950, hist.rate(mkTimePoint(10), mkTimePoint(20))); + EXPECT_EQ(49.5, hist.avg(mkTimePoint(10), mkTimePoint(20))); + + EXPECT_EQ(200, hist.count(mkTimePoint(3550), mkTimePoint(3552))); + EXPECT_EQ(9900, hist.sum(mkTimePoint(3550), mkTimePoint(3552))); + EXPECT_EQ(4950, hist.rate(mkTimePoint(3550), mkTimePoint(3552))); + EXPECT_EQ(49.5, hist.avg(mkTimePoint(3550), mkTimePoint(3552))); + + EXPECT_EQ(0, hist.count(mkTimePoint(4550), mkTimePoint(4552))); + EXPECT_EQ(0, hist.sum(mkTimePoint(4550), mkTimePoint(4552))); + EXPECT_EQ(0, hist.rate(mkTimePoint(4550), mkTimePoint(4552))); + EXPECT_EQ(0, hist.avg(mkTimePoint(4550), mkTimePoint(4552))); + } + + // ----------------- + + { + TimeseriesHistogram hist(10, 0, 100, + MultiLevelTimeSeries( + 60, IntMTMHTS::NUM_LEVELS, + IntMTMHTS::kDurations)); + + for (int now = 0; now < 3600; now++) { + for (int i = 0; i < 100; i++) { + hist.addValue(mkTimePoint(now), i, 2); // adds each item 2 times + } + } + + hist.update(mkTimePoint(3599)); + for (int pct = 1; pct <= 100; pct++) { + int expected = (pct - 1) / 10 * 10; + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::MINUTE)); + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, + IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::HOUR)); + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::ALLTIME)); + } + + for (size_t b = 1; (b + 1) < hist.getNumBuckets(); ++b) { + EXPECT_EQ(600 * 2, hist.getBucket(b).count(IntMTMHTS::MINUTE)); + EXPECT_EQ(6000 * 2, hist.getBucket(b).count(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(36000 * 2, hist.getBucket(b).count(IntMTMHTS::HOUR)); + EXPECT_EQ(36000 * 2, hist.getBucket(b).count(IntMTMHTS::ALLTIME)); + } + EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::MINUTE)); + EXPECT_EQ(0, hist.getBucket(hist.getNumBuckets() - 1).count( + IntMTMHTS::MINUTE)); + } + + // ----------------- + + { + TimeseriesHistogram hist(10, 0, 100, + MultiLevelTimeSeries( + 60, IntMTMHTS::NUM_LEVELS, + IntMTMHTS::kDurations)); + + for (int now = 0; now < 3600; now++) { + for (int i = 0; i < 50; i++) { + hist.addValue(mkTimePoint(now), i * 2, 2); // adds each item 2 times + } + } + + hist.update(mkTimePoint(3599)); + for (int pct = 1; pct <= 100; pct++) { + int expected = (pct - 1) / 10 * 10; + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::MINUTE)); + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, + IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::HOUR)); + EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::ALLTIME)); + } + + EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::MINUTE)); + EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::HOUR)); + EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::ALLTIME)); + EXPECT_EQ(0, hist.getBucket(hist.getNumBuckets() - 1).count( + IntMTMHTS::MINUTE)); + EXPECT_EQ(0, + hist.getBucket(hist.getNumBuckets() - 1). + count(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(0, hist.getBucket(hist.getNumBuckets() - 1).count( + IntMTMHTS::HOUR)); + EXPECT_EQ(0, + hist.getBucket(hist.getNumBuckets() - 1).count( + IntMTMHTS::ALLTIME)); + + for (size_t b = 1; (b + 1) < hist.getNumBuckets(); ++b) { + EXPECT_EQ(600, hist.getBucket(b).count(IntMTMHTS::MINUTE)); + EXPECT_EQ(6000, hist.getBucket(b).count(IntMTMHTS::TEN_MINUTE)); + EXPECT_EQ(36000, hist.getBucket(b).count(IntMTMHTS::HOUR)); + EXPECT_EQ(36000, hist.getBucket(b).count(IntMTMHTS::ALLTIME)); + } + + for (int i = 0; i < 100; ++i) { + hist.addValue(mkTimePoint(3599), 200 + i); + } + hist.update(mkTimePoint(3599)); + EXPECT_EQ(100, + hist.getBucket(hist.getNumBuckets() - 1).count( + IntMTMHTS::ALLTIME)); + + } +} + +TEST(TimeseriesHistogram, QueryByInterval) { + TimeseriesHistogram mhts(8, 8, 120, + MultiLevelTimeSeries( + 60, IntMHTS::NUM_LEVELS, + IntMHTS::kDurations)); + + mhts.update(mkTimePoint(0)); + + int curTime; + for (curTime = 0; curTime < 7200; curTime++) { + mhts.addValue(mkTimePoint(curTime), 1); + } + for (curTime = 7200; curTime < 7200 + 3540; curTime++) { + mhts.addValue(mkTimePoint(curTime), 10); + } + for (curTime = 7200 + 3540; curTime < 7200 + 3600; curTime++) { + mhts.addValue(mkTimePoint(curTime), 100); + } + + mhts.update(mkTimePoint(7200 + 3600 - 1)); + + struct TimeInterval { + TimeInterval(int s, int e) : start(mkTimePoint(s)), end(mkTimePoint(e)) {} + + StatsClock::time_point start; + StatsClock::time_point end; + }; + TimeInterval intervals[12] = { + { curTime - 60, curTime }, + { curTime - 3600, curTime }, + { curTime - 7200, curTime }, + { curTime - 3600, curTime - 60 }, + { curTime - 7200, curTime - 60 }, + { curTime - 7200, curTime - 3600 }, + { curTime - 50, curTime - 20 }, + { curTime - 3020, curTime - 20 }, + { curTime - 7200, curTime - 20 }, + { curTime - 3000, curTime - 1000 }, + { curTime - 7200, curTime - 1000 }, + { curTime - 7200, curTime - 3600 }, + }; + + int expectedSums[12] = { + 6000, 41400, 32400, 35400, 32129, 16200, 3000, 33600, 32308, 20000, 27899, + 16200 + }; + + int expectedCounts[12] = { + 60, 3600, 7200, 3540, 7139, 3600, 30, 3000, 7178, 2000, 6199, 3600 + }; + + // The first 7200 values added all fell below the histogram minimum, + // and went into the bucket that tracks all of the too-small values. + // This bucket reports a minimum value of the smallest possible integer. + int belowMinBucket = std::numeric_limits::min(); + + int expectedValues[12][3] = { + {96, 96, 96}, + { 8, 8, 96}, + { belowMinBucket, belowMinBucket, 8}, // alltime + { 8, 8, 8}, + { belowMinBucket, belowMinBucket, 8}, // alltime + { belowMinBucket, belowMinBucket, 8}, // alltime + {96, 96, 96}, + { 8, 8, 96}, + { belowMinBucket, belowMinBucket, 8}, // alltime + { 8, 8, 8}, + { belowMinBucket, belowMinBucket, 8}, // alltime + { belowMinBucket, belowMinBucket, 8} // alltime + }; + + for (int i = 0; i < 12; i++) { + const auto& itv = intervals[i]; + int s = mhts.sum(itv.start, itv.end); + EXPECT_EQ(expectedSums[i], s); + + int c = mhts.count(itv.start, itv.end); + EXPECT_EQ(expectedCounts[i], c); + } + + // 3 levels + for (int i = 1; i <= 100; i++) { + EXPECT_EQ(96, mhts.getPercentileBucketMin(i, 0)); + EXPECT_EQ( + 96, + mhts.getPercentileBucketMin( + i, mkTimePoint(curTime - 60), mkTimePoint(curTime))); + EXPECT_EQ( + 8, + mhts.getPercentileBucketMin( + i, mkTimePoint(curTime - 3540), mkTimePoint(curTime - 60))); + } + + EXPECT_EQ(8, mhts.getPercentileBucketMin(1, 1)); + EXPECT_EQ(8, mhts.getPercentileBucketMin(98, 1)); + EXPECT_EQ(96, mhts.getPercentileBucketMin(99, 1)); + EXPECT_EQ(96, mhts.getPercentileBucketMin(100, 1)); + + EXPECT_EQ(belowMinBucket, mhts.getPercentileBucketMin(1, 2)); + EXPECT_EQ(belowMinBucket, mhts.getPercentileBucketMin(66, 2)); + EXPECT_EQ(8, mhts.getPercentileBucketMin(67, 2)); + EXPECT_EQ(8, mhts.getPercentileBucketMin(99, 2)); + EXPECT_EQ(96, mhts.getPercentileBucketMin(100, 2)); + + // 0 is currently the value for bucket 0 (below min) + for (int i = 0; i < 12; i++) { + const auto& itv = intervals[i]; + int v = mhts.getPercentileBucketMin(1, itv.start, itv.end); + EXPECT_EQ(expectedValues[i][0], v); + + v = mhts.getPercentileBucketMin(50, itv.start, itv.end); + EXPECT_EQ(expectedValues[i][1], v); + + v = mhts.getPercentileBucketMin(99, itv.start, itv.end); + EXPECT_EQ(expectedValues[i][2], v); + } + + for (int i = 0; i < 12; i++) { + const auto& itv = intervals[i]; + // Some of the older intervals that fall in the alltime bucket + // are off by 1 or 2 in their estimated counts. + size_t tolerance = 0; + if (itv.start <= mkTimePoint(curTime - 7200)) { + tolerance = 2; + } else if (itv.start <= mkTimePoint(curTime - 3000)) { + tolerance = 1; + } + size_t actualCount = (itv.end - itv.start).count(); + size_t estimatedCount = mhts.count(itv.start, itv.end); + EXPECT_GE(actualCount, estimatedCount); + EXPECT_LE(actualCount - tolerance, estimatedCount); + } +} + +TEST(TimeseriesHistogram, SingleUniqueValue) { + int values[] = {-1, 0, 500, 1000, 1500}; + for (int ii = 0; ii < 5; ++ii) { + int value = values[ii]; + TimeseriesHistogram h(10, 0, 1000, + MultiLevelTimeSeries( + 60, IntMTMHTS::NUM_LEVELS, + IntMTMHTS::kDurations)); + + const int kNumIters = 1000; + for (int jj = 0; jj < kNumIters; ++jj) { + h.addValue(mkTimePoint(1), value); + } + h.update(mkTimePoint(1)); + // since we've only added one unique value, all percentiles should + // be that value + EXPECT_EQ(h.getPercentileEstimate(10, 0), value); + EXPECT_EQ(h.getPercentileEstimate(50, 0), value); + EXPECT_EQ(h.getPercentileEstimate(99, 0), value); + + // Things get trickier if there are multiple unique values. + const int kNewValue = 750; + for (int kk = 0; kk < 2*kNumIters; ++kk) { + h.addValue(mkTimePoint(1), kNewValue); + } + h.update(mkTimePoint(1)); + EXPECT_NEAR(h.getPercentileEstimate(50, 0), kNewValue+5, 5); + if (value >= 0 && value <= 1000) { + // only do further testing if value is within our bucket range, + // else estimates can be wildly off + if (kNewValue > value) { + EXPECT_NEAR(h.getPercentileEstimate(10, 0), value+5, 5); + EXPECT_NEAR(h.getPercentileEstimate(99, 0), kNewValue+5, 5); + } else { + EXPECT_NEAR(h.getPercentileEstimate(10, 0), kNewValue+5, 5); + EXPECT_NEAR(h.getPercentileEstimate(99, 0), value+5, 5); + } + } + } +} diff --git a/folly/test/HistogramBenchmark.cpp b/folly/test/HistogramBenchmark.cpp deleted file mode 100644 index d708253b..00000000 --- a/folly/test/HistogramBenchmark.cpp +++ /dev/null @@ -1,42 +0,0 @@ -/* - * Copyright 2017 Facebook, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include - -#include -#include -#include - -using folly::Histogram; - -void addValue(unsigned int n, int64_t bucketSize, int64_t min, int64_t max) { - Histogram hist(bucketSize, min, max); - int64_t num = min; - FOR_EACH_RANGE (i, 0, n) { - hist.addValue(num); - ++num; - if (num > max) { num = min; } - } -} - -BENCHMARK_NAMED_PARAM(addValue, 0_to_100, 1, 0, 100); -BENCHMARK_NAMED_PARAM(addValue, 0_to_1000, 10, 0, 1000); -BENCHMARK_NAMED_PARAM(addValue, 5k_to_20k, 250, 5000, 20000); - -int main(int argc, char *argv[]) { - gflags::ParseCommandLineFlags(&argc, &argv, true); - folly::runBenchmarks(); - return 0; -} diff --git a/folly/test/HistogramTest.cpp b/folly/test/HistogramTest.cpp deleted file mode 100644 index c2997a35..00000000 --- a/folly/test/HistogramTest.cpp +++ /dev/null @@ -1,223 +0,0 @@ -/* - * Copyright 2017 Facebook, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include -#include - -#include - -using folly::Histogram; - -// Insert 100 evenly distributed values into a histogram with 100 buckets -TEST(Histogram, Test100) { - Histogram h(1, 0, 100); - - for (unsigned int n = 0; n < 100; ++n) { - h.addValue(n); - } - - // 100 buckets, plus 1 for below min, and 1 for above max - EXPECT_EQ(h.getNumBuckets(), 102); - - double epsilon = 1e-6; - for (unsigned int n = 0; n <= 100; ++n) { - double pct = n / 100.0; - - // Floating point arithmetic isn't 100% accurate, and if we just divide - // (n / 100) the value should be exactly on a bucket boundary. Add espilon - // to ensure we fall in the upper bucket. - if (n < 100) { - double lowPct = -1.0; - double highPct = -1.0; - unsigned int bucketIdx = h.getPercentileBucketIdx(pct + epsilon, - &lowPct, &highPct); - EXPECT_EQ(n + 1, bucketIdx); - EXPECT_FLOAT_EQ(n / 100.0, lowPct); - EXPECT_FLOAT_EQ((n + 1) / 100.0, highPct); - } - - // Also test n - epsilon, to test falling in the lower bucket. - if (n > 0) { - double lowPct = -1.0; - double highPct = -1.0; - unsigned int bucketIdx = h.getPercentileBucketIdx(pct - epsilon, - &lowPct, &highPct); - EXPECT_EQ(n, bucketIdx); - EXPECT_FLOAT_EQ((n - 1) / 100.0, lowPct); - EXPECT_FLOAT_EQ(n / 100.0, highPct); - } - - // Check getPercentileEstimate() - EXPECT_EQ(n, h.getPercentileEstimate(pct)); - } -} - -// Test calling getPercentileBucketIdx() and getPercentileEstimate() on an -// empty histogram -TEST(Histogram, TestEmpty) { - Histogram h(1, 0, 100); - - for (unsigned int n = 0; n <= 100; ++n) { - double pct = n / 100.0; - - double lowPct = -1.0; - double highPct = -1.0; - unsigned int bucketIdx = h.getPercentileBucketIdx(pct, &lowPct, &highPct); - EXPECT_EQ(1, bucketIdx); - EXPECT_FLOAT_EQ(0.0, lowPct); - EXPECT_FLOAT_EQ(0.0, highPct); - - EXPECT_EQ(0, h.getPercentileEstimate(pct)); - } -} - -// Test calling getPercentileBucketIdx() and getPercentileEstimate() on a -// histogram with just a single value. -TEST(Histogram, Test1) { - Histogram h(1, 0, 100); - h.addValue(42); - - for (unsigned int n = 0; n < 100; ++n) { - double pct = n / 100.0; - - double lowPct = -1.0; - double highPct = -1.0; - unsigned int bucketIdx = h.getPercentileBucketIdx(pct, &lowPct, &highPct); - EXPECT_EQ(43, bucketIdx); - EXPECT_FLOAT_EQ(0.0, lowPct); - EXPECT_FLOAT_EQ(1.0, highPct); - - EXPECT_EQ(42, h.getPercentileEstimate(pct)); - } -} - -// Test adding enough numbers to make the sum value overflow in the -// "below min" bucket -TEST(Histogram, TestOverflowMin) { - Histogram h(1, 0, 100); - - for (unsigned int n = 0; n < 9; ++n) { - h.addValue(-0x0fffffffffffffff); - } - - // Compute a percentile estimate. We only added values to the "below min" - // bucket, so this should check that bucket. We're mainly verifying that the - // code doesn't crash here when the bucket average is larger than the max - // value that is supposed to be in the bucket. - int64_t estimate = h.getPercentileEstimate(0.05); - // The code will return the smallest possible value when it detects an - // overflow beyond the minimum value. - EXPECT_EQ(std::numeric_limits::min(), estimate); -} - -// Test adding enough numbers to make the sum value overflow in the -// "above max" bucket -TEST(Histogram, TestOverflowMax) { - Histogram h(1, 0, 100); - - for (unsigned int n = 0; n < 9; ++n) { - h.addValue(0x0fffffffffffffff); - } - - // The code will return the maximum possible value when it detects an - // overflow beyond the max value. - int64_t estimate = h.getPercentileEstimate(0.95); - EXPECT_EQ(std::numeric_limits::max(), estimate); -} - -// Test adding enough numbers to make the sum value overflow in one of the -// normal buckets -TEST(Histogram, TestOverflowBucket) { - Histogram h(0x0100000000000000, 0, 0x1000000000000000); - - for (unsigned int n = 0; n < 9; ++n) { - h.addValue(0x0fffffffffffffff); - } - - // The histogram code should return the bucket midpoint - // when it detects overflow. - int64_t estimate = h.getPercentileEstimate(0.95); - EXPECT_EQ(0x0f80000000000000, estimate); -} - -TEST(Histogram, TestDouble) { - // Insert 100 evenly spaced values into a histogram - Histogram h(100.0, 0.0, 5000.0); - for (double n = 50; n < 5000; n += 100) { - h.addValue(n); - } - EXPECT_EQ(52, h.getNumBuckets()); - EXPECT_EQ(2500.0, h.getPercentileEstimate(0.5)); - EXPECT_EQ(4500.0, h.getPercentileEstimate(0.9)); -} - -// Test where the bucket width is not an even multiple of the histogram range -TEST(Histogram, TestDoubleInexactWidth) { - Histogram h(100.0, 0.0, 4970.0); - for (double n = 50; n < 5000; n += 100) { - h.addValue(n); - } - EXPECT_EQ(52, h.getNumBuckets()); - EXPECT_EQ(2500.0, h.getPercentileEstimate(0.5)); - EXPECT_EQ(4500.0, h.getPercentileEstimate(0.9)); - - EXPECT_EQ(0, h.getBucketByIndex(51).count); - h.addValue(4990); - h.addValue(5100); - EXPECT_EQ(2, h.getBucketByIndex(51).count); - EXPECT_EQ(2600.0, h.getPercentileEstimate(0.5)); -} - -// Test where the bucket width is larger than the histogram range -// (There isn't really much point to defining a histogram this way, -// but we want to ensure that it still works just in case.) -TEST(Histogram, TestDoubleWidthTooBig) { - Histogram h(100.0, 0.0, 7.0); - EXPECT_EQ(3, h.getNumBuckets()); - - for (double n = 0; n < 7; n += 1) { - h.addValue(n); - } - EXPECT_EQ(0, h.getBucketByIndex(0).count); - EXPECT_EQ(7, h.getBucketByIndex(1).count); - EXPECT_EQ(0, h.getBucketByIndex(2).count); - EXPECT_EQ(3.0, h.getPercentileEstimate(0.5)); - - h.addValue(-1.0); - EXPECT_EQ(1, h.getBucketByIndex(0).count); - h.addValue(7.5); - EXPECT_EQ(1, h.getBucketByIndex(2).count); - EXPECT_EQ(3.0, h.getPercentileEstimate(0.5)); -} - -// Test that we get counts right -TEST(Histogram, Counts) { - Histogram h(1, 0, 10); - EXPECT_EQ(12, h.getNumBuckets()); - EXPECT_EQ(0, h.computeTotalCount()); - - // Add one to each bucket, make sure the counts match - for (int32_t i = 0; i < 10; i++) { - h.addValue(i); - EXPECT_EQ(i+1, h.computeTotalCount()); - } - - // Add a lot to one bucket, make sure the counts still make sense - for (int32_t i = 0; i < 100; i++) { - h.addValue(0); - } - EXPECT_EQ(110, h.computeTotalCount()); -} diff --git a/folly/test/Makefile.am b/folly/test/Makefile.am index 1399315f..7494920d 100644 --- a/folly/test/Makefile.am +++ b/folly/test/Makefile.am @@ -176,10 +176,6 @@ conv_benchmark_SOURCES = ConvBenchmark.cpp conv_benchmark_LDADD = libfollytestmain.la $(top_builddir)/libfollybenchmark.la check_PROGRAMS += conv_benchmark -histogram_test_SOURCES = HistogramTest.cpp -histogram_test_LDADD = libfollytestmain.la -TESTS += histogram_test - group_varint_test_SOURCES = GroupVarintTest.cpp group_varint_test_LDADD = libfollytestmain.la TESTS += group_varint_test diff --git a/folly/test/TimeseriesBenchmark.cpp b/folly/test/TimeseriesBenchmark.cpp deleted file mode 100644 index 835eda90..00000000 --- a/folly/test/TimeseriesBenchmark.cpp +++ /dev/null @@ -1,77 +0,0 @@ -/* - * Copyright 2017 Facebook, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include -#include - -#include - -#include - -using std::chrono::seconds; -using folly::BenchmarkSuspender; -using folly::BucketedTimeSeries; - -void addValue(unsigned int iters, - seconds duration, size_t numBuckets, - size_t callsPerSecond) { - BenchmarkSuspender suspend; - BucketedTimeSeries ts(numBuckets, duration); - suspend.dismiss(); - - seconds currentTime(1342000000); - size_t timeCounter = 0; - for (unsigned int n = 0; n < iters; ++n, ++timeCounter) { - if (timeCounter >= callsPerSecond) { - timeCounter = 0; - ++currentTime; - } - ts.addValue(currentTime, n); - } -} - -BENCHMARK_NAMED_PARAM(addValue, AllTime_1perSec, seconds(0), 60, 1); -BENCHMARK_NAMED_PARAM(addValue, 3600x60_1perSec, seconds(3600), 60, 1); -BENCHMARK_NAMED_PARAM(addValue, 600x60_1perSec, seconds(600), 60, 1); -BENCHMARK_NAMED_PARAM(addValue, 60x60_1perSec, seconds(60), 60, 1); -BENCHMARK_NAMED_PARAM(addValue, 100x10_1perSec, seconds(100), 10, 1); -BENCHMARK_NAMED_PARAM(addValue, 71x5_1perSec, seconds(71), 5, 1); -BENCHMARK_NAMED_PARAM(addValue, 1x1_1perSec, seconds(1), 1, 1); - -BENCHMARK_DRAW_LINE() - -BENCHMARK_NAMED_PARAM(addValue, AllTime_10perSec, seconds(0), 60, 10); -BENCHMARK_NAMED_PARAM(addValue, 3600x60_10perSec, seconds(3600), 60, 10); -BENCHMARK_NAMED_PARAM(addValue, 600x60_10perSec, seconds(600), 60, 10); -BENCHMARK_NAMED_PARAM(addValue, 60x60_10perSec, seconds(60), 60, 10); -BENCHMARK_NAMED_PARAM(addValue, 100x10_10perSec, seconds(100), 10, 10); -BENCHMARK_NAMED_PARAM(addValue, 71x5_10perSec, seconds(71), 5, 10); -BENCHMARK_NAMED_PARAM(addValue, 1x1_10perSec, seconds(1), 1, 10); - -BENCHMARK_DRAW_LINE() - -BENCHMARK_NAMED_PARAM(addValue, AllTime_100perSec, seconds(0), 60, 100); -BENCHMARK_NAMED_PARAM(addValue, 3600x60_100perSec, seconds(3600), 60, 100); -BENCHMARK_NAMED_PARAM(addValue, 600x60_100perSec, seconds(600), 60, 100); -BENCHMARK_NAMED_PARAM(addValue, 60x60_100perSec, seconds(60), 60, 100); -BENCHMARK_NAMED_PARAM(addValue, 100x10_100perSec, seconds(100), 10, 100); -BENCHMARK_NAMED_PARAM(addValue, 71x5_100perSec, seconds(71), 5, 100); -BENCHMARK_NAMED_PARAM(addValue, 1x1_100perSec, seconds(1), 1, 100); - -int main(int argc, char *argv[]) { - gflags::ParseCommandLineFlags(&argc, &argv, true); - folly::runBenchmarks(); - return 0; -} diff --git a/folly/test/TimeseriesHistogramTest.cpp b/folly/test/TimeseriesHistogramTest.cpp deleted file mode 100644 index 4ee4a69c..00000000 --- a/folly/test/TimeseriesHistogramTest.cpp +++ /dev/null @@ -1,540 +0,0 @@ -/* - * Copyright 2017 Facebook, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include -#include - -#include - -#include - -using namespace std; -using namespace folly; -using std::chrono::seconds; - -namespace { -namespace IntMTMHTS { - enum Levels { - MINUTE, - TEN_MINUTE, - HOUR, - ALLTIME, - NUM_LEVELS, - }; - - const seconds kDurations[] = { - seconds(60), seconds(600), seconds(3600), seconds(0) - }; -}; - -namespace IntMHTS { - enum Levels { - MINUTE, - HOUR, - ALLTIME, - NUM_LEVELS, - }; - - const seconds kDurations[] = { - seconds(60), seconds(3600), seconds(0) - }; -}; - -typedef std::mt19937 RandomInt32; - -using StatsClock = folly::LegacyStatsClock; -StatsClock::time_point mkTimePoint(int value) { - return StatsClock::time_point(StatsClock::duration(value)); -} -} - -TEST(TimeseriesHistogram, Percentile) { - RandomInt32 random(5); - // [10, 109], 12 buckets including above and below - { - TimeseriesHistogram h(10, 10, 110, - MultiLevelTimeSeries( - 60, IntMTMHTS::NUM_LEVELS, - IntMTMHTS::kDurations)); - - EXPECT_EQ(0, h.getPercentileEstimate(0, IntMTMHTS::ALLTIME)); - - EXPECT_EQ(12, h.getNumBuckets()); - EXPECT_EQ(10, h.getBucketSize()); - EXPECT_EQ(10, h.getMin()); - EXPECT_EQ(110, h.getMax()); - - for (size_t i = 0; i < h.getNumBuckets(); ++i) { - EXPECT_EQ(4, h.getBucket(i).numLevels()); - } - - int maxVal = 120; - h.addValue(mkTimePoint(0), 0); - h.addValue(mkTimePoint(0), maxVal); - for (int i = 0; i < 98; i++) { - h.addValue(mkTimePoint(0), random() % maxVal); - } - - h.update(mkTimePoint(1500000000)); - // bucket 0 stores everything below min, so its minimum - // is the lowest possible number - EXPECT_EQ(std::numeric_limits::min(), - h.getPercentileBucketMin(1, IntMTMHTS::ALLTIME)); - EXPECT_EQ(110, h.getPercentileBucketMin(99, IntMTMHTS::ALLTIME)); - - EXPECT_EQ(-2, h.getPercentileEstimate(0, IntMTMHTS::ALLTIME)); - EXPECT_EQ(-1, h.getPercentileEstimate(1, IntMTMHTS::ALLTIME)); - EXPECT_EQ(119, h.getPercentileEstimate(99, IntMTMHTS::ALLTIME)); - EXPECT_EQ(120, h.getPercentileEstimate(100, IntMTMHTS::ALLTIME)); - } -} - -TEST(TimeseriesHistogram, String) { - RandomInt32 random(5); - // [10, 109], 12 buckets including above and below - { - TimeseriesHistogram hist(10, 10, 110, - MultiLevelTimeSeries( - 60, IntMTMHTS::NUM_LEVELS, - IntMTMHTS::kDurations)); - - int maxVal = 120; - hist.addValue(mkTimePoint(0), 0); - hist.addValue(mkTimePoint(0), maxVal); - for (int i = 0; i < 98; i++) { - hist.addValue(mkTimePoint(0), random() % maxVal); - } - - hist.update(mkTimePoint(0)); - - const char* const kStringValues1[IntMTMHTS::NUM_LEVELS] = { - "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," - "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", - "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," - "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", - "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," - "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", - "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," - "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", - }; - - CHECK_EQ(IntMTMHTS::NUM_LEVELS, hist.getNumLevels()); - - for (size_t level = 0; level < hist.getNumLevels(); ++level) { - EXPECT_EQ(kStringValues1[level], hist.getString(level)); - } - - const char* const kStringValues2[IntMTMHTS::NUM_LEVELS] = { - "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," - "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", - "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," - "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", - "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," - "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", - "-2147483648:12:4,10:8:13,20:8:24,30:6:34,40:13:46,50:8:54,60:7:64," - "70:7:74,80:8:84,90:10:94,100:3:103,110:10:115", - }; - - CHECK_EQ(IntMTMHTS::NUM_LEVELS, hist.getNumLevels()); - - for (size_t level = 0; level < hist.getNumLevels(); ++level) { - EXPECT_EQ(kStringValues2[level], hist.getString(level)); - } - } -} - -TEST(TimeseriesHistogram, Clear) { - { - TimeseriesHistogram hist(10, 0, 100, - MultiLevelTimeSeries( - 60, IntMTMHTS::NUM_LEVELS, - IntMTMHTS::kDurations)); - - for (int now = 0; now < 3600; now++) { - for (int i = 0; i < 100; i++) { - hist.addValue(mkTimePoint(now), i, 2); // adds each item 2 times - } - } - - // check clearing - hist.clear(); - - for (size_t b = 0; b < hist.getNumBuckets(); ++b) { - EXPECT_EQ(0, hist.getBucket(b).count(IntMTMHTS::MINUTE)); - EXPECT_EQ(0, hist.getBucket(b).count(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(0, hist.getBucket(b).count(IntMTMHTS::HOUR)); - EXPECT_EQ(0, hist.getBucket(b).count(IntMTMHTS::ALLTIME)); - } - - for (int pct = 0; pct <= 100; pct++) { - EXPECT_EQ(0, hist.getPercentileBucketMin(pct, IntMTMHTS::MINUTE)); - EXPECT_EQ(0, hist.getPercentileBucketMin(pct, IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(0, hist.getPercentileBucketMin(pct, IntMTMHTS::HOUR)); - EXPECT_EQ(0, hist.getPercentileBucketMin(pct, IntMTMHTS::ALLTIME)); - - EXPECT_EQ(0, hist.getPercentileEstimate(pct, IntMTMHTS::MINUTE)); - EXPECT_EQ(0, hist.getPercentileEstimate(pct, IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(0, hist.getPercentileEstimate(pct, IntMTMHTS::HOUR)); - EXPECT_EQ(0, hist.getPercentileEstimate(pct, IntMTMHTS::ALLTIME)); - } - } -} - - -TEST(TimeseriesHistogram, Basic) { - { - TimeseriesHistogram hist(10, 0, 100, - MultiLevelTimeSeries( - 60, IntMTMHTS::NUM_LEVELS, - IntMTMHTS::kDurations)); - - for (int now = 0; now < 3600; now++) { - for (int i = 0; i < 100; i++) { - hist.addValue(mkTimePoint(now), i); - } - } - - hist.update(mkTimePoint(3599)); - for (int pct = 1; pct <= 100; pct++) { - int expected = (pct - 1) / 10 * 10; - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::MINUTE)); - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, - IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::HOUR)); - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::ALLTIME)); - } - - for (size_t b = 1; (b + 1) < hist.getNumBuckets(); ++b) { - EXPECT_EQ(600, hist.getBucket(b).count(IntMTMHTS::MINUTE)); - EXPECT_EQ(6000, hist.getBucket(b).count(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(36000, hist.getBucket(b).count(IntMTMHTS::HOUR)); - EXPECT_EQ(36000, hist.getBucket(b).count(IntMTMHTS::ALLTIME)); - } - EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::MINUTE)); - EXPECT_EQ(0, hist.getBucket(hist.getNumBuckets() - 1).count( - IntMTMHTS::MINUTE)); - - EXPECT_EQ(6000, hist.count(IntMTMHTS::MINUTE)); - EXPECT_EQ(60000, hist.count(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(360000, hist.count(IntMTMHTS::HOUR)); - EXPECT_EQ(360000, hist.count(IntMTMHTS::ALLTIME)); - - // Each second we added 4950 total over 100 data points - EXPECT_EQ(297000, hist.sum(IntMTMHTS::MINUTE)); - EXPECT_EQ(2970000, hist.sum(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(17820000, hist.sum(IntMTMHTS::HOUR)); - EXPECT_EQ(17820000, hist.sum(IntMTMHTS::ALLTIME)); - - EXPECT_EQ(49, hist.avg(IntMTMHTS::MINUTE)); - EXPECT_EQ(49, hist.avg(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(49, hist.avg(IntMTMHTS::HOUR)); - EXPECT_EQ(49, hist.avg(IntMTMHTS::ALLTIME)); - EXPECT_EQ(49.5, hist.avg(IntMTMHTS::MINUTE)); - EXPECT_EQ(49.5, hist.avg(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(49.5, hist.avg(IntMTMHTS::HOUR)); - EXPECT_EQ(49.5, hist.avg(IntMTMHTS::ALLTIME)); - - EXPECT_EQ(4950, hist.rate(IntMTMHTS::MINUTE)); - EXPECT_EQ(4950, hist.rate(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(4950, hist.rate(IntMTMHTS::HOUR)); - EXPECT_EQ(4950, hist.rate(IntMTMHTS::ALLTIME)); - EXPECT_EQ(4950, hist.rate(IntMTMHTS::MINUTE)); - EXPECT_EQ(4950, hist.rate(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(4950, hist.rate(IntMTMHTS::HOUR)); - EXPECT_EQ(4950, hist.rate(IntMTMHTS::ALLTIME)); - - EXPECT_EQ(1000, hist.count(mkTimePoint(10), mkTimePoint(20))); - EXPECT_EQ(49500, hist.sum(mkTimePoint(10), mkTimePoint(20))); - EXPECT_EQ(4950, hist.rate(mkTimePoint(10), mkTimePoint(20))); - EXPECT_EQ(49.5, hist.avg(mkTimePoint(10), mkTimePoint(20))); - - EXPECT_EQ(200, hist.count(mkTimePoint(3550), mkTimePoint(3552))); - EXPECT_EQ(9900, hist.sum(mkTimePoint(3550), mkTimePoint(3552))); - EXPECT_EQ(4950, hist.rate(mkTimePoint(3550), mkTimePoint(3552))); - EXPECT_EQ(49.5, hist.avg(mkTimePoint(3550), mkTimePoint(3552))); - - EXPECT_EQ(0, hist.count(mkTimePoint(4550), mkTimePoint(4552))); - EXPECT_EQ(0, hist.sum(mkTimePoint(4550), mkTimePoint(4552))); - EXPECT_EQ(0, hist.rate(mkTimePoint(4550), mkTimePoint(4552))); - EXPECT_EQ(0, hist.avg(mkTimePoint(4550), mkTimePoint(4552))); - } - - // ----------------- - - { - TimeseriesHistogram hist(10, 0, 100, - MultiLevelTimeSeries( - 60, IntMTMHTS::NUM_LEVELS, - IntMTMHTS::kDurations)); - - for (int now = 0; now < 3600; now++) { - for (int i = 0; i < 100; i++) { - hist.addValue(mkTimePoint(now), i, 2); // adds each item 2 times - } - } - - hist.update(mkTimePoint(3599)); - for (int pct = 1; pct <= 100; pct++) { - int expected = (pct - 1) / 10 * 10; - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::MINUTE)); - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, - IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::HOUR)); - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::ALLTIME)); - } - - for (size_t b = 1; (b + 1) < hist.getNumBuckets(); ++b) { - EXPECT_EQ(600 * 2, hist.getBucket(b).count(IntMTMHTS::MINUTE)); - EXPECT_EQ(6000 * 2, hist.getBucket(b).count(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(36000 * 2, hist.getBucket(b).count(IntMTMHTS::HOUR)); - EXPECT_EQ(36000 * 2, hist.getBucket(b).count(IntMTMHTS::ALLTIME)); - } - EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::MINUTE)); - EXPECT_EQ(0, hist.getBucket(hist.getNumBuckets() - 1).count( - IntMTMHTS::MINUTE)); - } - - // ----------------- - - { - TimeseriesHistogram hist(10, 0, 100, - MultiLevelTimeSeries( - 60, IntMTMHTS::NUM_LEVELS, - IntMTMHTS::kDurations)); - - for (int now = 0; now < 3600; now++) { - for (int i = 0; i < 50; i++) { - hist.addValue(mkTimePoint(now), i * 2, 2); // adds each item 2 times - } - } - - hist.update(mkTimePoint(3599)); - for (int pct = 1; pct <= 100; pct++) { - int expected = (pct - 1) / 10 * 10; - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::MINUTE)); - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, - IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::HOUR)); - EXPECT_EQ(expected, hist.getPercentileBucketMin(pct, IntMTMHTS::ALLTIME)); - } - - EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::MINUTE)); - EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::HOUR)); - EXPECT_EQ(0, hist.getBucket(0).count(IntMTMHTS::ALLTIME)); - EXPECT_EQ(0, hist.getBucket(hist.getNumBuckets() - 1).count( - IntMTMHTS::MINUTE)); - EXPECT_EQ(0, - hist.getBucket(hist.getNumBuckets() - 1). - count(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(0, hist.getBucket(hist.getNumBuckets() - 1).count( - IntMTMHTS::HOUR)); - EXPECT_EQ(0, - hist.getBucket(hist.getNumBuckets() - 1).count( - IntMTMHTS::ALLTIME)); - - for (size_t b = 1; (b + 1) < hist.getNumBuckets(); ++b) { - EXPECT_EQ(600, hist.getBucket(b).count(IntMTMHTS::MINUTE)); - EXPECT_EQ(6000, hist.getBucket(b).count(IntMTMHTS::TEN_MINUTE)); - EXPECT_EQ(36000, hist.getBucket(b).count(IntMTMHTS::HOUR)); - EXPECT_EQ(36000, hist.getBucket(b).count(IntMTMHTS::ALLTIME)); - } - - for (int i = 0; i < 100; ++i) { - hist.addValue(mkTimePoint(3599), 200 + i); - } - hist.update(mkTimePoint(3599)); - EXPECT_EQ(100, - hist.getBucket(hist.getNumBuckets() - 1).count( - IntMTMHTS::ALLTIME)); - - } -} - -TEST(TimeseriesHistogram, QueryByInterval) { - TimeseriesHistogram mhts(8, 8, 120, - MultiLevelTimeSeries( - 60, IntMHTS::NUM_LEVELS, - IntMHTS::kDurations)); - - mhts.update(mkTimePoint(0)); - - int curTime; - for (curTime = 0; curTime < 7200; curTime++) { - mhts.addValue(mkTimePoint(curTime), 1); - } - for (curTime = 7200; curTime < 7200 + 3540; curTime++) { - mhts.addValue(mkTimePoint(curTime), 10); - } - for (curTime = 7200 + 3540; curTime < 7200 + 3600; curTime++) { - mhts.addValue(mkTimePoint(curTime), 100); - } - - mhts.update(mkTimePoint(7200 + 3600 - 1)); - - struct TimeInterval { - TimeInterval(int s, int e) : start(mkTimePoint(s)), end(mkTimePoint(e)) {} - - StatsClock::time_point start; - StatsClock::time_point end; - }; - TimeInterval intervals[12] = { - { curTime - 60, curTime }, - { curTime - 3600, curTime }, - { curTime - 7200, curTime }, - { curTime - 3600, curTime - 60 }, - { curTime - 7200, curTime - 60 }, - { curTime - 7200, curTime - 3600 }, - { curTime - 50, curTime - 20 }, - { curTime - 3020, curTime - 20 }, - { curTime - 7200, curTime - 20 }, - { curTime - 3000, curTime - 1000 }, - { curTime - 7200, curTime - 1000 }, - { curTime - 7200, curTime - 3600 }, - }; - - int expectedSums[12] = { - 6000, 41400, 32400, 35400, 32129, 16200, 3000, 33600, 32308, 20000, 27899, - 16200 - }; - - int expectedCounts[12] = { - 60, 3600, 7200, 3540, 7139, 3600, 30, 3000, 7178, 2000, 6199, 3600 - }; - - // The first 7200 values added all fell below the histogram minimum, - // and went into the bucket that tracks all of the too-small values. - // This bucket reports a minimum value of the smallest possible integer. - int belowMinBucket = std::numeric_limits::min(); - - int expectedValues[12][3] = { - {96, 96, 96}, - { 8, 8, 96}, - { belowMinBucket, belowMinBucket, 8}, // alltime - { 8, 8, 8}, - { belowMinBucket, belowMinBucket, 8}, // alltime - { belowMinBucket, belowMinBucket, 8}, // alltime - {96, 96, 96}, - { 8, 8, 96}, - { belowMinBucket, belowMinBucket, 8}, // alltime - { 8, 8, 8}, - { belowMinBucket, belowMinBucket, 8}, // alltime - { belowMinBucket, belowMinBucket, 8} // alltime - }; - - for (int i = 0; i < 12; i++) { - const auto& itv = intervals[i]; - int s = mhts.sum(itv.start, itv.end); - EXPECT_EQ(expectedSums[i], s); - - int c = mhts.count(itv.start, itv.end); - EXPECT_EQ(expectedCounts[i], c); - } - - // 3 levels - for (int i = 1; i <= 100; i++) { - EXPECT_EQ(96, mhts.getPercentileBucketMin(i, 0)); - EXPECT_EQ( - 96, - mhts.getPercentileBucketMin( - i, mkTimePoint(curTime - 60), mkTimePoint(curTime))); - EXPECT_EQ( - 8, - mhts.getPercentileBucketMin( - i, mkTimePoint(curTime - 3540), mkTimePoint(curTime - 60))); - } - - EXPECT_EQ(8, mhts.getPercentileBucketMin(1, 1)); - EXPECT_EQ(8, mhts.getPercentileBucketMin(98, 1)); - EXPECT_EQ(96, mhts.getPercentileBucketMin(99, 1)); - EXPECT_EQ(96, mhts.getPercentileBucketMin(100, 1)); - - EXPECT_EQ(belowMinBucket, mhts.getPercentileBucketMin(1, 2)); - EXPECT_EQ(belowMinBucket, mhts.getPercentileBucketMin(66, 2)); - EXPECT_EQ(8, mhts.getPercentileBucketMin(67, 2)); - EXPECT_EQ(8, mhts.getPercentileBucketMin(99, 2)); - EXPECT_EQ(96, mhts.getPercentileBucketMin(100, 2)); - - // 0 is currently the value for bucket 0 (below min) - for (int i = 0; i < 12; i++) { - const auto& itv = intervals[i]; - int v = mhts.getPercentileBucketMin(1, itv.start, itv.end); - EXPECT_EQ(expectedValues[i][0], v); - - v = mhts.getPercentileBucketMin(50, itv.start, itv.end); - EXPECT_EQ(expectedValues[i][1], v); - - v = mhts.getPercentileBucketMin(99, itv.start, itv.end); - EXPECT_EQ(expectedValues[i][2], v); - } - - for (int i = 0; i < 12; i++) { - const auto& itv = intervals[i]; - // Some of the older intervals that fall in the alltime bucket - // are off by 1 or 2 in their estimated counts. - size_t tolerance = 0; - if (itv.start <= mkTimePoint(curTime - 7200)) { - tolerance = 2; - } else if (itv.start <= mkTimePoint(curTime - 3000)) { - tolerance = 1; - } - size_t actualCount = (itv.end - itv.start).count(); - size_t estimatedCount = mhts.count(itv.start, itv.end); - EXPECT_GE(actualCount, estimatedCount); - EXPECT_LE(actualCount - tolerance, estimatedCount); - } -} - -TEST(TimeseriesHistogram, SingleUniqueValue) { - int values[] = {-1, 0, 500, 1000, 1500}; - for (int ii = 0; ii < 5; ++ii) { - int value = values[ii]; - TimeseriesHistogram h(10, 0, 1000, - MultiLevelTimeSeries( - 60, IntMTMHTS::NUM_LEVELS, - IntMTMHTS::kDurations)); - - const int kNumIters = 1000; - for (int jj = 0; jj < kNumIters; ++jj) { - h.addValue(mkTimePoint(1), value); - } - h.update(mkTimePoint(1)); - // since we've only added one unique value, all percentiles should - // be that value - EXPECT_EQ(h.getPercentileEstimate(10, 0), value); - EXPECT_EQ(h.getPercentileEstimate(50, 0), value); - EXPECT_EQ(h.getPercentileEstimate(99, 0), value); - - // Things get trickier if there are multiple unique values. - const int kNewValue = 750; - for (int kk = 0; kk < 2*kNumIters; ++kk) { - h.addValue(mkTimePoint(1), kNewValue); - } - h.update(mkTimePoint(1)); - EXPECT_NEAR(h.getPercentileEstimate(50, 0), kNewValue+5, 5); - if (value >= 0 && value <= 1000) { - // only do further testing if value is within our bucket range, - // else estimates can be wildly off - if (kNewValue > value) { - EXPECT_NEAR(h.getPercentileEstimate(10, 0), value+5, 5); - EXPECT_NEAR(h.getPercentileEstimate(99, 0), kNewValue+5, 5); - } else { - EXPECT_NEAR(h.getPercentileEstimate(10, 0), kNewValue+5, 5); - EXPECT_NEAR(h.getPercentileEstimate(99, 0), value+5, 5); - } - } - } -} diff --git a/folly/test/TimeseriesTest.cpp b/folly/test/TimeseriesTest.cpp deleted file mode 100644 index 02e86594..00000000 --- a/folly/test/TimeseriesTest.cpp +++ /dev/null @@ -1,1280 +0,0 @@ -/* - * Copyright 2017 Facebook, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include -#include -#include -#include -#include - -#include - -#include - -#include -#include - -using std::chrono::seconds; -using std::string; -using std::vector; -using folly::BucketedTimeSeries; - -using Bucket = folly::detail::Bucket; -using StatsClock = folly::LegacyStatsClock; -using TimePoint = StatsClock::time_point; -using Duration = StatsClock::duration; - -/* - * Helper functions to allow us to directly log time points and duration - */ -namespace std { -std::ostream& operator<<(std::ostream& os, std::chrono::seconds s) { - os << s.count(); - return os; -} -std::ostream& operator<<(std::ostream& os, TimePoint tp) { - os << tp.time_since_epoch().count(); - return os; -} -} - -namespace { -TimePoint mkTimePoint(int value) { - return TimePoint(StatsClock::duration(value)); -} - -struct TestData { - TestData(int d, int b, std::initializer_list starts) - : duration(d), numBuckets(b) { - bucketStarts.reserve(starts.size()); - for (int s : starts) { - bucketStarts.push_back(mkTimePoint(s)); - } - } - seconds duration; - size_t numBuckets; - vector bucketStarts; -}; -vector testData = { - // 71 seconds x 4 buckets - { 71, 4, {0, 18, 36, 54}}, - // 100 seconds x 10 buckets - { 100, 10, {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}}, - // 10 seconds x 10 buckets - { 10, 10, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, - // 10 seconds x 1 buckets - { 10, 1, {0}}, - // 1 second x 1 buckets - { 1, 1, {0}}, -}; -} - -TEST(BucketedTimeSeries, getBucketInfo) { - for (const auto& data : testData) { - BucketedTimeSeries ts(data.numBuckets, data.duration); - - for (uint32_t n = 0; n < 10000; n += 1234) { - seconds offset(n * data.duration); - - for (uint32_t idx = 0; idx < data.numBuckets; ++idx) { - auto bucketStart = data.bucketStarts[idx]; - TimePoint nextBucketStart; - if (idx + 1 < data.numBuckets) { - nextBucketStart = data.bucketStarts[idx + 1]; - } else { - nextBucketStart = TimePoint(data.duration); - } - - TimePoint expectedStart = offset + bucketStart; - TimePoint expectedNextStart = offset + nextBucketStart; - TimePoint midpoint = - expectedStart + (expectedNextStart - expectedStart) / 2; - - vector> timePoints = { - {"expectedStart", expectedStart}, - {"midpoint", midpoint}, - {"expectedEnd", expectedNextStart - seconds(1)}, - }; - - for (const auto& point : timePoints) { - // Check that getBucketIdx() returns the expected index - EXPECT_EQ(idx, ts.getBucketIdx(point.second)) - << data.duration << "x" << data.numBuckets << ": " << point.first - << "=" << point.second; - - // Check the data returned by getBucketInfo() - size_t returnedIdx; - TimePoint returnedStart; - TimePoint returnedNextStart; - ts.getBucketInfo(expectedStart, &returnedIdx, - &returnedStart, &returnedNextStart); - EXPECT_EQ(idx, returnedIdx) << data.duration << "x" << data.numBuckets - << ": " << point.first << "=" - << point.second; - EXPECT_EQ(expectedStart, returnedStart) - << data.duration << "x" << data.numBuckets << ": " << point.first - << "=" << point.second; - EXPECT_EQ(expectedNextStart, returnedNextStart) - << data.duration << "x" << data.numBuckets << ": " << point.first - << "=" << point.second; - } - } - } - } -} - -void testUpdate100x10(size_t offset) { - // This test code only works when offset is a multiple of the bucket width - CHECK_EQ(0, offset % 10); - - // Create a 100 second timeseries, with 10 buckets - BucketedTimeSeries ts(10, seconds(100)); - - auto setup = [&] { - ts.clear(); - // Add 1 value to each bucket - for (int n = 5; n <= 95; n += 10) { - ts.addValue(seconds(n + offset), 6); - } - - EXPECT_EQ(10, ts.count()); - EXPECT_EQ(60, ts.sum()); - EXPECT_EQ(6, ts.avg()); - }; - - // Update 2 buckets forwards. This should throw away 2 data points. - setup(); - ts.update(seconds(110 + offset)); - EXPECT_EQ(8, ts.count()); - EXPECT_EQ(48, ts.sum()); - EXPECT_EQ(6, ts.avg()); - - // The last time we added was 95. - // Try updating to 189. This should clear everything but the last bucket. - setup(); - ts.update(seconds(151 + offset)); - EXPECT_EQ(4, ts.count()); - //EXPECT_EQ(6, ts.sum()); - EXPECT_EQ(6, ts.avg()); - - // The last time we added was 95. - // Try updating to 193: This is nearly one full loop around, - // back to the same bucket. update() needs to clear everything - setup(); - ts.update(seconds(193 + offset)); - EXPECT_EQ(0, ts.count()); - EXPECT_EQ(0, ts.sum()); - EXPECT_EQ(0, ts.avg()); - - // The last time we added was 95. - // Try updating to 197: This is slightly over one full loop around, - // back to the same bucket. update() needs to clear everything - setup(); - ts.update(seconds(197 + offset)); - EXPECT_EQ(0, ts.count()); - EXPECT_EQ(0, ts.sum()); - EXPECT_EQ(0, ts.avg()); - - // The last time we added was 95. - // Try updating to 230: This is well over one full loop around, - // and everything should be cleared. - setup(); - ts.update(seconds(230 + offset)); - EXPECT_EQ(0, ts.count()); - EXPECT_EQ(0, ts.sum()); - EXPECT_EQ(0, ts.avg()); -} - -TEST(BucketedTimeSeries, update100x10) { - // Run testUpdate100x10() multiple times, with various offsets. - // This makes sure the update code works regardless of which bucket it starts - // at in the modulo arithmetic. - testUpdate100x10(0); - testUpdate100x10(50); - testUpdate100x10(370); - testUpdate100x10(1937090); -} - -TEST(BucketedTimeSeries, update71x5) { - // Create a 71 second timeseries, with 5 buckets - // This tests when the number of buckets does not divide evenly into the - // duration. - BucketedTimeSeries ts(5, seconds(71)); - - auto setup = [&] { - ts.clear(); - // Add 1 value to each bucket - ts.addValue(seconds(11), 6); - ts.addValue(seconds(24), 6); - ts.addValue(seconds(42), 6); - ts.addValue(seconds(43), 6); - ts.addValue(seconds(66), 6); - - EXPECT_EQ(5, ts.count()); - EXPECT_EQ(30, ts.sum()); - EXPECT_EQ(6, ts.avg()); - }; - - // Update 2 buckets forwards. This should throw away 2 data points. - setup(); - ts.update(seconds(99)); - EXPECT_EQ(3, ts.count()); - EXPECT_EQ(18, ts.sum()); - EXPECT_EQ(6, ts.avg()); - - // Update 3 buckets forwards. This should throw away 3 data points. - setup(); - ts.update(seconds(100)); - EXPECT_EQ(2, ts.count()); - EXPECT_EQ(12, ts.sum()); - EXPECT_EQ(6, ts.avg()); - - // Update 4 buckets forwards, just under the wrap limit. - // This should throw everything but the last bucket away. - setup(); - ts.update(seconds(127)); - EXPECT_EQ(1, ts.count()); - EXPECT_EQ(6, ts.sum()); - EXPECT_EQ(6, ts.avg()); - - // Update 5 buckets forwards, exactly at the wrap limit. - // This should throw everything away. - setup(); - ts.update(seconds(128)); - EXPECT_EQ(0, ts.count()); - EXPECT_EQ(0, ts.sum()); - EXPECT_EQ(0, ts.avg()); - - // Update very far forwards, wrapping multiple times. - // This should throw everything away. - setup(); - ts.update(seconds(1234)); - EXPECT_EQ(0, ts.count()); - EXPECT_EQ(0, ts.sum()); - EXPECT_EQ(0, ts.avg()); -} - -TEST(BucketedTimeSeries, elapsed) { - BucketedTimeSeries ts(60, seconds(600)); - - // elapsed() is 0 when no data points have been added - EXPECT_EQ(0, ts.elapsed().count()); - - // With exactly 1 data point, elapsed() should report 1 second of data - seconds start(239218); - ts.addValue(start + seconds(0), 200); - EXPECT_EQ(1, ts.elapsed().count()); - // Adding a data point 10 seconds later should result in an elapsed time of - // 11 seconds (the time range is [0, 10], inclusive). - ts.addValue(start + seconds(10), 200); - EXPECT_EQ(11, ts.elapsed().count()); - - // elapsed() returns to 0 after clear() - ts.clear(); - EXPECT_EQ(0, ts.elapsed().count()); - - // Restart, with the starting point on an easier number to work with - ts.addValue(seconds(10), 200); - EXPECT_EQ(1, ts.elapsed().count()); - ts.addValue(seconds(580), 200); - EXPECT_EQ(571, ts.elapsed().count()); - ts.addValue(seconds(590), 200); - EXPECT_EQ(581, ts.elapsed().count()); - ts.addValue(seconds(598), 200); - EXPECT_EQ(589, ts.elapsed().count()); - ts.addValue(seconds(599), 200); - EXPECT_EQ(590, ts.elapsed().count()); - ts.addValue(seconds(600), 200); - EXPECT_EQ(591, ts.elapsed().count()); - ts.addValue(seconds(608), 200); - EXPECT_EQ(599, ts.elapsed().count()); - ts.addValue(seconds(609), 200); - EXPECT_EQ(600, ts.elapsed().count()); - // Once we reach 600 seconds worth of data, when we move on to the next - // second a full bucket will get thrown out. Now we drop back down to 591 - // seconds worth of data - ts.addValue(seconds(610), 200); - EXPECT_EQ(591, ts.elapsed().count()); - ts.addValue(seconds(618), 200); - EXPECT_EQ(599, ts.elapsed().count()); - ts.addValue(seconds(619), 200); - EXPECT_EQ(600, ts.elapsed().count()); - ts.addValue(seconds(620), 200); - EXPECT_EQ(591, ts.elapsed().count()); - ts.addValue(seconds(123419), 200); - EXPECT_EQ(600, ts.elapsed().count()); - ts.addValue(seconds(123420), 200); - EXPECT_EQ(591, ts.elapsed().count()); - ts.addValue(seconds(123425), 200); - EXPECT_EQ(596, ts.elapsed().count()); - - // Time never moves backwards. - // Calling update with an old timestamp will just be ignored. - ts.update(seconds(29)); - EXPECT_EQ(596, ts.elapsed().count()); -} - -TEST(BucketedTimeSeries, rate) { - BucketedTimeSeries ts(60, seconds(600)); - - // Add 3 values every 2 seconds, until fill up the buckets - for (size_t n = 0; n < 600; n += 2) { - ts.addValue(seconds(n), 200, 3); - } - - EXPECT_EQ(900, ts.count()); - EXPECT_EQ(180000, ts.sum()); - EXPECT_EQ(200, ts.avg()); - - // Really we only entered 599 seconds worth of data: [0, 598] (inclusive) - EXPECT_EQ(599, ts.elapsed().count()); - EXPECT_NEAR(300.5, ts.rate(), 0.005); - EXPECT_NEAR(1.5, ts.countRate(), 0.005); - - // If we add 1 more second, now we will have 600 seconds worth of data - ts.update(seconds(599)); - EXPECT_EQ(600, ts.elapsed().count()); - EXPECT_NEAR(300, ts.rate(), 0.005); - EXPECT_EQ(300, ts.rate()); - EXPECT_NEAR(1.5, ts.countRate(), 0.005); - - // However, 1 more second after that and we will have filled up all the - // buckets, and have to drop one. - ts.update(seconds(600)); - EXPECT_EQ(591, ts.elapsed().count()); - EXPECT_NEAR(299.5, ts.rate(), 0.01); - EXPECT_EQ(299, ts.rate()); - EXPECT_NEAR(1.5, ts.countRate(), 0.005); -} - -TEST(BucketedTimeSeries, avgTypeConversion) { - // Make sure the computed average values are accurate regardless - // of the input type and return type. - - { - // Simple sanity tests for small positive integer values - BucketedTimeSeries ts(60, seconds(600)); - ts.addValue(seconds(0), 4, 100); - ts.addValue(seconds(0), 10, 200); - ts.addValue(seconds(0), 16, 100); - - EXPECT_DOUBLE_EQ(10.0, ts.avg()); - EXPECT_DOUBLE_EQ(10.0, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - } - - { - // Test signed integer types with negative values - BucketedTimeSeries ts(60, seconds(600)); - ts.addValue(seconds(0), -100); - ts.addValue(seconds(0), -200); - ts.addValue(seconds(0), -300); - ts.addValue(seconds(0), -200, 65535); - - EXPECT_DOUBLE_EQ(-200.0, ts.avg()); - EXPECT_DOUBLE_EQ(-200.0, ts.avg()); - EXPECT_EQ(-200, ts.avg()); - EXPECT_EQ(-200, ts.avg()); - EXPECT_EQ(-200, ts.avg()); - } - - { - // Test uint64_t values that would overflow int64_t - BucketedTimeSeries ts(60, seconds(600)); - ts.addValueAggregated(seconds(0), - std::numeric_limits::max(), - std::numeric_limits::max()); - - EXPECT_DOUBLE_EQ(1.0, ts.avg()); - EXPECT_DOUBLE_EQ(1.0, ts.avg()); - EXPECT_EQ(1, ts.avg()); - EXPECT_EQ(1, ts.avg()); - EXPECT_EQ(1, ts.avg()); - } - - { - // Test doubles with small-ish values that will fit in integer types - BucketedTimeSeries ts(60, seconds(600)); - ts.addValue(seconds(0), 4.0, 100); - ts.addValue(seconds(0), 10.0, 200); - ts.addValue(seconds(0), 16.0, 100); - - EXPECT_DOUBLE_EQ(10.0, ts.avg()); - EXPECT_DOUBLE_EQ(10.0, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - EXPECT_EQ(10, ts.avg()); - } - - { - // Test doubles with huge values - BucketedTimeSeries ts(60, seconds(600)); - ts.addValue(seconds(0), 1e19, 100); - ts.addValue(seconds(0), 2e19, 200); - ts.addValue(seconds(0), 3e19, 100); - - EXPECT_DOUBLE_EQ(ts.avg(), 2e19); - EXPECT_NEAR(ts.avg(), 2e19, 1e11); - } - - { - // Test doubles where the sum adds up larger than a uint64_t, - // but the average fits in an int64_t - BucketedTimeSeries ts(60, seconds(600)); - uint64_t value = 0x3fffffffffffffff; - FOR_EACH_RANGE(i, 0, 16) { - ts.addValue(seconds(0), value); - } - - EXPECT_DOUBLE_EQ(value, ts.avg()); - EXPECT_DOUBLE_EQ(value, ts.avg()); - // Some precision is lost here due to the huge sum, so the - // integer average returned is off by one. - EXPECT_NEAR(value, ts.avg(), 1); - EXPECT_NEAR(value, ts.avg(), 1); - } - - { - // Test BucketedTimeSeries with a smaller integer type - BucketedTimeSeries ts(60, seconds(600)); - FOR_EACH_RANGE(i, 0, 101) { - ts.addValue(seconds(0), i); - } - - EXPECT_DOUBLE_EQ(50.0, ts.avg()); - EXPECT_DOUBLE_EQ(50.0, ts.avg()); - EXPECT_EQ(50, ts.avg()); - EXPECT_EQ(50, ts.avg()); - EXPECT_EQ(50, ts.avg()); - EXPECT_EQ(50, ts.avg()); - } - - { - // Test BucketedTimeSeries with long double input - BucketedTimeSeries ts(60, seconds(600)); - ts.addValueAggregated(seconds(0), 1000.0L, 7); - - long double expected = 1000.0L / 7.0L; - EXPECT_DOUBLE_EQ(static_cast(expected), ts.avg()); - EXPECT_DOUBLE_EQ(static_cast(expected), ts.avg()); - EXPECT_DOUBLE_EQ(expected, ts.avg()); - EXPECT_EQ(static_cast(expected), ts.avg()); - EXPECT_EQ(static_cast(expected), ts.avg()); - } - - { - // Test BucketedTimeSeries with int64_t values, - // but using an average that requires a fair amount of precision. - BucketedTimeSeries ts(60, seconds(600)); - ts.addValueAggregated(seconds(0), 1000, 7); - - long double expected = 1000.0L / 7.0L; - EXPECT_DOUBLE_EQ(static_cast(expected), ts.avg()); - EXPECT_DOUBLE_EQ(static_cast(expected), ts.avg()); - EXPECT_DOUBLE_EQ(expected, ts.avg()); - EXPECT_EQ(static_cast(expected), ts.avg()); - EXPECT_EQ(static_cast(expected), ts.avg()); - } -} - -TEST(BucketedTimeSeries, forEachBucket) { - typedef BucketedTimeSeries::Bucket Bucket; - struct BucketInfo { - BucketInfo(const Bucket* b, TimePoint s, TimePoint ns) - : bucket(b), start(s), nextStart(ns) {} - - const Bucket* bucket; - TimePoint start; - TimePoint nextStart; - }; - - for (const auto& data : testData) { - BucketedTimeSeries ts(data.numBuckets, seconds(data.duration)); - - vector info; - auto fn = [&]( - const Bucket& bucket, - TimePoint bucketStart, - TimePoint bucketEnd) -> bool { - info.emplace_back(&bucket, bucketStart, bucketEnd); - return true; - }; - - // If we haven't yet added any data, the current bucket will start at 0, - // and all data previous buckets will have negative times. - ts.forEachBucket(fn); - - CHECK_EQ(data.numBuckets, info.size()); - - // Check the data passed in to the function - size_t infoIdx = 0; - size_t bucketIdx = 1; - seconds offset = -data.duration; - for (size_t n = 0; n < data.numBuckets; ++n) { - if (bucketIdx >= data.numBuckets) { - bucketIdx = 0; - offset += data.duration; - } - - EXPECT_EQ(data.bucketStarts[bucketIdx] + offset, info[infoIdx].start) - << data.duration << "x" << data.numBuckets - << ": bucketIdx=" << bucketIdx << ", infoIdx=" << infoIdx; - - size_t nextBucketIdx = bucketIdx + 1; - seconds nextOffset = offset; - if (nextBucketIdx >= data.numBuckets) { - nextBucketIdx = 0; - nextOffset += data.duration; - } - EXPECT_EQ( - data.bucketStarts[nextBucketIdx] + nextOffset, - info[infoIdx].nextStart) - << data.duration << "x" << data.numBuckets - << ": bucketIdx=" << bucketIdx << ", infoIdx=" << infoIdx; - - EXPECT_EQ(&ts.getBucketByIndex(bucketIdx), info[infoIdx].bucket); - - ++bucketIdx; - ++infoIdx; - } - } -} - -TEST(BucketedTimeSeries, queryByIntervalSimple) { - BucketedTimeSeries a(3, seconds(12)); - for (int i = 0; i < 8; i++) { - a.addValue(seconds(i), 1); - } - // We added 1 at each second from 0..7 - // Query from the time period 0..2. - // This is entirely in the first bucket, which has a sum of 4. - // The code knows only part of the bucket is covered, and correctly - // estimates the desired sum as 3. - EXPECT_EQ(2, a.sum(mkTimePoint(0), mkTimePoint(2))); -} - -TEST(BucketedTimeSeries, queryByInterval) { - // Set up a BucketedTimeSeries tracking 6 seconds in 3 buckets - const int kNumBuckets = 3; - const int kDuration = 6; - BucketedTimeSeries b(kNumBuckets, seconds(kDuration)); - - for (unsigned int i = 0; i < kDuration; ++i) { - // add value 'i' at time 'i' - b.addValue(mkTimePoint(i), i); - } - - // Current bucket state: - // 0: time=[0, 2): values=(0, 1), sum=1, count=2 - // 1: time=[2, 4): values=(2, 3), sum=5, count=1 - // 2: time=[4, 6): values=(4, 5), sum=9, count=2 - double expectedSums1[kDuration + 1][kDuration + 1] = { - {0, 4.5, 9, 11.5, 14, 14.5, 15}, - {0, 4.5, 7, 9.5, 10, 10.5, -1}, - {0, 2.5, 5, 5.5, 6, -1, -1}, - {0, 2.5, 3, 3.5, -1, -1, -1}, - {0, 0.5, 1, -1, -1, -1, -1}, - {0, 0.5, -1, -1, -1, -1, -1}, - {0, -1, -1, -1, -1, -1, -1} - }; - int expectedCounts1[kDuration + 1][kDuration + 1] = { - {0, 1, 2, 3, 4, 5, 6}, - {0, 1, 2, 3, 4, 5, -1}, - {0, 1, 2, 3, 4, -1, -1}, - {0, 1, 2, 3, -1, -1, -1}, - {0, 1, 2, -1, -1, -1, -1}, - {0, 1, -1, -1, -1, -1, -1}, - {0, -1, -1, -1, -1, -1, -1} - }; - - TimePoint currentTime = b.getLatestTime() + seconds(1); - for (int i = 0; i <= kDuration + 1; i++) { - for (int j = 0; j <= kDuration - i; j++) { - TimePoint start = currentTime - seconds(i + j); - TimePoint end = currentTime - seconds(i); - double expectedSum = expectedSums1[i][j]; - EXPECT_EQ(expectedSum, b.sum(start, end)) - << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end - << ")"; - - uint64_t expectedCount = expectedCounts1[i][j]; - EXPECT_EQ(expectedCount, b.count(start, end)) - << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end - << ")"; - - double expectedAvg = expectedCount ? expectedSum / expectedCount : 0; - EXPECT_EQ(expectedAvg, b.avg(start, end)) - << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end - << ")"; - - double expectedRate = j ? expectedSum / j : 0; - EXPECT_EQ(expectedRate, b.rate(start, end)) - << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end - << ")"; - } - } - - // Add 3 more values. - // This will overwrite 1 full bucket, and put us halfway through the next. - for (unsigned int i = kDuration; i < kDuration + 3; ++i) { - b.addValue(mkTimePoint(i), i); - } - EXPECT_EQ(mkTimePoint(4), b.getEarliestTime()); - - // Current bucket state: - // 0: time=[6, 8): values=(6, 7), sum=13, count=2 - // 1: time=[8, 10): values=(8), sum=8, count=1 - // 2: time=[4, 6): values=(4, 5), sum=9, count=2 - double expectedSums2[kDuration + 1][kDuration + 1] = { - {0, 8, 14.5, 21, 25.5, 30, 30}, - {0, 6.5, 13, 17.5, 22, 22, -1}, - {0, 6.5, 11, 15.5, 15.5, -1, -1}, - {0, 4.5, 9, 9, -1, -1, -1}, - {0, 4.5, 4.5, -1, -1, -1, -1}, - {0, 0, -1, -1, -1, -1, -1}, - {0, -1, -1, -1, -1, -1, -1} - }; - int expectedCounts2[kDuration + 1][kDuration + 1] = { - {0, 1, 2, 3, 4, 5, 5}, - {0, 1, 2, 3, 4, 4, -1}, - {0, 1, 2, 3, 3, -1, -1}, - {0, 1, 2, 2, -1, -1, -1}, - {0, 1, 1, -1, -1, -1, -1}, - {0, 0, -1, -1, -1, -1, -1}, - {0, -1, -1, -1, -1, -1, -1} - }; - - currentTime = b.getLatestTime() + seconds(1); - for (int i = 0; i <= kDuration + 1; i++) { - for (int j = 0; j <= kDuration - i; j++) { - TimePoint start = currentTime - seconds(i + j); - TimePoint end = currentTime - seconds(i); - double expectedSum = expectedSums2[i][j]; - EXPECT_EQ(expectedSum, b.sum(start, end)) - << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end - << ")"; - - uint64_t expectedCount = expectedCounts2[i][j]; - EXPECT_EQ(expectedCount, b.count(start, end)) - << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end - << ")"; - - double expectedAvg = expectedCount ? expectedSum / expectedCount : 0; - EXPECT_EQ(expectedAvg, b.avg(start, end)) - << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end - << ")"; - - TimePoint dataStart = std::max(start, b.getEarliestTime()); - TimePoint dataEnd = std::max(end, dataStart); - seconds expectedInterval = dataEnd - dataStart; - EXPECT_EQ(expectedInterval, b.elapsed(start, end)) - << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end - << ")"; - - double expectedRate = expectedInterval.count() ? - expectedSum / expectedInterval.count() : 0; - EXPECT_EQ(expectedRate, b.rate(start, end)) - << "i=" << i << ", j=" << j << ", interval=[" << start << ", " << end - << ")"; - } - } -} - -TEST(BucketedTimeSeries, rateByInterval) { - const int kNumBuckets = 5; - const seconds kDuration(10); - BucketedTimeSeries b(kNumBuckets, kDuration); - - // Add data points at a constant rate of 10 per second. - // Start adding data points at kDuration, and fill half of the buckets for - // now. - TimePoint start(kDuration); - TimePoint end(kDuration + (kDuration / 2)); - const double kFixedRate = 10.0; - for (TimePoint i = start; i < end; i += seconds(1)) { - b.addValue(i, kFixedRate); - } - - // Querying the rate should yield kFixedRate. - EXPECT_EQ(kFixedRate, b.rate()); - EXPECT_EQ(kFixedRate, b.rate(start, end)); - EXPECT_EQ(kFixedRate, b.rate(start, start + kDuration)); - EXPECT_EQ(kFixedRate, b.rate(end - kDuration, end)); - EXPECT_EQ(kFixedRate, b.rate(end - seconds(1), end)); - // We have been adding 1 data point per second, so countRate() - // should be 1. - EXPECT_EQ(1.0, b.countRate()); - EXPECT_EQ(1.0, b.countRate(start, end)); - EXPECT_EQ(1.0, b.countRate(start, start + kDuration)); - EXPECT_EQ(1.0, b.countRate(end - kDuration, end)); - EXPECT_EQ(1.0, b.countRate(end - seconds(1), end)); - - // We haven't added anything before time kDuration. - // Querying data earlier than this should result in a rate of 0. - EXPECT_EQ(0.0, b.rate(mkTimePoint(0), mkTimePoint(1))); - EXPECT_EQ(0.0, b.countRate(mkTimePoint(0), mkTimePoint(1))); - - // Fill the remainder of the timeseries from kDuration to kDuration*2 - start = end; - end = TimePoint(kDuration * 2); - for (TimePoint i = start; i < end; i += seconds(1)) { - b.addValue(i, kFixedRate); - } - - EXPECT_EQ(kFixedRate, b.rate()); - EXPECT_EQ(kFixedRate, b.rate(TimePoint(kDuration), TimePoint(kDuration * 2))); - EXPECT_EQ(kFixedRate, b.rate(TimePoint(), TimePoint(kDuration * 2))); - EXPECT_EQ(kFixedRate, b.rate(TimePoint(), TimePoint(kDuration * 10))); - EXPECT_EQ(1.0, b.countRate()); - EXPECT_EQ(1.0, b.countRate(TimePoint(kDuration), TimePoint(kDuration * 2))); - EXPECT_EQ(1.0, b.countRate(TimePoint(), TimePoint(kDuration * 2))); - EXPECT_EQ(1.0, b.countRate(TimePoint(), TimePoint(kDuration * 10))); -} - -TEST(BucketedTimeSeries, addHistorical) { - const int kNumBuckets = 5; - const seconds kDuration(10); - BucketedTimeSeries b(kNumBuckets, kDuration); - - // Initially fill with a constant rate of data - for (TimePoint i = mkTimePoint(0); i < mkTimePoint(10); i += seconds(1)) { - b.addValue(i, 10.0); - } - - EXPECT_EQ(10.0, b.rate()); - EXPECT_EQ(10.0, b.avg()); - EXPECT_EQ(10, b.count()); - - // Add some more data points to the middle bucket - b.addValue(mkTimePoint(4), 40.0); - b.addValue(mkTimePoint(5), 40.0); - EXPECT_EQ(15.0, b.avg()); - EXPECT_EQ(18.0, b.rate()); - EXPECT_EQ(12, b.count()); - - // Now start adding more current data points, until we are about to roll over - // the bucket where we added the extra historical data. - for (TimePoint i = mkTimePoint(10); i < mkTimePoint(14); i += seconds(1)) { - b.addValue(i, 10.0); - } - EXPECT_EQ(15.0, b.avg()); - EXPECT_EQ(18.0, b.rate()); - EXPECT_EQ(12, b.count()); - - // Now roll over the middle bucket - b.addValue(mkTimePoint(14), 10.0); - b.addValue(mkTimePoint(15), 10.0); - EXPECT_EQ(10.0, b.avg()); - EXPECT_EQ(10.0, b.rate()); - EXPECT_EQ(10, b.count()); - - // Add more historical values past the bucket window. - // These should be ignored. - EXPECT_FALSE(b.addValue(mkTimePoint(4), 40.0)); - EXPECT_FALSE(b.addValue(mkTimePoint(5), 40.0)); - EXPECT_EQ(10.0, b.avg()); - EXPECT_EQ(10.0, b.rate()); - EXPECT_EQ(10, b.count()); -} - -TEST(BucketedTimeSeries, reConstructEmptyTimeSeries) { - auto verify = [](auto timeSeries) { - EXPECT_TRUE(timeSeries.empty()); - EXPECT_EQ(0, timeSeries.sum()); - EXPECT_EQ(0, timeSeries.count()); - }; - - // Create a 100 second timeseries with 10 buckets_ - BucketedTimeSeries ts(10, seconds(100)); - - verify(ts); - - auto firstTime = ts.firstTime(); - auto latestTime = ts.latestTime(); - auto duration = ts.duration(); - auto buckets = ts.buckets(); - - // Reconstruct the timeseries - BucketedTimeSeries newTs(firstTime, latestTime, duration, buckets); - - verify(newTs); -} - -TEST(BucketedTimeSeries, reConstructWithValidData) { - // Create a 100 second timeseries with 10 buckets_ - BucketedTimeSeries ts(10, seconds(100)); - - auto setup = [&] { - ts.clear(); - // Add 1 value to each bucket - for (int n = 5; n <= 95; n += 10) { - ts.addValue(seconds(n), 6); - } - - EXPECT_EQ(10, ts.count()); - EXPECT_EQ(60, ts.sum()); - EXPECT_EQ(6, ts.avg()); - }; - - setup(); - - auto firstTime = ts.firstTime(); - auto latestTime = ts.latestTime(); - auto duration = ts.duration(); - auto buckets = ts.buckets(); - - // Reconstruct the timeseries - BucketedTimeSeries newTs(firstTime, latestTime, duration, buckets); - - auto compare = [&] { - EXPECT_EQ(ts.firstTime(), newTs.firstTime()); - EXPECT_EQ(ts.latestTime(), newTs.latestTime()); - EXPECT_EQ(ts.duration(), newTs.duration()); - EXPECT_EQ(ts.buckets().size(), newTs.buckets().size()); - EXPECT_EQ(ts.sum(), newTs.sum()); - EXPECT_EQ(ts.count(), newTs.count()); - - for (auto it1 = ts.buckets().begin(), it2 = newTs.buckets().begin(); - it1 != ts.buckets().end(); - it1++, it2++) { - EXPECT_EQ(it1->sum, it2->sum); - EXPECT_EQ(it1->count, it2->count); - } - }; - - compare(); -} - -TEST(BucketedTimeSeries, reConstructWithCorruptedData) { - // The total should have been 0 as firstTime > latestTime - EXPECT_THROW( - { - std::vector buckets(10); - buckets[0].sum = 1; - buckets[0].count = 1; - - BucketedTimeSeries ts( - mkTimePoint(1), mkTimePoint(0), Duration(10), buckets); - }, - std::invalid_argument); - - // The duration should be no less than latestTime - firstTime - EXPECT_THROW( - BucketedTimeSeries( - mkTimePoint(1), - mkTimePoint(100), - Duration(10), - std::vector(10)), - std::invalid_argument); -} - -namespace IntMHTS { - enum Levels { - MINUTE, - HOUR, - ALLTIME, - NUM_LEVELS, - }; - - const seconds kMinuteHourDurations[] = { - seconds(60), seconds(3600), seconds(0) - }; -}; - -TEST(MinuteHourTimeSeries, Basic) { - folly::MultiLevelTimeSeries mhts(60, IntMHTS::NUM_LEVELS, - IntMHTS::kMinuteHourDurations); - EXPECT_EQ(mhts.numLevels(), IntMHTS::NUM_LEVELS); - EXPECT_EQ(mhts.numLevels(), 3); - - EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 0); - EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 0); - EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 0); - - EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 0); - EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 0); - EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 0); - - EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 0); - EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 0); - EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 0); - - EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 0); - EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 0); - EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 0); - - seconds cur_time(0); - - mhts.addValue(cur_time++, 10); - mhts.flush(); - - EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 1); - EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 1); - EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 1); - - for (int i = 0; i < 299; ++i) { - mhts.addValue(cur_time++, 10); - } - mhts.flush(); - - EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 60); - EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 300); - EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 300); - - EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 600); - EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 300*10); - EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 300*10); - - EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 10); - EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 10); - EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 10); - - EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 10); - EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 10); - EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 10); - - for (int i = 0; i < 3600*3 - 300; ++i) { - mhts.addValue(cur_time++, 10); - } - mhts.flush(); - - EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 60); - EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 3600); - EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 3600*3); - - EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 600); - EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 3600*10); - EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 3600*3*10); - - EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 10); - EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 10); - EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 10); - - EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 10); - EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 10); - EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 10); - - for (int i = 0; i < 3600; ++i) { - mhts.addValue(cur_time++, 100); - } - mhts.flush(); - - EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 60*100); - EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 3600*100); - EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), - 3600*3*10 + 3600*100); - - EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 100); - EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 100); - EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 32.5); - EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 32); - - EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 100); - EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 100); - EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 32.5); - EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 32); - - for (int i = 0; i < 1800; ++i) { - mhts.addValue(cur_time++, 120); - } - mhts.flush(); - - EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 60*120); - EXPECT_EQ(mhts.sum(IntMHTS::HOUR), - 1800*100 + 1800*120); - EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), - 3600*3*10 + 3600*100 + 1800*120); - - for (int i = 0; i < 60; ++i) { - mhts.addValue(cur_time++, 1000); - } - mhts.flush(); - - EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 60*1000); - EXPECT_EQ(mhts.sum(IntMHTS::HOUR), - 1740*100 + 1800*120 + 60*1000); - EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), - 3600*3*10 + 3600*100 + 1800*120 + 60*1000); - - mhts.clear(); - EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 0); -} - -TEST(MinuteHourTimeSeries, QueryByInterval) { - folly::MultiLevelTimeSeries mhts(60, IntMHTS::NUM_LEVELS, - IntMHTS::kMinuteHourDurations); - - TimePoint curTime; - for (curTime = mkTimePoint(0); curTime < mkTimePoint(7200); - curTime += seconds(1)) { - mhts.addValue(curTime, 1); - } - for (curTime = mkTimePoint(7200); curTime < mkTimePoint(7200 + 3540); - curTime += seconds(1)) { - mhts.addValue(curTime, 10); - } - for (curTime = mkTimePoint(7200 + 3540); curTime < mkTimePoint(7200 + 3600); - curTime += seconds(1)) { - mhts.addValue(curTime, 100); - } - mhts.flush(); - - struct TimeInterval { - TimePoint start; - TimePoint end; - }; - TimeInterval intervals[12] = { - { curTime - seconds(60), curTime }, - { curTime - seconds(3600), curTime }, - { curTime - seconds(7200), curTime }, - { curTime - seconds(3600), curTime - seconds(60) }, - { curTime - seconds(7200), curTime - seconds(60) }, - { curTime - seconds(7200), curTime - seconds(3600) }, - { curTime - seconds(50), curTime - seconds(20) }, - { curTime - seconds(3020), curTime - seconds(20) }, - { curTime - seconds(7200), curTime - seconds(20) }, - { curTime - seconds(3000), curTime - seconds(1000) }, - { curTime - seconds(7200), curTime - seconds(1000) }, - { curTime - seconds(7200), curTime - seconds(3600) }, - }; - - int expectedSums[12] = { - 6000, 41400, 32400, 35400, 32130, 16200, 3000, 33600, 32310, 20000, 27900, - 16200 - }; - - int expectedCounts[12] = { - 60, 3600, 7200, 3540, 7140, 3600, 30, 3000, 7180, 2000, 6200, 3600 - }; - - for (int i = 0; i < 12; ++i) { - TimeInterval interval = intervals[i]; - - int s = mhts.sum(interval.start, interval.end); - EXPECT_EQ(expectedSums[i], s); - - int c = mhts.count(interval.start, interval.end); - EXPECT_EQ(expectedCounts[i], c); - - int a = mhts.avg(interval.start, interval.end); - EXPECT_EQ(expectedCounts[i] ? - (expectedSums[i] / expectedCounts[i]) : 0, - a); - - int r = mhts.rate(interval.start, interval.end); - int expectedRate = - expectedSums[i] / (interval.end - interval.start).count(); - EXPECT_EQ(expectedRate, r); - } -} - -TEST(MultiLevelTimeSeries, Basic) { - // using constructor with initializer_list parameter - folly::MultiLevelTimeSeries mhts( - 60, {seconds(60), seconds(3600), seconds(0)}); - EXPECT_EQ(mhts.numLevels(), 3); - - EXPECT_EQ(mhts.sum(seconds(60)), 0); - EXPECT_EQ(mhts.sum(seconds(3600)), 0); - EXPECT_EQ(mhts.sum(seconds(0)), 0); - - EXPECT_EQ(mhts.avg(seconds(60)), 0); - EXPECT_EQ(mhts.avg(seconds(3600)), 0); - EXPECT_EQ(mhts.avg(seconds(0)), 0); - - EXPECT_EQ(mhts.rate(seconds(60)), 0); - EXPECT_EQ(mhts.rate(seconds(3600)), 0); - EXPECT_EQ(mhts.rate(seconds(0)), 0); - - EXPECT_EQ(mhts.getLevelByDuration(seconds(60)).elapsed().count(), 0); - EXPECT_EQ(mhts.getLevelByDuration(seconds(3600)).elapsed().count(), 0); - EXPECT_EQ(mhts.getLevelByDuration(seconds(0)).elapsed().count(), 0); - - seconds cur_time(0); - - mhts.addValue(cur_time++, 10); - mhts.flush(); - - EXPECT_EQ(mhts.getLevelByDuration(seconds(60)).elapsed().count(), 1); - EXPECT_EQ(mhts.getLevelByDuration(seconds(3600)).elapsed().count(), 1); - EXPECT_EQ(mhts.getLevelByDuration(seconds(0)).elapsed().count(), 1); - - for (int i = 0; i < 299; ++i) { - mhts.addValue(cur_time++, 10); - } - mhts.flush(); - - EXPECT_EQ(mhts.getLevelByDuration(seconds(60)).elapsed().count(), 60); - EXPECT_EQ(mhts.getLevelByDuration(seconds(3600)).elapsed().count(), 300); - EXPECT_EQ(mhts.getLevelByDuration(seconds(0)).elapsed().count(), 300); - - EXPECT_EQ(mhts.sum(seconds(60)), 600); - EXPECT_EQ(mhts.sum(seconds(3600)), 300 * 10); - EXPECT_EQ(mhts.sum(seconds(0)), 300 * 10); - - EXPECT_EQ(mhts.avg(seconds(60)), 10); - EXPECT_EQ(mhts.avg(seconds(3600)), 10); - EXPECT_EQ(mhts.avg(seconds(0)), 10); - - EXPECT_EQ(mhts.rate(seconds(60)), 10); - EXPECT_EQ(mhts.rate(seconds(3600)), 10); - EXPECT_EQ(mhts.rate(seconds(0)), 10); - - for (int i = 0; i < 3600 * 3 - 300; ++i) { - mhts.addValue(cur_time++, 10); - } - mhts.flush(); - - EXPECT_EQ(mhts.getLevelByDuration(seconds(60)).elapsed().count(), 60); - EXPECT_EQ(mhts.getLevelByDuration(seconds(3600)).elapsed().count(), 3600); - EXPECT_EQ(mhts.getLevelByDuration(seconds(0)).elapsed().count(), 3600 * 3); - - EXPECT_EQ(mhts.sum(seconds(60)), 600); - EXPECT_EQ(mhts.sum(seconds(3600)), 3600 * 10); - EXPECT_EQ(mhts.sum(seconds(0)), 3600 * 3 * 10); - - EXPECT_EQ(mhts.avg(seconds(60)), 10); - EXPECT_EQ(mhts.avg(seconds(3600)), 10); - EXPECT_EQ(mhts.avg(seconds(0)), 10); - - EXPECT_EQ(mhts.rate(seconds(60)), 10); - EXPECT_EQ(mhts.rate(seconds(3600)), 10); - EXPECT_EQ(mhts.rate(seconds(0)), 10); - - for (int i = 0; i < 3600; ++i) { - mhts.addValue(cur_time++, 100); - } - mhts.flush(); - - EXPECT_EQ(mhts.sum(seconds(60)), 60 * 100); - EXPECT_EQ(mhts.sum(seconds(3600)), 3600 * 100); - EXPECT_EQ(mhts.sum(seconds(0)), 3600 * 3 * 10 + 3600 * 100); - - EXPECT_EQ(mhts.avg(seconds(60)), 100); - EXPECT_EQ(mhts.avg(seconds(3600)), 100); - EXPECT_EQ(mhts.avg(seconds(0)), 32.5); - EXPECT_EQ(mhts.avg(seconds(0)), 32); - - EXPECT_EQ(mhts.rate(seconds(60)), 100); - EXPECT_EQ(mhts.rate(seconds(3600)), 100); - EXPECT_EQ(mhts.rate(seconds(0)), 32.5); - EXPECT_EQ(mhts.rate(seconds(0)), 32); - - for (int i = 0; i < 1800; ++i) { - mhts.addValue(cur_time++, 120); - } - mhts.flush(); - - EXPECT_EQ(mhts.sum(seconds(60)), 60 * 120); - EXPECT_EQ(mhts.sum(seconds(3600)), 1800 * 100 + 1800 * 120); - EXPECT_EQ(mhts.sum(seconds(0)), 3600 * 3 * 10 + 3600 * 100 + 1800 * 120); - - for (int i = 0; i < 60; ++i) { - mhts.addValue(cur_time++, 1000); - } - mhts.flush(); - - EXPECT_EQ(mhts.sum(seconds(60)), 60 * 1000); - EXPECT_EQ(mhts.sum(seconds(3600)), 1740 * 100 + 1800 * 120 + 60 * 1000); - EXPECT_EQ( - mhts.sum(seconds(0)), - 3600 * 3 * 10 + 3600 * 100 + 1800 * 120 + 60 * 1000); - - mhts.clear(); - EXPECT_EQ(mhts.sum(seconds(0)), 0); -} - -TEST(MultiLevelTimeSeries, QueryByInterval) { - folly::MultiLevelTimeSeries mhts( - 60, {seconds(60), seconds(3600), seconds(0)}); - - TimePoint curTime; - for (curTime = mkTimePoint(0); curTime < mkTimePoint(7200); - curTime += seconds(1)) { - mhts.addValue(curTime, 1); - } - for (curTime = mkTimePoint(7200); curTime < mkTimePoint(7200 + 3540); - curTime += seconds(1)) { - mhts.addValue(curTime, 10); - } - for (curTime = mkTimePoint(7200 + 3540); curTime < mkTimePoint(7200 + 3600); - curTime += seconds(1)) { - mhts.addValue(curTime, 100); - } - mhts.flush(); - - struct TimeInterval { - TimePoint start; - TimePoint end; - }; - - std::array intervals = {{ - {curTime - seconds(60), curTime}, - {curTime - seconds(3600), curTime}, - {curTime - seconds(7200), curTime}, - {curTime - seconds(3600), curTime - seconds(60)}, - {curTime - seconds(7200), curTime - seconds(60)}, - {curTime - seconds(7200), curTime - seconds(3600)}, - {curTime - seconds(50), curTime - seconds(20)}, - {curTime - seconds(3020), curTime - seconds(20)}, - {curTime - seconds(7200), curTime - seconds(20)}, - {curTime - seconds(3000), curTime - seconds(1000)}, - {curTime - seconds(7200), curTime - seconds(1000)}, - {curTime - seconds(7200), curTime - seconds(3600)}, - }}; - - std::array expectedSums = {{6000, - 41400, - 32400, - 35400, - 32130, - 16200, - 3000, - 33600, - 32310, - 20000, - 27900, - 16200}}; - - std::array expectedCounts = { - {60, 3600, 7200, 3540, 7140, 3600, 30, 3000, 7180, 2000, 6200, 3600}}; - - for (size_t i = 0; i < intervals.size(); ++i) { - TimeInterval interval = intervals[i]; - - int s = mhts.sum(interval.start, interval.end); - EXPECT_EQ(expectedSums[i], s); - - int c = mhts.count(interval.start, interval.end); - EXPECT_EQ(expectedCounts[i], c); - - int a = mhts.avg(interval.start, interval.end); - EXPECT_EQ(expectedCounts[i] ? (expectedSums[i] / expectedCounts[i]) : 0, a); - - int r = mhts.rate(interval.start, interval.end); - int expectedRate = - expectedSums[i] / (interval.end - interval.start).count(); - EXPECT_EQ(expectedRate, r); - } -}