From 2ec619a29aaad886426c31c952a28543e20e608f Mon Sep 17 00:00:00 2001 From: Reid Spencer Date: Fri, 23 Mar 2007 21:24:59 +0000 Subject: [PATCH] For PR1205: * APIntify visitAdd and visitSelectInst * Remove unused uint64_t versions of utility functions that have been replaced with APInt versions. This completes most of the changes for APIntification of InstCombine. This passes llvm-test and llvm/test/Transforms/InstCombine/APInt. Patch by Zhou Sheng. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35287 91177308-0d34-0410-b5e6-96231b3b80d8 --- .../Scalar/InstructionCombining.cpp | 1053 +++-------------- 1 file changed, 164 insertions(+), 889 deletions(-) diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp index cda8eeb3153..219f18209b9 100644 --- a/lib/Transforms/Scalar/InstructionCombining.cpp +++ b/lib/Transforms/Scalar/InstructionCombining.cpp @@ -319,10 +319,8 @@ namespace { /// most-complex to least-complex order. bool SimplifyCompare(CmpInst &I); - bool SimplifyDemandedBits(Value *V, uint64_t DemandedMask, - uint64_t &KnownZero, uint64_t &KnownOne, - unsigned Depth = 0); - + /// SimplifyDemandedBits - Attempts to replace V with a simpler value based + /// on the demanded bits. bool SimplifyDemandedBits(Value *V, APInt DemandedMask, APInt& KnownZero, APInt& KnownOne, unsigned Depth = 0); @@ -708,863 +706,167 @@ static void ComputeMaskedBits(Value *V, APInt Mask, APInt& KnownZero, KnownZero.trunc(SrcBitWidth), KnownOne.trunc(SrcBitWidth), Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero.zext(BitWidth); - KnownOne.zext(BitWidth); - - // If the sign bit of the input is known set or clear, then we know the - // top bits of the result. - APInt InSignBit(APInt::getSignBit(SrcTy->getBitWidth())); - InSignBit.zext(BitWidth); - if ((KnownZero & InSignBit) != 0) { // Input sign bit known zero - KnownZero |= NewBits; - KnownOne &= ~NewBits; - } else if ((KnownOne & InSignBit) != 0) { // Input sign bit known set - KnownOne |= NewBits; - KnownZero &= ~NewBits; - } else { // Input sign bit unknown - KnownZero &= ~NewBits; - KnownOne &= ~NewBits; - } - return; - } - case Instruction::Shl: - // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 - if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - uint64_t ShiftAmt = SA->getZExtValue(); - Mask = APIntOps::lshr(Mask, ShiftAmt); - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero <<= ShiftAmt; - KnownOne <<= ShiftAmt; - KnownZero |= APInt(BitWidth, 1ULL).shl(ShiftAmt)-1; // low bits known zero. - return; - } - break; - case Instruction::LShr: - // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 - if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - // Compute the new bits that are at the top now. - uint64_t ShiftAmt = SA->getZExtValue(); - APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth-ShiftAmt)); - - // Unsigned shift right. - Mask <<= ShiftAmt; - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); - assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); - KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); - KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); - KnownZero |= HighBits; // high bits known zero. - return; - } - break; - case Instruction::AShr: - // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 - if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - // Compute the new bits that are at the top now. - uint64_t ShiftAmt = SA->getZExtValue(); - APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth-ShiftAmt)); - - // Signed shift right. - Mask <<= ShiftAmt; - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); - assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); - KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); - KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); - - // Handle the sign bits and adjust to where it is now in the mask. - APInt SignBit(APInt::getSignBit(BitWidth).lshr(ShiftAmt)); - - if ((KnownZero & SignBit) != 0) { // New bits are known zero. - KnownZero |= HighBits; - } else if ((KnownOne & SignBit) != 0) { // New bits are known one. - KnownOne |= HighBits; - } - return; - } - break; - } -} - -/// ComputeMaskedBits - Determine which of the bits specified in Mask are -/// known to be either zero or one and return them in the KnownZero/KnownOne -/// bitsets. This code only analyzes bits in Mask, in order to short-circuit -/// processing. -static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero, - uint64_t &KnownOne, unsigned Depth = 0) { - // Note, we cannot consider 'undef' to be "IsZero" here. The problem is that - // we cannot optimize based on the assumption that it is zero without changing - // it to be an explicit zero. If we don't change it to zero, other code could - // optimized based on the contradictory assumption that it is non-zero. - // Because instcombine aggressively folds operations with undef args anyway, - // this won't lose us code quality. - if (ConstantInt *CI = dyn_cast(V)) { - // We know all of the bits for a constant! - KnownOne = CI->getZExtValue() & Mask; - KnownZero = ~KnownOne & Mask; - return; - } - - KnownZero = KnownOne = 0; // Don't know anything. - if (Depth == 6 || Mask == 0) - return; // Limit search depth. - - uint64_t KnownZero2, KnownOne2; - Instruction *I = dyn_cast(V); - if (!I) return; - - Mask &= cast(V->getType())->getBitMask(); - - switch (I->getOpcode()) { - case Instruction::And: - // If either the LHS or the RHS are Zero, the result is zero. - ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); - Mask &= ~KnownZero; - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - // Output known-1 bits are only known if set in both the LHS & RHS. - KnownOne &= KnownOne2; - // Output known-0 are known to be clear if zero in either the LHS | RHS. - KnownZero |= KnownZero2; - return; - case Instruction::Or: - ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); - Mask &= ~KnownOne; - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - // Output known-0 bits are only known if clear in both the LHS & RHS. - KnownZero &= KnownZero2; - // Output known-1 are known to be set if set in either the LHS | RHS. - KnownOne |= KnownOne2; - return; - case Instruction::Xor: { - ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - // Output known-0 bits are known if clear or set in both the LHS & RHS. - uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); - // Output known-1 are known to be set if set in only one of the LHS, RHS. - KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); - KnownZero = KnownZeroOut; - return; - } - case Instruction::Select: - ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1); - ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - // Only known if known in both the LHS and RHS. - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; - return; - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::SIToFP: - case Instruction::PtrToInt: - case Instruction::UIToFP: - case Instruction::IntToPtr: - return; // Can't work with floating point or pointers - case Instruction::Trunc: - // All these have integer operands - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); - return; - case Instruction::BitCast: { - const Type *SrcTy = I->getOperand(0)->getType(); - if (SrcTy->isInteger()) { - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); - return; - } - break; - } - case Instruction::ZExt: { - // Compute the bits in the result that are not present in the input. - const IntegerType *SrcTy = cast(I->getOperand(0)->getType()); - uint64_t NotIn = ~SrcTy->getBitMask(); - uint64_t NewBits = cast(I->getType())->getBitMask() & NotIn; - - Mask &= SrcTy->getBitMask(); - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - // The top bits are known to be zero. - KnownZero |= NewBits; - return; - } - case Instruction::SExt: { - // Compute the bits in the result that are not present in the input. - const IntegerType *SrcTy = cast(I->getOperand(0)->getType()); - uint64_t NotIn = ~SrcTy->getBitMask(); - uint64_t NewBits = cast(I->getType())->getBitMask() & NotIn; - - Mask &= SrcTy->getBitMask(); - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - - // If the sign bit of the input is known set or clear, then we know the - // top bits of the result. - uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1); - if (KnownZero & InSignBit) { // Input sign bit known zero - KnownZero |= NewBits; - KnownOne &= ~NewBits; - } else if (KnownOne & InSignBit) { // Input sign bit known set - KnownOne |= NewBits; - KnownZero &= ~NewBits; - } else { // Input sign bit unknown - KnownZero &= ~NewBits; - KnownOne &= ~NewBits; - } - return; - } - case Instruction::Shl: - // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 - if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - uint64_t ShiftAmt = SA->getZExtValue(); - Mask >>= ShiftAmt; - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero <<= ShiftAmt; - KnownOne <<= ShiftAmt; - KnownZero |= (1ULL << ShiftAmt)-1; // low bits known zero. - return; - } - break; - case Instruction::LShr: - // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 - if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - // Compute the new bits that are at the top now. - uint64_t ShiftAmt = SA->getZExtValue(); - uint64_t HighBits = (1ULL << ShiftAmt)-1; - HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt; - - // Unsigned shift right. - Mask <<= ShiftAmt; - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); - assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); - KnownZero >>= ShiftAmt; - KnownOne >>= ShiftAmt; - KnownZero |= HighBits; // high bits known zero. - return; - } - break; - case Instruction::AShr: - // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 - if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - // Compute the new bits that are at the top now. - uint64_t ShiftAmt = SA->getZExtValue(); - uint64_t HighBits = (1ULL << ShiftAmt)-1; - HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt; - - // Signed shift right. - Mask <<= ShiftAmt; - ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); - assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); - KnownZero >>= ShiftAmt; - KnownOne >>= ShiftAmt; - - // Handle the sign bits. - uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1); - SignBit >>= ShiftAmt; // Adjust to where it is now in the mask. - - if (KnownZero & SignBit) { // New bits are known zero. - KnownZero |= HighBits; - } else if (KnownOne & SignBit) { // New bits are known one. - KnownOne |= HighBits; - } - return; - } - break; - } -} - -/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use -/// this predicate to simplify operations downstream. Mask is known to be zero -/// for bits that V cannot have. -static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) { - uint64_t KnownZero, KnownOne; - ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - return (KnownZero & Mask) == Mask; -} - -/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use -/// this predicate to simplify operations downstream. Mask is known to be zero -/// for bits that V cannot have. -static bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0) { - APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); - ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - return (KnownZero & Mask) == Mask; -} - -/// ShrinkDemandedConstant - Check to see if the specified operand of the -/// specified instruction is a constant integer. If so, check to see if there -/// are any bits set in the constant that are not demanded. If so, shrink the -/// constant and return true. -static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, - uint64_t Demanded) { - ConstantInt *OpC = dyn_cast(I->getOperand(OpNo)); - if (!OpC) return false; - - // If there are no bits set that aren't demanded, nothing to do. - if ((~Demanded & OpC->getZExtValue()) == 0) - return false; - - // This is producing any bits that are not needed, shrink the RHS. - uint64_t Val = Demanded & OpC->getZExtValue(); - I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Val)); - return true; -} - -/// ShrinkDemandedConstant - Check to see if the specified operand of the -/// specified instruction is a constant integer. If so, check to see if there -/// are any bits set in the constant that are not demanded. If so, shrink the -/// constant and return true. -static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, - APInt Demanded) { - assert(I && "No instruction?"); - assert(OpNo < I->getNumOperands() && "Operand index too large"); - - // If the operand is not a constant integer, nothing to do. - ConstantInt *OpC = dyn_cast(I->getOperand(OpNo)); - if (!OpC) return false; - - // If there are no bits set that aren't demanded, nothing to do. - Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); - if ((~Demanded & OpC->getValue()) == 0) - return false; - - // This instruction is producing bits that are not demanded. Shrink the RHS. - Demanded &= OpC->getValue(); - I->setOperand(OpNo, ConstantInt::get(Demanded)); - return true; -} - -// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a -// set of known zero and one bits, compute the maximum and minimum values that -// could have the specified known zero and known one bits, returning them in -// min/max. -static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty, - const APInt& KnownZero, - const APInt& KnownOne, - APInt& Min, APInt& Max) { - uint32_t BitWidth = cast(Ty)->getBitWidth(); - assert(KnownZero.getBitWidth() == BitWidth && - KnownOne.getBitWidth() == BitWidth && - Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth && - "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); - APInt TypeBits(APInt::getAllOnesValue(BitWidth)); - APInt UnknownBits = ~(KnownZero|KnownOne) & TypeBits; - - APInt SignBit(APInt::getSignBit(BitWidth)); - - // The minimum value is when all unknown bits are zeros, EXCEPT for the sign - // bit if it is unknown. - Min = KnownOne; - Max = KnownOne|UnknownBits; - - if ((SignBit & UnknownBits) != 0) { // Sign bit is unknown - Min |= SignBit; - Max &= ~SignBit; - } -} - -// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and -// a set of known zero and one bits, compute the maximum and minimum values that -// could have the specified known zero and known one bits, returning them in -// min/max. -static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty, - const APInt& KnownZero, - const APInt& KnownOne, - APInt& Min, - APInt& Max) { - uint32_t BitWidth = cast(Ty)->getBitWidth(); - assert(KnownZero.getBitWidth() == BitWidth && - KnownOne.getBitWidth() == BitWidth && - Min.getBitWidth() == BitWidth && Max.getBitWidth() && - "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); - APInt TypeBits(APInt::getAllOnesValue(BitWidth)); - APInt UnknownBits = ~(KnownZero|KnownOne) & TypeBits; - - // The minimum value is when the unknown bits are all zeros. - Min = KnownOne; - // The maximum value is when the unknown bits are all ones. - Max = KnownOne|UnknownBits; -} - -/// SimplifyDemandedBits - Look at V. At this point, we know that only the -/// DemandedMask bits of the result of V are ever used downstream. If we can -/// use this information to simplify V, do so and return true. Otherwise, -/// analyze the expression and return a mask of KnownOne and KnownZero bits for -/// the expression (used to simplify the caller). The KnownZero/One bits may -/// only be accurate for those bits in the DemandedMask. -bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask, - uint64_t &KnownZero, uint64_t &KnownOne, - unsigned Depth) { - const IntegerType *VTy = cast(V->getType()); - if (ConstantInt *CI = dyn_cast(V)) { - // We know all of the bits for a constant! - KnownOne = CI->getZExtValue() & DemandedMask; - KnownZero = ~KnownOne & DemandedMask; - return false; - } - - KnownZero = KnownOne = 0; - if (!V->hasOneUse()) { // Other users may use these bits. - if (Depth != 0) { // Not at the root. - // Just compute the KnownZero/KnownOne bits to simplify things downstream. - ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); - return false; - } - // If this is the root being simplified, allow it to have multiple uses, - // just set the DemandedMask to all bits. - DemandedMask = VTy->getBitMask(); - } else if (DemandedMask == 0) { // Not demanding any bits from V. - if (V != UndefValue::get(VTy)) - return UpdateValueUsesWith(V, UndefValue::get(VTy)); - return false; - } else if (Depth == 6) { // Limit search depth. - return false; - } - - Instruction *I = dyn_cast(V); - if (!I) return false; // Only analyze instructions. - - DemandedMask &= VTy->getBitMask(); - - uint64_t KnownZero2 = 0, KnownOne2 = 0; - switch (I->getOpcode()) { - default: break; - case Instruction::And: - // If either the LHS or the RHS are Zero, the result is zero. - if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, - KnownZero, KnownOne, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - - // If something is known zero on the RHS, the bits aren't demanded on the - // LHS. - if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero, - KnownZero2, KnownOne2, Depth+1)) - return true; - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - // If all of the demanded bits are known 1 on one side, return the other. - // These bits cannot contribute to the result of the 'and'. - if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2)) - return UpdateValueUsesWith(I, I->getOperand(0)); - if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero)) - return UpdateValueUsesWith(I, I->getOperand(1)); - - // If all of the demanded bits in the inputs are known zeros, return zero. - if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) - return UpdateValueUsesWith(I, Constant::getNullValue(VTy)); - - // If the RHS is a constant, see if we can simplify it. - if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2)) - return UpdateValueUsesWith(I, I); - - // Output known-1 bits are only known if set in both the LHS & RHS. - KnownOne &= KnownOne2; - // Output known-0 are known to be clear if zero in either the LHS | RHS. - KnownZero |= KnownZero2; - break; - case Instruction::Or: - if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, - KnownZero, KnownOne, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne, - KnownZero2, KnownOne2, Depth+1)) - return true; - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - // If all of the demanded bits are known zero on one side, return the other. - // These bits cannot contribute to the result of the 'or'. - if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) - return UpdateValueUsesWith(I, I->getOperand(0)); - if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) - return UpdateValueUsesWith(I, I->getOperand(1)); - - // If all of the potentially set bits on one side are known to be set on - // the other side, just use the 'other' side. - if ((DemandedMask & (~KnownZero) & KnownOne2) == - (DemandedMask & (~KnownZero))) - return UpdateValueUsesWith(I, I->getOperand(0)); - if ((DemandedMask & (~KnownZero2) & KnownOne) == - (DemandedMask & (~KnownZero2))) - return UpdateValueUsesWith(I, I->getOperand(1)); - - // If the RHS is a constant, see if we can simplify it. - if (ShrinkDemandedConstant(I, 1, DemandedMask)) - return UpdateValueUsesWith(I, I); - - // Output known-0 bits are only known if clear in both the LHS & RHS. - KnownZero &= KnownZero2; - // Output known-1 are known to be set if set in either the LHS | RHS. - KnownOne |= KnownOne2; - break; - case Instruction::Xor: { - if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, - KnownZero, KnownOne, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, - KnownZero2, KnownOne2, Depth+1)) - return true; - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - // If all of the demanded bits are known zero on one side, return the other. - // These bits cannot contribute to the result of the 'xor'. - if ((DemandedMask & KnownZero) == DemandedMask) - return UpdateValueUsesWith(I, I->getOperand(0)); - if ((DemandedMask & KnownZero2) == DemandedMask) - return UpdateValueUsesWith(I, I->getOperand(1)); - - // Output known-0 bits are known if clear or set in both the LHS & RHS. - uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); - // Output known-1 are known to be set if set in only one of the LHS, RHS. - uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); - - // If all of the demanded bits are known to be zero on one side or the - // other, turn this into an *inclusive* or. - // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 - if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0) { - Instruction *Or = - BinaryOperator::createOr(I->getOperand(0), I->getOperand(1), - I->getName()); - InsertNewInstBefore(Or, *I); - return UpdateValueUsesWith(I, Or); - } - - // If all of the demanded bits on one side are known, and all of the set - // bits on that side are also known to be set on the other side, turn this - // into an AND, as we know the bits will be cleared. - // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 - if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known - if ((KnownOne & KnownOne2) == KnownOne) { - Constant *AndC = ConstantInt::get(VTy, ~KnownOne & DemandedMask); - Instruction *And = - BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp"); - InsertNewInstBefore(And, *I); - return UpdateValueUsesWith(I, And); - } - } - - // If the RHS is a constant, see if we can simplify it. - // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. - if (ShrinkDemandedConstant(I, 1, DemandedMask)) - return UpdateValueUsesWith(I, I); - - KnownZero = KnownZeroOut; - KnownOne = KnownOneOut; - break; - } - case Instruction::Select: - if (SimplifyDemandedBits(I->getOperand(2), DemandedMask, - KnownZero, KnownOne, Depth+1)) - return true; - if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, - KnownZero2, KnownOne2, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - // If the operands are constants, see if we can simplify them. - if (ShrinkDemandedConstant(I, 1, DemandedMask)) - return UpdateValueUsesWith(I, I); - if (ShrinkDemandedConstant(I, 2, DemandedMask)) - return UpdateValueUsesWith(I, I); - - // Only known if known in both the LHS and RHS. - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; - break; - case Instruction::Trunc: - if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, - KnownZero, KnownOne, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - break; - case Instruction::BitCast: - if (!I->getOperand(0)->getType()->isInteger()) - return false; - - if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, - KnownZero, KnownOne, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - break; - case Instruction::ZExt: { - // Compute the bits in the result that are not present in the input. - const IntegerType *SrcTy = cast(I->getOperand(0)->getType()); - uint64_t NotIn = ~SrcTy->getBitMask(); - uint64_t NewBits = VTy->getBitMask() & NotIn; - - DemandedMask &= SrcTy->getBitMask(); - if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, - KnownZero, KnownOne, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - // The top bits are known to be zero. - KnownZero |= NewBits; - break; - } - case Instruction::SExt: { - // Compute the bits in the result that are not present in the input. - const IntegerType *SrcTy = cast(I->getOperand(0)->getType()); - uint64_t NotIn = ~SrcTy->getBitMask(); - uint64_t NewBits = VTy->getBitMask() & NotIn; - - // Get the sign bit for the source type - uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1); - int64_t InputDemandedBits = DemandedMask & SrcTy->getBitMask(); - - // If any of the sign extended bits are demanded, we know that the sign - // bit is demanded. - if (NewBits & DemandedMask) - InputDemandedBits |= InSignBit; - - if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits, - KnownZero, KnownOne, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - - // If the sign bit of the input is known set or clear, then we know the - // top bits of the result. - - // If the input sign bit is known zero, or if the NewBits are not demanded - // convert this into a zero extension. - if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) { - // Convert to ZExt cast - CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I); - return UpdateValueUsesWith(I, NewCast); - } else if (KnownOne & InSignBit) { // Input sign bit known set + KnownOne.zext(BitWidth); + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + APInt InSignBit(APInt::getSignBit(SrcTy->getBitWidth())); + InSignBit.zext(BitWidth); + if ((KnownZero & InSignBit) != 0) { // Input sign bit known zero + KnownZero |= NewBits; + KnownOne &= ~NewBits; + } else if ((KnownOne & InSignBit) != 0) { // Input sign bit known set KnownOne |= NewBits; KnownZero &= ~NewBits; } else { // Input sign bit unknown KnownZero &= ~NewBits; KnownOne &= ~NewBits; } - break; + return; } - case Instruction::Add: - // If there is a constant on the RHS, there are a variety of xformations - // we can do. - if (ConstantInt *RHS = dyn_cast(I->getOperand(1))) { - // If null, this should be simplified elsewhere. Some of the xforms here - // won't work if the RHS is zero. - if (RHS->isNullValue()) - break; - - // Figure out what the input bits are. If the top bits of the and result - // are not demanded, then the add doesn't demand them from its input - // either. - - // Shift the demanded mask up so that it's at the top of the uint64_t. - unsigned BitWidth = VTy->getPrimitiveSizeInBits(); - unsigned NLZ = CountLeadingZeros_64(DemandedMask << (64-BitWidth)); - - // If the top bit of the output is demanded, demand everything from the - // input. Otherwise, we demand all the input bits except NLZ top bits. - uint64_t InDemandedBits = ~0ULL >> (64-BitWidth+NLZ); - - // Find information about known zero/one bits in the input. - if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits, - KnownZero2, KnownOne2, Depth+1)) - return true; - - // If the RHS of the add has bits set that can't affect the input, reduce - // the constant. - if (ShrinkDemandedConstant(I, 1, InDemandedBits)) - return UpdateValueUsesWith(I, I); - - // Avoid excess work. - if (KnownZero2 == 0 && KnownOne2 == 0) - break; - - // Turn it into OR if input bits are zero. - if ((KnownZero2 & RHS->getZExtValue()) == RHS->getZExtValue()) { - Instruction *Or = - BinaryOperator::createOr(I->getOperand(0), I->getOperand(1), - I->getName()); - InsertNewInstBefore(Or, *I); - return UpdateValueUsesWith(I, Or); - } - - // We can say something about the output known-zero and known-one bits, - // depending on potential carries from the input constant and the - // unknowns. For example if the LHS is known to have at most the 0x0F0F0 - // bits set and the RHS constant is 0x01001, then we know we have a known - // one mask of 0x00001 and a known zero mask of 0xE0F0E. - - // To compute this, we first compute the potential carry bits. These are - // the bits which may be modified. I'm not aware of a better way to do - // this scan. - uint64_t RHSVal = RHS->getZExtValue(); - - bool CarryIn = false; - uint64_t CarryBits = 0; - uint64_t CurBit = 1; - for (unsigned i = 0; i != BitWidth; ++i, CurBit <<= 1) { - // Record the current carry in. - if (CarryIn) CarryBits |= CurBit; - - bool CarryOut; - - // This bit has a carry out unless it is "zero + zero" or - // "zero + anything" with no carry in. - if ((KnownZero2 & CurBit) && ((RHSVal & CurBit) == 0)) { - CarryOut = false; // 0 + 0 has no carry out, even with carry in. - } else if (!CarryIn && - ((KnownZero2 & CurBit) || ((RHSVal & CurBit) == 0))) { - CarryOut = false; // 0 + anything has no carry out if no carry in. - } else { - // Otherwise, we have to assume we have a carry out. - CarryOut = true; - } - - // This stage's carry out becomes the next stage's carry-in. - CarryIn = CarryOut; - } - - // Now that we know which bits have carries, compute the known-1/0 sets. - - // Bits are known one if they are known zero in one operand and one in the - // other, and there is no input carry. - KnownOne = ((KnownZero2 & RHSVal) | (KnownOne2 & ~RHSVal)) & ~CarryBits; - - // Bits are known zero if they are known zero in both operands and there - // is no input carry. - KnownZero = KnownZero2 & ~RHSVal & ~CarryBits; - } else { - // If the high-bits of this ADD are not demanded, then it does not demand - // the high bits of its LHS or RHS. - if ((DemandedMask & VTy->getSignBit()) == 0) { - // Right fill the mask of bits for this ADD to demand the most - // significant bit and all those below it. - unsigned NLZ = CountLeadingZeros_64(DemandedMask); - uint64_t DemandedFromOps = ~0ULL >> NLZ; - if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps, - KnownZero2, KnownOne2, Depth+1)) - return true; - if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps, - KnownZero2, KnownOne2, Depth+1)) - return true; - } - } - break; - case Instruction::Sub: - // If the high-bits of this SUB are not demanded, then it does not demand - // the high bits of its LHS or RHS. - if ((DemandedMask & VTy->getSignBit()) == 0) { - // Right fill the mask of bits for this SUB to demand the most - // significant bit and all those below it. - unsigned NLZ = CountLeadingZeros_64(DemandedMask); - uint64_t DemandedFromOps = ~0ULL >> NLZ; - if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps, - KnownZero2, KnownOne2, Depth+1)) - return true; - if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps, - KnownZero2, KnownOne2, Depth+1)) - return true; - } - break; case Instruction::Shl: + // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { uint64_t ShiftAmt = SA->getZExtValue(); - if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> ShiftAmt, - KnownZero, KnownOne, Depth+1)) - return true; + Mask = APIntOps::lshr(Mask, ShiftAmt); + ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero <<= ShiftAmt; KnownOne <<= ShiftAmt; - KnownZero |= (1ULL << ShiftAmt) - 1; // low bits known zero. + KnownZero |= APInt(BitWidth, 1ULL).shl(ShiftAmt)-1; // low bits known zero. + return; } break; case Instruction::LShr: - // For a logical shift right + // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - unsigned ShiftAmt = SA->getZExtValue(); - // Compute the new bits that are at the top now. - uint64_t HighBits = (1ULL << ShiftAmt)-1; - HighBits <<= VTy->getBitWidth() - ShiftAmt; - uint64_t TypeMask = VTy->getBitMask(); + uint64_t ShiftAmt = SA->getZExtValue(); + APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth-ShiftAmt)); + // Unsigned shift right. - if (SimplifyDemandedBits(I->getOperand(0), - (DemandedMask << ShiftAmt) & TypeMask, - KnownZero, KnownOne, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero &= TypeMask; - KnownOne &= TypeMask; - KnownZero >>= ShiftAmt; - KnownOne >>= ShiftAmt; + Mask <<= ShiftAmt; + ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); + assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); + KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); + KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); KnownZero |= HighBits; // high bits known zero. + return; } break; case Instruction::AShr: - // If this is an arithmetic shift right and only the low-bit is set, we can - // always convert this into a logical shr, even if the shift amount is - // variable. The low bit of the shift cannot be an input sign bit unless - // the shift amount is >= the size of the datatype, which is undefined. - if (DemandedMask == 1) { - // Perform the logical shift right. - Value *NewVal = BinaryOperator::createLShr( - I->getOperand(0), I->getOperand(1), I->getName()); - InsertNewInstBefore(cast(NewVal), *I); - return UpdateValueUsesWith(I, NewVal); - } - + // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - unsigned ShiftAmt = SA->getZExtValue(); - // Compute the new bits that are at the top now. - uint64_t HighBits = (1ULL << ShiftAmt)-1; - HighBits <<= VTy->getBitWidth() - ShiftAmt; - uint64_t TypeMask = VTy->getBitMask(); + uint64_t ShiftAmt = SA->getZExtValue(); + APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth-ShiftAmt)); + // Signed shift right. - if (SimplifyDemandedBits(I->getOperand(0), - (DemandedMask << ShiftAmt) & TypeMask, - KnownZero, KnownOne, Depth+1)) - return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero &= TypeMask; - KnownOne &= TypeMask; - KnownZero >>= ShiftAmt; - KnownOne >>= ShiftAmt; + Mask <<= ShiftAmt; + ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); + assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); + KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); + KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); - // Handle the sign bits. - uint64_t SignBit = 1ULL << (VTy->getBitWidth()-1); - SignBit >>= ShiftAmt; // Adjust to where it is now in the mask. + // Handle the sign bits and adjust to where it is now in the mask. + APInt SignBit(APInt::getSignBit(BitWidth).lshr(ShiftAmt)); - // If the input sign bit is known to be zero, or if none of the top bits - // are demanded, turn this into an unsigned shift right. - if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { - // Perform the logical shift right. - Value *NewVal = BinaryOperator::createLShr( - I->getOperand(0), SA, I->getName()); - InsertNewInstBefore(cast(NewVal), *I); - return UpdateValueUsesWith(I, NewVal); - } else if (KnownOne & SignBit) { // New bits are known one. + if ((KnownZero & SignBit) != 0) { // New bits are known zero. + KnownZero |= HighBits; + } else if ((KnownOne & SignBit) != 0) { // New bits are known one. KnownOne |= HighBits; } + return; } break; } +} + +/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use +/// this predicate to simplify operations downstream. Mask is known to be zero +/// for bits that V cannot have. +static bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0) { + APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); + ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + return (KnownZero & Mask) == Mask; +} + +/// ShrinkDemandedConstant - Check to see if the specified operand of the +/// specified instruction is a constant integer. If so, check to see if there +/// are any bits set in the constant that are not demanded. If so, shrink the +/// constant and return true. +static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, + APInt Demanded) { + assert(I && "No instruction?"); + assert(OpNo < I->getNumOperands() && "Operand index too large"); + + // If the operand is not a constant integer, nothing to do. + ConstantInt *OpC = dyn_cast(I->getOperand(OpNo)); + if (!OpC) return false; + + // If there are no bits set that aren't demanded, nothing to do. + Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); + if ((~Demanded & OpC->getValue()) == 0) + return false; + + // This instruction is producing bits that are not demanded. Shrink the RHS. + Demanded &= OpC->getValue(); + I->setOperand(OpNo, ConstantInt::get(Demanded)); + return true; +} + +// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a +// set of known zero and one bits, compute the maximum and minimum values that +// could have the specified known zero and known one bits, returning them in +// min/max. +static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty, + const APInt& KnownZero, + const APInt& KnownOne, + APInt& Min, APInt& Max) { + uint32_t BitWidth = cast(Ty)->getBitWidth(); + assert(KnownZero.getBitWidth() == BitWidth && + KnownOne.getBitWidth() == BitWidth && + Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth && + "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); + APInt TypeBits(APInt::getAllOnesValue(BitWidth)); + APInt UnknownBits = ~(KnownZero|KnownOne) & TypeBits; + + APInt SignBit(APInt::getSignBit(BitWidth)); + + // The minimum value is when all unknown bits are zeros, EXCEPT for the sign + // bit if it is unknown. + Min = KnownOne; + Max = KnownOne|UnknownBits; + + if ((SignBit & UnknownBits) != 0) { // Sign bit is unknown + Min |= SignBit; + Max &= ~SignBit; + } +} + +// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and +// a set of known zero and one bits, compute the maximum and minimum values that +// could have the specified known zero and known one bits, returning them in +// min/max. +static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty, + const APInt& KnownZero, + const APInt& KnownOne, + APInt& Min, + APInt& Max) { + uint32_t BitWidth = cast(Ty)->getBitWidth(); + assert(KnownZero.getBitWidth() == BitWidth && + KnownOne.getBitWidth() == BitWidth && + Min.getBitWidth() == BitWidth && Max.getBitWidth() && + "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); + APInt TypeBits(APInt::getAllOnesValue(BitWidth)); + APInt UnknownBits = ~(KnownZero|KnownOne) & TypeBits; - // If the client is only demanding bits that we know, return the known - // constant. - if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) - return UpdateValueUsesWith(I, ConstantInt::get(VTy, KnownOne)); - return false; -} + // The minimum value is when the unknown bits are all zeros. + Min = KnownOne; + // The maximum value is when the unknown bits are all ones. + Max = KnownOne|UnknownBits; +} /// SimplifyDemandedBits - This function attempts to replace V with a simpler /// value based on the demanded bits. When this function is called, it is known @@ -2574,17 +1876,19 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast(RHSC)) { // X + (signbit) --> X ^ signbit - uint64_t Val = CI->getZExtValue(); - if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1))) + APInt Val(CI->getValue()); + unsigned BitWidth = Val.getBitWidth(); + if (Val == APInt::getSignBit(BitWidth)) return BinaryOperator::createXor(LHS, RHS); // See if SimplifyDemandedBits can simplify this. This handles stuff like // (X & 254)+1 -> (X&254)|1 - uint64_t KnownZero, KnownOne; - if (!isa(I.getType()) && - SimplifyDemandedBits(&I, cast(I.getType())->getBitMask(), - KnownZero, KnownOne)) - return &I; + if (!isa(I.getType())) { + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth), + KnownZero, KnownOne)) + return &I; + } } if (isa(LHS)) @@ -2596,48 +1900,32 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { if (isa(RHSC) && match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits(); - int64_t RHSSExt = cast(RHSC)->getSExtValue(); - uint64_t RHSZExt = cast(RHSC)->getZExtValue(); + APInt RHSVal(cast(RHSC)->getValue()); - uint64_t C0080Val = 1ULL << 31; - int64_t CFF80Val = -C0080Val; - unsigned Size = 32; + unsigned Size = TySizeBits / 2; + APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1)); + APInt CFF80Val(-C0080Val); do { if (TySizeBits > Size) { - bool Found = false; // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. - if (RHSSExt == CFF80Val) { - if (XorRHS->getZExtValue() == C0080Val) - Found = true; - } else if (RHSZExt == C0080Val) { - if (XorRHS->getSExtValue() == CFF80Val) - Found = true; - } - if (Found) { + if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) || + (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) { // This is a sign extend if the top bits are known zero. - uint64_t Mask = ~0ULL; - Mask <<= 64-(TySizeBits-Size); - Mask &= cast(XorLHS->getType())->getBitMask(); + APInt Mask(APInt::getAllOnesValue(TySizeBits)); + Mask <<= Size; if (!MaskedValueIsZero(XorLHS, Mask)) Size = 0; // Not a sign ext, but can't be any others either. - goto FoundSExt; + break; } } Size >>= 1; - C0080Val >>= Size; - CFF80Val >>= Size; - } while (Size >= 8); + C0080Val = APIntOps::lshr(C0080Val, Size); + CFF80Val = APIntOps::ashr(CFF80Val, Size); + } while (Size >= 1); -FoundSExt: - const Type *MiddleType = 0; - switch (Size) { - default: break; - case 32: MiddleType = Type::Int32Ty; break; - case 16: MiddleType = Type::Int16Ty; break; - case 8: MiddleType = Type::Int8Ty; break; - } - if (MiddleType) { + if (Size) { + const Type *MiddleType = IntegerType::get(Size); Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext"); InsertNewInstBefore(NewTrunc, I); return new SExtInst(NewTrunc, I.getType()); @@ -2710,14 +1998,14 @@ FoundSExt: if (Anded == CRHS) { // See if all bits from the first bit set in the Add RHS up are included // in the mask. First, get the rightmost bit. - uint64_t AddRHSV = CRHS->getZExtValue(); + APInt AddRHSV(CRHS->getValue()); // Form a mask of all bits from the lowest bit added through the top. - uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1); - AddRHSHighBits &= C2->getType()->getBitMask(); + APInt AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1); + AddRHSHighBits &= C2->getType()->getMask(); // See if the and mask includes all of these bits. - uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getZExtValue(); + APInt AddRHSHighBitsAnd = AddRHSHighBits & C2->getValue(); if (AddRHSHighBits == AddRHSHighBitsAnd) { // Okay, the xform is safe. Insert the new add pronto. @@ -3170,7 +2458,7 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { if (C1.isPowerOf2()) { Value *N = RHSI->getOperand(1); const Type *NTy = N->getType(); - if (uint64_t C2 = C1.logBase2()) { + if (uint32_t C2 = C1.logBase2()) { Constant *C2V = ConstantInt::get(NTy, C2); N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I); } @@ -3474,19 +2762,6 @@ static bool isOneBitSet(const ConstantInt *CI) { return CI->getValue().isPowerOf2(); } -#if 0 // Currently unused -// isLowOnes - Return true if the constant is of the form 0+1+. -static bool isLowOnes(const ConstantInt *CI) { - uint64_t V = CI->getZExtValue(); - - // There won't be bits set in parts that the type doesn't contain. - V &= ConstantInt::getAllOnesValue(CI->getType())->getZExtValue(); - - uint64_t U = V+1; // If it is low ones, this should be a power of two. - return U && V && (U & V) == 0; -} -#endif - // isHighOnes - Return true if the constant is of the form 1+0+. // This is the same as lowones(~X). static bool isHighOnes(const ConstantInt *CI) { @@ -7558,9 +6833,9 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { if (ConstantInt *TrueValC = dyn_cast(TrueVal)) if (ConstantInt *FalseValC = dyn_cast(FalseVal)) { // select C, 1, 0 -> cast C to int - if (FalseValC->isNullValue() && TrueValC->getZExtValue() == 1) { + if (FalseValC->isZero() && TrueValC->getValue() == 1) { return CastInst::create(Instruction::ZExt, CondVal, SI.getType()); - } else if (TrueValC->isNullValue() && FalseValC->getZExtValue() == 1) { + } else if (TrueValC->isZero() && FalseValC->getValue() == 1) { // select C, 0, 1 -> cast !C to int Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, @@ -7572,15 +6847,15 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { // (x ashr x, 31 // (x >u 2147483647) ? -1 : 0 -> ashr x, 31 - if (TrueValC->isAllOnesValue() && FalseValC->isNullValue()) + if (TrueValC->isAllOnesValue() && FalseValC->isZero()) if (ConstantInt *CmpCst = dyn_cast(IC->getOperand(1))) { bool CanXForm = false; if (IC->isSignedPredicate()) - CanXForm = CmpCst->isNullValue() && + CanXForm = CmpCst->isZero() && IC->getPredicate() == ICmpInst::ICMP_SLT; else { unsigned Bits = CmpCst->getType()->getPrimitiveSizeInBits(); - CanXForm = (CmpCst->getZExtValue() == ~0ULL >> (64-Bits+1)) && + CanXForm = CmpCst->getValue() == APInt::getSignedMaxValue(Bits) && IC->getPredicate() == ICmpInst::ICMP_UGT; } @@ -7612,7 +6887,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { // have a fcmp instruction with zero, and we have an 'and' with the // non-constant value, eliminate this whole mess. This corresponds to // cases like this: ((X & 27) ? 27 : 0) - if (TrueValC->isNullValue() || FalseValC->isNullValue()) + if (TrueValC->isZero() || FalseValC->isZero()) if (IC->isEquality() && isa(IC->getOperand(1)) && cast(IC->getOperand(1))->isNullValue()) if (Instruction *ICA = dyn_cast(IC->getOperand(0))) @@ -7624,7 +6899,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { // Okay, now we know that everything is set up, we just don't // know whether we have a icmp_ne or icmp_eq and whether the // true or false val is the zero. - bool ShouldNotVal = !TrueValC->isNullValue(); + bool ShouldNotVal = !TrueValC->isZero(); ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; Value *V = ICA; if (ShouldNotVal) -- 2.34.1