From: rtrimana Date: Tue, 12 Jul 2016 17:56:12 +0000 (-0700) Subject: Using \tuple{} for expressing tuples X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=e8fad69936e3903e8a4dbbd4d2ef5954539d23f2;p=iotcloud.git Using \tuple{} for expressing tuples --- diff --git a/doc/iotcloud.tex b/doc/iotcloud.tex index 7952545..f7c7ea1 100644 --- a/doc/iotcloud.tex +++ b/doc/iotcloud.tex @@ -134,12 +134,12 @@ $slot_s = \tuple{s, sv} \in SL \subseteq SN \times SV$ \\ \textit{max = maximum number of slots (input only for resize message)} \\ \textit{n = number of slots} \\ \\ \textbf{Helper Function} \\ -$MaxSlot(SL')= \langle s, sv \rangle \mid \langle s, sv \rangle -\in SL' \wedge \forall \langle s', sv' \rangle \in SL', s \geq s'$ \\ -$MinSlot(SL')= \langle s, sv \rangle \mid \langle s, sv \rangle -\in SL' \wedge \forall \langle s', sv' \rangle \in SL', s \leq s'$ \\ -$SeqN(\langle s, sv \rangle)=s$ \\ -$SlotVal(\langle s, sv \rangle)=sv$ \\ +$MaxSlot(SL')= \tuple{s, sv} \mid \tuple{s, sv} +\in SL' \wedge \forall \tuple{s', sv'} \in SL', s \geq s'$ \\ +$MinSlot(SL')= \tuple{s, sv} \mid \tuple{s, sv} +\in SL' \wedge \forall \tuple{s', sv'} \in SL', s \leq s'$ \\ +$SeqN(\tuple{s, sv})=s$ \\ +$SlotVal(\tuple{s, sv})=sv$ \\ \begin{algorithmic}[1] \Function{GetSlot}{$s_g$} @@ -152,19 +152,19 @@ $SlotVal(\langle s, sv \rangle)=sv$ \\ \If{$(max' \neq \emptyset)$}\Comment{Resize} \State $max \gets max'$ \EndIf -\State $\langle s_n,sv_n \rangle \gets MaxSlot(SL)$\Comment{Last sv} -\State $s_n \gets SeqN(\langle s_n,sv_n \rangle)$ +\State $\tuple{s_n,sv_n} \gets MaxSlot(SL)$\Comment{Last sv} +\State $s_n \gets SeqN(\tuple{s_n,sv_n})$ \If{$(s_p = s_n + 1)$} \If{$n = max$} - \State $\langle s_m,sv_m \rangle \gets MinSlot(SL)$\Comment{First sv} - \State $SL \gets SL - \{\langle s_m,sv_m \rangle\}$ + \State $\tuple{s_m,sv_m} \gets MinSlot(SL)$\Comment{First sv} + \State $SL \gets SL - \{\tuple{s_m,sv_m}\}$ \Else \Comment{$n < max$} \State $n \gets n + 1$ \EndIf - \State $SL \gets SL \cup \{\langle s_p,sv_p \rangle\}$ + \State $SL \gets SL \cup \{\tuple{s_p,sv_p}\}$ \State \Return{$true$} \Else - \State \Return{$(false,\{\langle s,sv \rangle \in SL \mid + \State \Return{$(false,\{\tuple{s,sv}\in SL \mid s \geq s_p\})$} \EndIf \EndFunction