From: Thomas Gleixner Date: Thu, 11 Oct 2007 09:12:09 +0000 (+0200) Subject: i386: prepare shared kernel/efi.c X-Git-Tag: firefly_0821_release~26309 X-Git-Url: http://demsky.eecs.uci.edu/git/?a=commitdiff_plain;h=f9a4ddc72107a30a2999d717479efd93689a54bb;p=firefly-linux-kernel-4.4.55.git i386: prepare shared kernel/efi.c Signed-off-by: Thomas Gleixner Signed-off-by: Ingo Molnar --- diff --git a/arch/i386/kernel/Makefile b/arch/i386/kernel/Makefile index 199060e588dc..75b201b56074 100644 --- a/arch/i386/kernel/Makefile +++ b/arch/i386/kernel/Makefile @@ -33,7 +33,7 @@ obj-$(CONFIG_KPROBES) += kprobes.o obj-$(CONFIG_MODULES) += module.o obj-y += sysenter.o vsyscall.o obj-$(CONFIG_ACPI_SRAT) += srat_32.o -obj-$(CONFIG_EFI) += efi.o efi_stub_32.o +obj-$(CONFIG_EFI) += efi_32.o efi_stub_32.o obj-$(CONFIG_DOUBLEFAULT) += doublefault.o obj-$(CONFIG_VM86) += vm86_32.o obj-$(CONFIG_EARLY_PRINTK) += early_printk.o diff --git a/arch/i386/kernel/efi.c b/arch/i386/kernel/efi.c deleted file mode 100644 index 2452c6fbe992..000000000000 --- a/arch/i386/kernel/efi.c +++ /dev/null @@ -1,712 +0,0 @@ -/* - * Extensible Firmware Interface - * - * Based on Extensible Firmware Interface Specification version 1.0 - * - * Copyright (C) 1999 VA Linux Systems - * Copyright (C) 1999 Walt Drummond - * Copyright (C) 1999-2002 Hewlett-Packard Co. - * David Mosberger-Tang - * Stephane Eranian - * - * All EFI Runtime Services are not implemented yet as EFI only - * supports physical mode addressing on SoftSDV. This is to be fixed - * in a future version. --drummond 1999-07-20 - * - * Implemented EFI runtime services and virtual mode calls. --davidm - * - * Goutham Rao: - * Skip non-WB memory and ignore empty memory ranges. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include -#include - -#define EFI_DEBUG 0 -#define PFX "EFI: " - -extern efi_status_t asmlinkage efi_call_phys(void *, ...); - -struct efi efi; -EXPORT_SYMBOL(efi); -static struct efi efi_phys; -struct efi_memory_map memmap; - -/* - * We require an early boot_ioremap mapping mechanism initially - */ -extern void * boot_ioremap(unsigned long, unsigned long); - -/* - * To make EFI call EFI runtime service in physical addressing mode we need - * prelog/epilog before/after the invocation to disable interrupt, to - * claim EFI runtime service handler exclusively and to duplicate a memory in - * low memory space say 0 - 3G. - */ - -static unsigned long efi_rt_eflags; -static DEFINE_SPINLOCK(efi_rt_lock); -static pgd_t efi_bak_pg_dir_pointer[2]; - -static void efi_call_phys_prelog(void) __acquires(efi_rt_lock) -{ - unsigned long cr4; - unsigned long temp; - struct Xgt_desc_struct gdt_descr; - - spin_lock(&efi_rt_lock); - local_irq_save(efi_rt_eflags); - - /* - * If I don't have PSE, I should just duplicate two entries in page - * directory. If I have PSE, I just need to duplicate one entry in - * page directory. - */ - cr4 = read_cr4(); - - if (cr4 & X86_CR4_PSE) { - efi_bak_pg_dir_pointer[0].pgd = - swapper_pg_dir[pgd_index(0)].pgd; - swapper_pg_dir[0].pgd = - swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; - } else { - efi_bak_pg_dir_pointer[0].pgd = - swapper_pg_dir[pgd_index(0)].pgd; - efi_bak_pg_dir_pointer[1].pgd = - swapper_pg_dir[pgd_index(0x400000)].pgd; - swapper_pg_dir[pgd_index(0)].pgd = - swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; - temp = PAGE_OFFSET + 0x400000; - swapper_pg_dir[pgd_index(0x400000)].pgd = - swapper_pg_dir[pgd_index(temp)].pgd; - } - - /* - * After the lock is released, the original page table is restored. - */ - local_flush_tlb(); - - gdt_descr.address = __pa(get_cpu_gdt_table(0)); - gdt_descr.size = GDT_SIZE - 1; - load_gdt(&gdt_descr); -} - -static void efi_call_phys_epilog(void) __releases(efi_rt_lock) -{ - unsigned long cr4; - struct Xgt_desc_struct gdt_descr; - - gdt_descr.address = (unsigned long)get_cpu_gdt_table(0); - gdt_descr.size = GDT_SIZE - 1; - load_gdt(&gdt_descr); - - cr4 = read_cr4(); - - if (cr4 & X86_CR4_PSE) { - swapper_pg_dir[pgd_index(0)].pgd = - efi_bak_pg_dir_pointer[0].pgd; - } else { - swapper_pg_dir[pgd_index(0)].pgd = - efi_bak_pg_dir_pointer[0].pgd; - swapper_pg_dir[pgd_index(0x400000)].pgd = - efi_bak_pg_dir_pointer[1].pgd; - } - - /* - * After the lock is released, the original page table is restored. - */ - local_flush_tlb(); - - local_irq_restore(efi_rt_eflags); - spin_unlock(&efi_rt_lock); -} - -static efi_status_t -phys_efi_set_virtual_address_map(unsigned long memory_map_size, - unsigned long descriptor_size, - u32 descriptor_version, - efi_memory_desc_t *virtual_map) -{ - efi_status_t status; - - efi_call_phys_prelog(); - status = efi_call_phys(efi_phys.set_virtual_address_map, - memory_map_size, descriptor_size, - descriptor_version, virtual_map); - efi_call_phys_epilog(); - return status; -} - -static efi_status_t -phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) -{ - efi_status_t status; - - efi_call_phys_prelog(); - status = efi_call_phys(efi_phys.get_time, tm, tc); - efi_call_phys_epilog(); - return status; -} - -inline int efi_set_rtc_mmss(unsigned long nowtime) -{ - int real_seconds, real_minutes; - efi_status_t status; - efi_time_t eft; - efi_time_cap_t cap; - - spin_lock(&efi_rt_lock); - status = efi.get_time(&eft, &cap); - spin_unlock(&efi_rt_lock); - if (status != EFI_SUCCESS) - panic("Ooops, efitime: can't read time!\n"); - real_seconds = nowtime % 60; - real_minutes = nowtime / 60; - - if (((abs(real_minutes - eft.minute) + 15)/30) & 1) - real_minutes += 30; - real_minutes %= 60; - - eft.minute = real_minutes; - eft.second = real_seconds; - - if (status != EFI_SUCCESS) { - printk("Ooops: efitime: can't read time!\n"); - return -1; - } - return 0; -} -/* - * This is used during kernel init before runtime - * services have been remapped and also during suspend, therefore, - * we'll need to call both in physical and virtual modes. - */ -inline unsigned long efi_get_time(void) -{ - efi_status_t status; - efi_time_t eft; - efi_time_cap_t cap; - - if (efi.get_time) { - /* if we are in virtual mode use remapped function */ - status = efi.get_time(&eft, &cap); - } else { - /* we are in physical mode */ - status = phys_efi_get_time(&eft, &cap); - } - - if (status != EFI_SUCCESS) - printk("Oops: efitime: can't read time status: 0x%lx\n",status); - - return mktime(eft.year, eft.month, eft.day, eft.hour, - eft.minute, eft.second); -} - -int is_available_memory(efi_memory_desc_t * md) -{ - if (!(md->attribute & EFI_MEMORY_WB)) - return 0; - - switch (md->type) { - case EFI_LOADER_CODE: - case EFI_LOADER_DATA: - case EFI_BOOT_SERVICES_CODE: - case EFI_BOOT_SERVICES_DATA: - case EFI_CONVENTIONAL_MEMORY: - return 1; - } - return 0; -} - -/* - * We need to map the EFI memory map again after paging_init(). - */ -void __init efi_map_memmap(void) -{ - memmap.map = NULL; - - memmap.map = bt_ioremap((unsigned long) memmap.phys_map, - (memmap.nr_map * memmap.desc_size)); - if (memmap.map == NULL) - printk(KERN_ERR PFX "Could not remap the EFI memmap!\n"); - - memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); -} - -#if EFI_DEBUG -static void __init print_efi_memmap(void) -{ - efi_memory_desc_t *md; - void *p; - int i; - - for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) { - md = p; - printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, " - "range=[0x%016llx-0x%016llx) (%lluMB)\n", - i, md->type, md->attribute, md->phys_addr, - md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), - (md->num_pages >> (20 - EFI_PAGE_SHIFT))); - } -} -#endif /* EFI_DEBUG */ - -/* - * Walks the EFI memory map and calls CALLBACK once for each EFI - * memory descriptor that has memory that is available for kernel use. - */ -void efi_memmap_walk(efi_freemem_callback_t callback, void *arg) -{ - int prev_valid = 0; - struct range { - unsigned long start; - unsigned long end; - } uninitialized_var(prev), curr; - efi_memory_desc_t *md; - unsigned long start, end; - void *p; - - for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { - md = p; - - if ((md->num_pages == 0) || (!is_available_memory(md))) - continue; - - curr.start = md->phys_addr; - curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT); - - if (!prev_valid) { - prev = curr; - prev_valid = 1; - } else { - if (curr.start < prev.start) - printk(KERN_INFO PFX "Unordered memory map\n"); - if (prev.end == curr.start) - prev.end = curr.end; - else { - start = - (unsigned long) (PAGE_ALIGN(prev.start)); - end = (unsigned long) (prev.end & PAGE_MASK); - if ((end > start) - && (*callback) (start, end, arg) < 0) - return; - prev = curr; - } - } - } - if (prev_valid) { - start = (unsigned long) PAGE_ALIGN(prev.start); - end = (unsigned long) (prev.end & PAGE_MASK); - if (end > start) - (*callback) (start, end, arg); - } -} - -void __init efi_init(void) -{ - efi_config_table_t *config_tables; - efi_runtime_services_t *runtime; - efi_char16_t *c16; - char vendor[100] = "unknown"; - unsigned long num_config_tables; - int i = 0; - - memset(&efi, 0, sizeof(efi) ); - memset(&efi_phys, 0, sizeof(efi_phys)); - - efi_phys.systab = EFI_SYSTAB; - memmap.phys_map = EFI_MEMMAP; - memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE; - memmap.desc_version = EFI_MEMDESC_VERSION; - memmap.desc_size = EFI_MEMDESC_SIZE; - - efi.systab = (efi_system_table_t *) - boot_ioremap((unsigned long) efi_phys.systab, - sizeof(efi_system_table_t)); - /* - * Verify the EFI Table - */ - if (efi.systab == NULL) - printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n"); - if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) - printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n"); - if ((efi.systab->hdr.revision >> 16) == 0) - printk(KERN_ERR PFX "Warning: EFI system table version " - "%d.%02d, expected 1.00 or greater\n", - efi.systab->hdr.revision >> 16, - efi.systab->hdr.revision & 0xffff); - - /* - * Grab some details from the system table - */ - num_config_tables = efi.systab->nr_tables; - config_tables = (efi_config_table_t *)efi.systab->tables; - runtime = efi.systab->runtime; - - /* - * Show what we know for posterity - */ - c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2); - if (c16) { - for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i) - vendor[i] = *c16++; - vendor[i] = '\0'; - } else - printk(KERN_ERR PFX "Could not map the firmware vendor!\n"); - - printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n", - efi.systab->hdr.revision >> 16, - efi.systab->hdr.revision & 0xffff, vendor); - - /* - * Let's see what config tables the firmware passed to us. - */ - config_tables = (efi_config_table_t *) - boot_ioremap((unsigned long) config_tables, - num_config_tables * sizeof(efi_config_table_t)); - - if (config_tables == NULL) - printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n"); - - efi.mps = EFI_INVALID_TABLE_ADDR; - efi.acpi = EFI_INVALID_TABLE_ADDR; - efi.acpi20 = EFI_INVALID_TABLE_ADDR; - efi.smbios = EFI_INVALID_TABLE_ADDR; - efi.sal_systab = EFI_INVALID_TABLE_ADDR; - efi.boot_info = EFI_INVALID_TABLE_ADDR; - efi.hcdp = EFI_INVALID_TABLE_ADDR; - efi.uga = EFI_INVALID_TABLE_ADDR; - - for (i = 0; i < num_config_tables; i++) { - if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { - efi.mps = config_tables[i].table; - printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table); - } else - if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { - efi.acpi20 = config_tables[i].table; - printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table); - } else - if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { - efi.acpi = config_tables[i].table; - printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table); - } else - if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { - efi.smbios = config_tables[i].table; - printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table); - } else - if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { - efi.hcdp = config_tables[i].table; - printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table); - } else - if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) { - efi.uga = config_tables[i].table; - printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table); - } - } - printk("\n"); - - /* - * Check out the runtime services table. We need to map - * the runtime services table so that we can grab the physical - * address of several of the EFI runtime functions, needed to - * set the firmware into virtual mode. - */ - - runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long) - runtime, - sizeof(efi_runtime_services_t)); - if (runtime != NULL) { - /* - * We will only need *early* access to the following - * two EFI runtime services before set_virtual_address_map - * is invoked. - */ - efi_phys.get_time = (efi_get_time_t *) runtime->get_time; - efi_phys.set_virtual_address_map = - (efi_set_virtual_address_map_t *) - runtime->set_virtual_address_map; - } else - printk(KERN_ERR PFX "Could not map the runtime service table!\n"); - - /* Map the EFI memory map for use until paging_init() */ - memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE); - if (memmap.map == NULL) - printk(KERN_ERR PFX "Could not map the EFI memory map!\n"); - - memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); - -#if EFI_DEBUG - print_efi_memmap(); -#endif -} - -static inline void __init check_range_for_systab(efi_memory_desc_t *md) -{ - if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) && - ((unsigned long)efi_phys.systab < md->phys_addr + - ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) { - unsigned long addr; - - addr = md->virt_addr - md->phys_addr + - (unsigned long)efi_phys.systab; - efi.systab = (efi_system_table_t *)addr; - } -} - -/* - * Wrap all the virtual calls in a way that forces the parameters on the stack. - */ - -#define efi_call_virt(f, args...) \ - ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args) - -static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) -{ - return efi_call_virt(get_time, tm, tc); -} - -static efi_status_t virt_efi_set_time (efi_time_t *tm) -{ - return efi_call_virt(set_time, tm); -} - -static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled, - efi_bool_t *pending, - efi_time_t *tm) -{ - return efi_call_virt(get_wakeup_time, enabled, pending, tm); -} - -static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled, - efi_time_t *tm) -{ - return efi_call_virt(set_wakeup_time, enabled, tm); -} - -static efi_status_t virt_efi_get_variable (efi_char16_t *name, - efi_guid_t *vendor, u32 *attr, - unsigned long *data_size, void *data) -{ - return efi_call_virt(get_variable, name, vendor, attr, data_size, data); -} - -static efi_status_t virt_efi_get_next_variable (unsigned long *name_size, - efi_char16_t *name, - efi_guid_t *vendor) -{ - return efi_call_virt(get_next_variable, name_size, name, vendor); -} - -static efi_status_t virt_efi_set_variable (efi_char16_t *name, - efi_guid_t *vendor, - unsigned long attr, - unsigned long data_size, void *data) -{ - return efi_call_virt(set_variable, name, vendor, attr, data_size, data); -} - -static efi_status_t virt_efi_get_next_high_mono_count (u32 *count) -{ - return efi_call_virt(get_next_high_mono_count, count); -} - -static void virt_efi_reset_system (int reset_type, efi_status_t status, - unsigned long data_size, - efi_char16_t *data) -{ - efi_call_virt(reset_system, reset_type, status, data_size, data); -} - -/* - * This function will switch the EFI runtime services to virtual mode. - * Essentially, look through the EFI memmap and map every region that - * has the runtime attribute bit set in its memory descriptor and update - * that memory descriptor with the virtual address obtained from ioremap(). - * This enables the runtime services to be called without having to - * thunk back into physical mode for every invocation. - */ - -void __init efi_enter_virtual_mode(void) -{ - efi_memory_desc_t *md; - efi_status_t status; - void *p; - - efi.systab = NULL; - - for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { - md = p; - - if (!(md->attribute & EFI_MEMORY_RUNTIME)) - continue; - - md->virt_addr = (unsigned long)ioremap(md->phys_addr, - md->num_pages << EFI_PAGE_SHIFT); - if (!(unsigned long)md->virt_addr) { - printk(KERN_ERR PFX "ioremap of 0x%lX failed\n", - (unsigned long)md->phys_addr); - } - /* update the virtual address of the EFI system table */ - check_range_for_systab(md); - } - - BUG_ON(!efi.systab); - - status = phys_efi_set_virtual_address_map( - memmap.desc_size * memmap.nr_map, - memmap.desc_size, - memmap.desc_version, - memmap.phys_map); - - if (status != EFI_SUCCESS) { - printk (KERN_ALERT "You are screwed! " - "Unable to switch EFI into virtual mode " - "(status=%lx)\n", status); - panic("EFI call to SetVirtualAddressMap() failed!"); - } - - /* - * Now that EFI is in virtual mode, update the function - * pointers in the runtime service table to the new virtual addresses. - */ - - efi.get_time = virt_efi_get_time; - efi.set_time = virt_efi_set_time; - efi.get_wakeup_time = virt_efi_get_wakeup_time; - efi.set_wakeup_time = virt_efi_set_wakeup_time; - efi.get_variable = virt_efi_get_variable; - efi.get_next_variable = virt_efi_get_next_variable; - efi.set_variable = virt_efi_set_variable; - efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; - efi.reset_system = virt_efi_reset_system; -} - -void __init -efi_initialize_iomem_resources(struct resource *code_resource, - struct resource *data_resource) -{ - struct resource *res; - efi_memory_desc_t *md; - void *p; - - for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { - md = p; - - if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) > - 0x100000000ULL) - continue; - res = kzalloc(sizeof(struct resource), GFP_ATOMIC); - switch (md->type) { - case EFI_RESERVED_TYPE: - res->name = "Reserved Memory"; - break; - case EFI_LOADER_CODE: - res->name = "Loader Code"; - break; - case EFI_LOADER_DATA: - res->name = "Loader Data"; - break; - case EFI_BOOT_SERVICES_DATA: - res->name = "BootServices Data"; - break; - case EFI_BOOT_SERVICES_CODE: - res->name = "BootServices Code"; - break; - case EFI_RUNTIME_SERVICES_CODE: - res->name = "Runtime Service Code"; - break; - case EFI_RUNTIME_SERVICES_DATA: - res->name = "Runtime Service Data"; - break; - case EFI_CONVENTIONAL_MEMORY: - res->name = "Conventional Memory"; - break; - case EFI_UNUSABLE_MEMORY: - res->name = "Unusable Memory"; - break; - case EFI_ACPI_RECLAIM_MEMORY: - res->name = "ACPI Reclaim"; - break; - case EFI_ACPI_MEMORY_NVS: - res->name = "ACPI NVS"; - break; - case EFI_MEMORY_MAPPED_IO: - res->name = "Memory Mapped IO"; - break; - case EFI_MEMORY_MAPPED_IO_PORT_SPACE: - res->name = "Memory Mapped IO Port Space"; - break; - default: - res->name = "Reserved"; - break; - } - res->start = md->phys_addr; - res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1); - res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; - if (request_resource(&iomem_resource, res) < 0) - printk(KERN_ERR PFX "Failed to allocate res %s : " - "0x%llx-0x%llx\n", res->name, - (unsigned long long)res->start, - (unsigned long long)res->end); - /* - * We don't know which region contains kernel data so we try - * it repeatedly and let the resource manager test it. - */ - if (md->type == EFI_CONVENTIONAL_MEMORY) { - request_resource(res, code_resource); - request_resource(res, data_resource); -#ifdef CONFIG_KEXEC - request_resource(res, &crashk_res); -#endif - } - } -} - -/* - * Convenience functions to obtain memory types and attributes - */ - -u32 efi_mem_type(unsigned long phys_addr) -{ - efi_memory_desc_t *md; - void *p; - - for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { - md = p; - if ((md->phys_addr <= phys_addr) && (phys_addr < - (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) - return md->type; - } - return 0; -} - -u64 efi_mem_attributes(unsigned long phys_addr) -{ - efi_memory_desc_t *md; - void *p; - - for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { - md = p; - if ((md->phys_addr <= phys_addr) && (phys_addr < - (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) - return md->attribute; - } - return 0; -} diff --git a/arch/i386/kernel/efi_32.c b/arch/i386/kernel/efi_32.c new file mode 100644 index 000000000000..2452c6fbe992 --- /dev/null +++ b/arch/i386/kernel/efi_32.c @@ -0,0 +1,712 @@ +/* + * Extensible Firmware Interface + * + * Based on Extensible Firmware Interface Specification version 1.0 + * + * Copyright (C) 1999 VA Linux Systems + * Copyright (C) 1999 Walt Drummond + * Copyright (C) 1999-2002 Hewlett-Packard Co. + * David Mosberger-Tang + * Stephane Eranian + * + * All EFI Runtime Services are not implemented yet as EFI only + * supports physical mode addressing on SoftSDV. This is to be fixed + * in a future version. --drummond 1999-07-20 + * + * Implemented EFI runtime services and virtual mode calls. --davidm + * + * Goutham Rao: + * Skip non-WB memory and ignore empty memory ranges. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include + +#define EFI_DEBUG 0 +#define PFX "EFI: " + +extern efi_status_t asmlinkage efi_call_phys(void *, ...); + +struct efi efi; +EXPORT_SYMBOL(efi); +static struct efi efi_phys; +struct efi_memory_map memmap; + +/* + * We require an early boot_ioremap mapping mechanism initially + */ +extern void * boot_ioremap(unsigned long, unsigned long); + +/* + * To make EFI call EFI runtime service in physical addressing mode we need + * prelog/epilog before/after the invocation to disable interrupt, to + * claim EFI runtime service handler exclusively and to duplicate a memory in + * low memory space say 0 - 3G. + */ + +static unsigned long efi_rt_eflags; +static DEFINE_SPINLOCK(efi_rt_lock); +static pgd_t efi_bak_pg_dir_pointer[2]; + +static void efi_call_phys_prelog(void) __acquires(efi_rt_lock) +{ + unsigned long cr4; + unsigned long temp; + struct Xgt_desc_struct gdt_descr; + + spin_lock(&efi_rt_lock); + local_irq_save(efi_rt_eflags); + + /* + * If I don't have PSE, I should just duplicate two entries in page + * directory. If I have PSE, I just need to duplicate one entry in + * page directory. + */ + cr4 = read_cr4(); + + if (cr4 & X86_CR4_PSE) { + efi_bak_pg_dir_pointer[0].pgd = + swapper_pg_dir[pgd_index(0)].pgd; + swapper_pg_dir[0].pgd = + swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; + } else { + efi_bak_pg_dir_pointer[0].pgd = + swapper_pg_dir[pgd_index(0)].pgd; + efi_bak_pg_dir_pointer[1].pgd = + swapper_pg_dir[pgd_index(0x400000)].pgd; + swapper_pg_dir[pgd_index(0)].pgd = + swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; + temp = PAGE_OFFSET + 0x400000; + swapper_pg_dir[pgd_index(0x400000)].pgd = + swapper_pg_dir[pgd_index(temp)].pgd; + } + + /* + * After the lock is released, the original page table is restored. + */ + local_flush_tlb(); + + gdt_descr.address = __pa(get_cpu_gdt_table(0)); + gdt_descr.size = GDT_SIZE - 1; + load_gdt(&gdt_descr); +} + +static void efi_call_phys_epilog(void) __releases(efi_rt_lock) +{ + unsigned long cr4; + struct Xgt_desc_struct gdt_descr; + + gdt_descr.address = (unsigned long)get_cpu_gdt_table(0); + gdt_descr.size = GDT_SIZE - 1; + load_gdt(&gdt_descr); + + cr4 = read_cr4(); + + if (cr4 & X86_CR4_PSE) { + swapper_pg_dir[pgd_index(0)].pgd = + efi_bak_pg_dir_pointer[0].pgd; + } else { + swapper_pg_dir[pgd_index(0)].pgd = + efi_bak_pg_dir_pointer[0].pgd; + swapper_pg_dir[pgd_index(0x400000)].pgd = + efi_bak_pg_dir_pointer[1].pgd; + } + + /* + * After the lock is released, the original page table is restored. + */ + local_flush_tlb(); + + local_irq_restore(efi_rt_eflags); + spin_unlock(&efi_rt_lock); +} + +static efi_status_t +phys_efi_set_virtual_address_map(unsigned long memory_map_size, + unsigned long descriptor_size, + u32 descriptor_version, + efi_memory_desc_t *virtual_map) +{ + efi_status_t status; + + efi_call_phys_prelog(); + status = efi_call_phys(efi_phys.set_virtual_address_map, + memory_map_size, descriptor_size, + descriptor_version, virtual_map); + efi_call_phys_epilog(); + return status; +} + +static efi_status_t +phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) +{ + efi_status_t status; + + efi_call_phys_prelog(); + status = efi_call_phys(efi_phys.get_time, tm, tc); + efi_call_phys_epilog(); + return status; +} + +inline int efi_set_rtc_mmss(unsigned long nowtime) +{ + int real_seconds, real_minutes; + efi_status_t status; + efi_time_t eft; + efi_time_cap_t cap; + + spin_lock(&efi_rt_lock); + status = efi.get_time(&eft, &cap); + spin_unlock(&efi_rt_lock); + if (status != EFI_SUCCESS) + panic("Ooops, efitime: can't read time!\n"); + real_seconds = nowtime % 60; + real_minutes = nowtime / 60; + + if (((abs(real_minutes - eft.minute) + 15)/30) & 1) + real_minutes += 30; + real_minutes %= 60; + + eft.minute = real_minutes; + eft.second = real_seconds; + + if (status != EFI_SUCCESS) { + printk("Ooops: efitime: can't read time!\n"); + return -1; + } + return 0; +} +/* + * This is used during kernel init before runtime + * services have been remapped and also during suspend, therefore, + * we'll need to call both in physical and virtual modes. + */ +inline unsigned long efi_get_time(void) +{ + efi_status_t status; + efi_time_t eft; + efi_time_cap_t cap; + + if (efi.get_time) { + /* if we are in virtual mode use remapped function */ + status = efi.get_time(&eft, &cap); + } else { + /* we are in physical mode */ + status = phys_efi_get_time(&eft, &cap); + } + + if (status != EFI_SUCCESS) + printk("Oops: efitime: can't read time status: 0x%lx\n",status); + + return mktime(eft.year, eft.month, eft.day, eft.hour, + eft.minute, eft.second); +} + +int is_available_memory(efi_memory_desc_t * md) +{ + if (!(md->attribute & EFI_MEMORY_WB)) + return 0; + + switch (md->type) { + case EFI_LOADER_CODE: + case EFI_LOADER_DATA: + case EFI_BOOT_SERVICES_CODE: + case EFI_BOOT_SERVICES_DATA: + case EFI_CONVENTIONAL_MEMORY: + return 1; + } + return 0; +} + +/* + * We need to map the EFI memory map again after paging_init(). + */ +void __init efi_map_memmap(void) +{ + memmap.map = NULL; + + memmap.map = bt_ioremap((unsigned long) memmap.phys_map, + (memmap.nr_map * memmap.desc_size)); + if (memmap.map == NULL) + printk(KERN_ERR PFX "Could not remap the EFI memmap!\n"); + + memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); +} + +#if EFI_DEBUG +static void __init print_efi_memmap(void) +{ + efi_memory_desc_t *md; + void *p; + int i; + + for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) { + md = p; + printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, " + "range=[0x%016llx-0x%016llx) (%lluMB)\n", + i, md->type, md->attribute, md->phys_addr, + md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), + (md->num_pages >> (20 - EFI_PAGE_SHIFT))); + } +} +#endif /* EFI_DEBUG */ + +/* + * Walks the EFI memory map and calls CALLBACK once for each EFI + * memory descriptor that has memory that is available for kernel use. + */ +void efi_memmap_walk(efi_freemem_callback_t callback, void *arg) +{ + int prev_valid = 0; + struct range { + unsigned long start; + unsigned long end; + } uninitialized_var(prev), curr; + efi_memory_desc_t *md; + unsigned long start, end; + void *p; + + for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { + md = p; + + if ((md->num_pages == 0) || (!is_available_memory(md))) + continue; + + curr.start = md->phys_addr; + curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT); + + if (!prev_valid) { + prev = curr; + prev_valid = 1; + } else { + if (curr.start < prev.start) + printk(KERN_INFO PFX "Unordered memory map\n"); + if (prev.end == curr.start) + prev.end = curr.end; + else { + start = + (unsigned long) (PAGE_ALIGN(prev.start)); + end = (unsigned long) (prev.end & PAGE_MASK); + if ((end > start) + && (*callback) (start, end, arg) < 0) + return; + prev = curr; + } + } + } + if (prev_valid) { + start = (unsigned long) PAGE_ALIGN(prev.start); + end = (unsigned long) (prev.end & PAGE_MASK); + if (end > start) + (*callback) (start, end, arg); + } +} + +void __init efi_init(void) +{ + efi_config_table_t *config_tables; + efi_runtime_services_t *runtime; + efi_char16_t *c16; + char vendor[100] = "unknown"; + unsigned long num_config_tables; + int i = 0; + + memset(&efi, 0, sizeof(efi) ); + memset(&efi_phys, 0, sizeof(efi_phys)); + + efi_phys.systab = EFI_SYSTAB; + memmap.phys_map = EFI_MEMMAP; + memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE; + memmap.desc_version = EFI_MEMDESC_VERSION; + memmap.desc_size = EFI_MEMDESC_SIZE; + + efi.systab = (efi_system_table_t *) + boot_ioremap((unsigned long) efi_phys.systab, + sizeof(efi_system_table_t)); + /* + * Verify the EFI Table + */ + if (efi.systab == NULL) + printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n"); + if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) + printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n"); + if ((efi.systab->hdr.revision >> 16) == 0) + printk(KERN_ERR PFX "Warning: EFI system table version " + "%d.%02d, expected 1.00 or greater\n", + efi.systab->hdr.revision >> 16, + efi.systab->hdr.revision & 0xffff); + + /* + * Grab some details from the system table + */ + num_config_tables = efi.systab->nr_tables; + config_tables = (efi_config_table_t *)efi.systab->tables; + runtime = efi.systab->runtime; + + /* + * Show what we know for posterity + */ + c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2); + if (c16) { + for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i) + vendor[i] = *c16++; + vendor[i] = '\0'; + } else + printk(KERN_ERR PFX "Could not map the firmware vendor!\n"); + + printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n", + efi.systab->hdr.revision >> 16, + efi.systab->hdr.revision & 0xffff, vendor); + + /* + * Let's see what config tables the firmware passed to us. + */ + config_tables = (efi_config_table_t *) + boot_ioremap((unsigned long) config_tables, + num_config_tables * sizeof(efi_config_table_t)); + + if (config_tables == NULL) + printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n"); + + efi.mps = EFI_INVALID_TABLE_ADDR; + efi.acpi = EFI_INVALID_TABLE_ADDR; + efi.acpi20 = EFI_INVALID_TABLE_ADDR; + efi.smbios = EFI_INVALID_TABLE_ADDR; + efi.sal_systab = EFI_INVALID_TABLE_ADDR; + efi.boot_info = EFI_INVALID_TABLE_ADDR; + efi.hcdp = EFI_INVALID_TABLE_ADDR; + efi.uga = EFI_INVALID_TABLE_ADDR; + + for (i = 0; i < num_config_tables; i++) { + if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { + efi.mps = config_tables[i].table; + printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table); + } else + if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { + efi.acpi20 = config_tables[i].table; + printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table); + } else + if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { + efi.acpi = config_tables[i].table; + printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table); + } else + if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { + efi.smbios = config_tables[i].table; + printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table); + } else + if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { + efi.hcdp = config_tables[i].table; + printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table); + } else + if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) { + efi.uga = config_tables[i].table; + printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table); + } + } + printk("\n"); + + /* + * Check out the runtime services table. We need to map + * the runtime services table so that we can grab the physical + * address of several of the EFI runtime functions, needed to + * set the firmware into virtual mode. + */ + + runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long) + runtime, + sizeof(efi_runtime_services_t)); + if (runtime != NULL) { + /* + * We will only need *early* access to the following + * two EFI runtime services before set_virtual_address_map + * is invoked. + */ + efi_phys.get_time = (efi_get_time_t *) runtime->get_time; + efi_phys.set_virtual_address_map = + (efi_set_virtual_address_map_t *) + runtime->set_virtual_address_map; + } else + printk(KERN_ERR PFX "Could not map the runtime service table!\n"); + + /* Map the EFI memory map for use until paging_init() */ + memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE); + if (memmap.map == NULL) + printk(KERN_ERR PFX "Could not map the EFI memory map!\n"); + + memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); + +#if EFI_DEBUG + print_efi_memmap(); +#endif +} + +static inline void __init check_range_for_systab(efi_memory_desc_t *md) +{ + if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) && + ((unsigned long)efi_phys.systab < md->phys_addr + + ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) { + unsigned long addr; + + addr = md->virt_addr - md->phys_addr + + (unsigned long)efi_phys.systab; + efi.systab = (efi_system_table_t *)addr; + } +} + +/* + * Wrap all the virtual calls in a way that forces the parameters on the stack. + */ + +#define efi_call_virt(f, args...) \ + ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args) + +static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) +{ + return efi_call_virt(get_time, tm, tc); +} + +static efi_status_t virt_efi_set_time (efi_time_t *tm) +{ + return efi_call_virt(set_time, tm); +} + +static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled, + efi_bool_t *pending, + efi_time_t *tm) +{ + return efi_call_virt(get_wakeup_time, enabled, pending, tm); +} + +static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled, + efi_time_t *tm) +{ + return efi_call_virt(set_wakeup_time, enabled, tm); +} + +static efi_status_t virt_efi_get_variable (efi_char16_t *name, + efi_guid_t *vendor, u32 *attr, + unsigned long *data_size, void *data) +{ + return efi_call_virt(get_variable, name, vendor, attr, data_size, data); +} + +static efi_status_t virt_efi_get_next_variable (unsigned long *name_size, + efi_char16_t *name, + efi_guid_t *vendor) +{ + return efi_call_virt(get_next_variable, name_size, name, vendor); +} + +static efi_status_t virt_efi_set_variable (efi_char16_t *name, + efi_guid_t *vendor, + unsigned long attr, + unsigned long data_size, void *data) +{ + return efi_call_virt(set_variable, name, vendor, attr, data_size, data); +} + +static efi_status_t virt_efi_get_next_high_mono_count (u32 *count) +{ + return efi_call_virt(get_next_high_mono_count, count); +} + +static void virt_efi_reset_system (int reset_type, efi_status_t status, + unsigned long data_size, + efi_char16_t *data) +{ + efi_call_virt(reset_system, reset_type, status, data_size, data); +} + +/* + * This function will switch the EFI runtime services to virtual mode. + * Essentially, look through the EFI memmap and map every region that + * has the runtime attribute bit set in its memory descriptor and update + * that memory descriptor with the virtual address obtained from ioremap(). + * This enables the runtime services to be called without having to + * thunk back into physical mode for every invocation. + */ + +void __init efi_enter_virtual_mode(void) +{ + efi_memory_desc_t *md; + efi_status_t status; + void *p; + + efi.systab = NULL; + + for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { + md = p; + + if (!(md->attribute & EFI_MEMORY_RUNTIME)) + continue; + + md->virt_addr = (unsigned long)ioremap(md->phys_addr, + md->num_pages << EFI_PAGE_SHIFT); + if (!(unsigned long)md->virt_addr) { + printk(KERN_ERR PFX "ioremap of 0x%lX failed\n", + (unsigned long)md->phys_addr); + } + /* update the virtual address of the EFI system table */ + check_range_for_systab(md); + } + + BUG_ON(!efi.systab); + + status = phys_efi_set_virtual_address_map( + memmap.desc_size * memmap.nr_map, + memmap.desc_size, + memmap.desc_version, + memmap.phys_map); + + if (status != EFI_SUCCESS) { + printk (KERN_ALERT "You are screwed! " + "Unable to switch EFI into virtual mode " + "(status=%lx)\n", status); + panic("EFI call to SetVirtualAddressMap() failed!"); + } + + /* + * Now that EFI is in virtual mode, update the function + * pointers in the runtime service table to the new virtual addresses. + */ + + efi.get_time = virt_efi_get_time; + efi.set_time = virt_efi_set_time; + efi.get_wakeup_time = virt_efi_get_wakeup_time; + efi.set_wakeup_time = virt_efi_set_wakeup_time; + efi.get_variable = virt_efi_get_variable; + efi.get_next_variable = virt_efi_get_next_variable; + efi.set_variable = virt_efi_set_variable; + efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; + efi.reset_system = virt_efi_reset_system; +} + +void __init +efi_initialize_iomem_resources(struct resource *code_resource, + struct resource *data_resource) +{ + struct resource *res; + efi_memory_desc_t *md; + void *p; + + for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { + md = p; + + if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) > + 0x100000000ULL) + continue; + res = kzalloc(sizeof(struct resource), GFP_ATOMIC); + switch (md->type) { + case EFI_RESERVED_TYPE: + res->name = "Reserved Memory"; + break; + case EFI_LOADER_CODE: + res->name = "Loader Code"; + break; + case EFI_LOADER_DATA: + res->name = "Loader Data"; + break; + case EFI_BOOT_SERVICES_DATA: + res->name = "BootServices Data"; + break; + case EFI_BOOT_SERVICES_CODE: + res->name = "BootServices Code"; + break; + case EFI_RUNTIME_SERVICES_CODE: + res->name = "Runtime Service Code"; + break; + case EFI_RUNTIME_SERVICES_DATA: + res->name = "Runtime Service Data"; + break; + case EFI_CONVENTIONAL_MEMORY: + res->name = "Conventional Memory"; + break; + case EFI_UNUSABLE_MEMORY: + res->name = "Unusable Memory"; + break; + case EFI_ACPI_RECLAIM_MEMORY: + res->name = "ACPI Reclaim"; + break; + case EFI_ACPI_MEMORY_NVS: + res->name = "ACPI NVS"; + break; + case EFI_MEMORY_MAPPED_IO: + res->name = "Memory Mapped IO"; + break; + case EFI_MEMORY_MAPPED_IO_PORT_SPACE: + res->name = "Memory Mapped IO Port Space"; + break; + default: + res->name = "Reserved"; + break; + } + res->start = md->phys_addr; + res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1); + res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; + if (request_resource(&iomem_resource, res) < 0) + printk(KERN_ERR PFX "Failed to allocate res %s : " + "0x%llx-0x%llx\n", res->name, + (unsigned long long)res->start, + (unsigned long long)res->end); + /* + * We don't know which region contains kernel data so we try + * it repeatedly and let the resource manager test it. + */ + if (md->type == EFI_CONVENTIONAL_MEMORY) { + request_resource(res, code_resource); + request_resource(res, data_resource); +#ifdef CONFIG_KEXEC + request_resource(res, &crashk_res); +#endif + } + } +} + +/* + * Convenience functions to obtain memory types and attributes + */ + +u32 efi_mem_type(unsigned long phys_addr) +{ + efi_memory_desc_t *md; + void *p; + + for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { + md = p; + if ((md->phys_addr <= phys_addr) && (phys_addr < + (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) + return md->type; + } + return 0; +} + +u64 efi_mem_attributes(unsigned long phys_addr) +{ + efi_memory_desc_t *md; + void *p; + + for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { + md = p; + if ((md->phys_addr <= phys_addr) && (phys_addr < + (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) + return md->attribute; + } + return 0; +}