From 8ac00099792f2090363f2f12ab29f55f21a52b75 Mon Sep 17 00:00:00 2001 From: Jakub Staszak Date: Tue, 6 Apr 2004 19:35:17 +0000 Subject: [PATCH] file based off InstSelectSimple.cpp, slowly being replaced by generated code from the really simple X86 instruction selector tablegen backend git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12715 91177308-0d34-0410-b5e6-96231b3b80d8 --- lib/Target/X86/X86SimpInstrSelector.cpp | 2831 +++++++++++++++++++++++ 1 file changed, 2831 insertions(+) create mode 100644 lib/Target/X86/X86SimpInstrSelector.cpp diff --git a/lib/Target/X86/X86SimpInstrSelector.cpp b/lib/Target/X86/X86SimpInstrSelector.cpp new file mode 100644 index 00000000000..288b78ee3a9 --- /dev/null +++ b/lib/Target/X86/X86SimpInstrSelector.cpp @@ -0,0 +1,2831 @@ +//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a simple peephole instruction selector for the x86 target +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrBuilder.h" +#include "X86InstrInfo.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicLowering.h" +#include "llvm/Pass.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/SSARegMap.h" +#include "llvm/Target/MRegisterInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/CFG.h" +#include "Support/Statistic.h" +using namespace llvm; + +namespace { + Statistic<> + NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); +} + +namespace { + struct ISel : public FunctionPass, InstVisitor { + TargetMachine &TM; + MachineFunction *F; // The function we are compiling into + MachineBasicBlock *BB; // The current MBB we are compiling + int VarArgsFrameIndex; // FrameIndex for start of varargs area + int ReturnAddressIndex; // FrameIndex for the return address + + std::map RegMap; // Mapping between Val's and SSA Regs + + // MBBMap - Mapping between LLVM BB -> Machine BB + std::map MBBMap; + + ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} + + /// runOnFunction - Top level implementation of instruction selection for + /// the entire function. + /// + bool runOnFunction(Function &Fn) { + // First pass over the function, lower any unknown intrinsic functions + // with the IntrinsicLowering class. + LowerUnknownIntrinsicFunctionCalls(Fn); + + F = &MachineFunction::construct(&Fn, TM); + + // Create all of the machine basic blocks for the function... + for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) + F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); + + BB = &F->front(); + + // Set up a frame object for the return address. This is used by the + // llvm.returnaddress & llvm.frameaddress intrinisics. + ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); + + // Copy incoming arguments off of the stack... + LoadArgumentsToVirtualRegs(Fn); + + // Instruction select everything except PHI nodes + visit(Fn); + + // Select the PHI nodes + SelectPHINodes(); + + // Insert the FP_REG_KILL instructions into blocks that need them. + InsertFPRegKills(); + + RegMap.clear(); + MBBMap.clear(); + F = 0; + // We always build a machine code representation for the function + return true; + } + + virtual const char *getPassName() const { + return "X86 Simple Instruction Selection"; + } + + /// visitBasicBlock - This method is called when we are visiting a new basic + /// block. This simply creates a new MachineBasicBlock to emit code into + /// and adds it to the current MachineFunction. Subsequent visit* for + /// instructions will be invoked for all instructions in the basic block. + /// + void visitBasicBlock(BasicBlock &LLVM_BB) { + BB = MBBMap[&LLVM_BB]; + } + + /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the + /// function, lowering any calls to unknown intrinsic functions into the + /// equivalent LLVM code. + /// + void LowerUnknownIntrinsicFunctionCalls(Function &F); + + /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function + /// from the stack into virtual registers. + /// + void LoadArgumentsToVirtualRegs(Function &F); + + /// SelectPHINodes - Insert machine code to generate phis. This is tricky + /// because we have to generate our sources into the source basic blocks, + /// not the current one. + /// + void SelectPHINodes(); + + /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks + /// that need them. This only occurs due to the floating point stackifier + /// not being aggressive enough to handle arbitrary global stackification. + /// + void InsertFPRegKills(); + + // Visitation methods for various instructions. These methods simply emit + // fixed X86 code for each instruction. + // + + // Control flow operators + void visitReturnInst(ReturnInst &RI); + void visitBranchInst(BranchInst &BI); + + struct ValueRecord { + Value *Val; + unsigned Reg; + const Type *Ty; + ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} + ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} + }; + void doCall(const ValueRecord &Ret, MachineInstr *CallMI, + const std::vector &Args); + void visitCallInst(CallInst &I); + void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); + + // Arithmetic operators + void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); + void visitAdd(BinaryOperator &B);// visitSimpleBinary(B, 0); } + void visitSub(BinaryOperator &B);// { visitSimpleBinary(B, 1); } + void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, + unsigned DestReg, const Type *DestTy, + unsigned Op0Reg, unsigned Op1Reg); + void doMultiplyConst(MachineBasicBlock *MBB, + MachineBasicBlock::iterator MBBI, + unsigned DestReg, const Type *DestTy, + unsigned Op0Reg, unsigned Op1Val); + void visitMul(BinaryOperator &B); + + void visitDiv(BinaryOperator &B) { visitDivRem(B); } + void visitRem(BinaryOperator &B) { visitDivRem(B); } + void visitDivRem(BinaryOperator &B); + + // Bitwise operators + void visitAnd(BinaryOperator &B);// { visitSimpleBinary(B, 2); } + void visitOr (BinaryOperator &B);// { visitSimpleBinary(B, 3); } + void visitXor(BinaryOperator &B);// { visitSimpleBinary(B, 4); } + + // Comparison operators... + void visitSetCondInst(SetCondInst &I); + unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, + MachineBasicBlock *MBB, + MachineBasicBlock::iterator MBBI); + + // Memory Instructions + void visitLoadInst(LoadInst &I); + void visitStoreInst(StoreInst &I); + void visitGetElementPtrInst(GetElementPtrInst &I); + void visitAllocaInst(AllocaInst &I); + void visitMallocInst(MallocInst &I); + void visitFreeInst(FreeInst &I); + + // Other operators + void visitShiftInst(ShiftInst &I); + void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass + void visitCastInst(CastInst &I); + void visitVANextInst(VANextInst &I); + void visitVAArgInst(VAArgInst &I); + + void visitInstruction(Instruction &I) { + std::cerr << "Cannot instruction select: " << I; + abort(); + } + + /// promote32 - Make a value 32-bits wide, and put it somewhere. + /// + void promote32(unsigned targetReg, const ValueRecord &VR); + + /// getAddressingMode - Get the addressing mode to use to address the + /// specified value. The returned value should be used with addFullAddress. + void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, + unsigned &IndexReg, unsigned &Disp); + + + /// getGEPIndex - This is used to fold GEP instructions into X86 addressing + /// expressions. + void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, + std::vector &GEPOps, + std::vector &GEPTypes, unsigned &BaseReg, + unsigned &Scale, unsigned &IndexReg, unsigned &Disp); + + /// isGEPFoldable - Return true if the specified GEP can be completely + /// folded into the addressing mode of a load/store or lea instruction. + bool isGEPFoldable(MachineBasicBlock *MBB, + Value *Src, User::op_iterator IdxBegin, + User::op_iterator IdxEnd, unsigned &BaseReg, + unsigned &Scale, unsigned &IndexReg, unsigned &Disp); + + /// emitGEPOperation - Common code shared between visitGetElementPtrInst and + /// constant expression GEP support. + /// + void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, + Value *Src, User::op_iterator IdxBegin, + User::op_iterator IdxEnd, unsigned TargetReg); + + /// emitCastOperation - Common code shared between visitCastInst and + /// constant expression cast support. + /// + void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, + Value *Src, const Type *DestTy, unsigned TargetReg); + + /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary + /// and constant expression support. + /// + void emitSimpleBinaryOperation(MachineBasicBlock *BB, + MachineBasicBlock::iterator IP, + Value *Op0, Value *Op1, + unsigned OperatorClass, unsigned TargetReg); + + void emitDivRemOperation(MachineBasicBlock *BB, + MachineBasicBlock::iterator IP, + unsigned Op0Reg, unsigned Op1Reg, bool isDiv, + const Type *Ty, unsigned TargetReg); + + /// emitSetCCOperation - Common code shared between visitSetCondInst and + /// constant expression support. + /// + void emitSetCCOperation(MachineBasicBlock *BB, + MachineBasicBlock::iterator IP, + Value *Op0, Value *Op1, unsigned Opcode, + unsigned TargetReg); + + /// emitShiftOperation - Common code shared between visitShiftInst and + /// constant expression support. + /// + void emitShiftOperation(MachineBasicBlock *MBB, + MachineBasicBlock::iterator IP, + Value *Op, Value *ShiftAmount, bool isLeftShift, + const Type *ResultTy, unsigned DestReg); + + + /// copyConstantToRegister - Output the instructions required to put the + /// specified constant into the specified register. + /// + void copyConstantToRegister(MachineBasicBlock *MBB, + MachineBasicBlock::iterator MBBI, + Constant *C, unsigned Reg); + + /// makeAnotherReg - This method returns the next register number we haven't + /// yet used. + /// + /// Long values are handled somewhat specially. They are always allocated + /// as pairs of 32 bit integer values. The register number returned is the + /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits + /// of the long value. + /// + unsigned makeAnotherReg(const Type *Ty) { + assert(dynamic_cast(TM.getRegisterInfo()) && + "Current target doesn't have X86 reg info??"); + const X86RegisterInfo *MRI = + static_cast(TM.getRegisterInfo()); + if (Ty == Type::LongTy || Ty == Type::ULongTy) { + const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); + // Create the lower part + F->getSSARegMap()->createVirtualRegister(RC); + // Create the upper part. + return F->getSSARegMap()->createVirtualRegister(RC)-1; + } + + // Add the mapping of regnumber => reg class to MachineFunction + const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); + return F->getSSARegMap()->createVirtualRegister(RC); + } + + /// getReg - This method turns an LLVM value into a register number. This + /// is guaranteed to produce the same register number for a particular value + /// every time it is queried. + /// + unsigned getReg(Value &V) { return getReg(&V); } // Allow references + unsigned getReg(Value *V) { + // Just append to the end of the current bb. + MachineBasicBlock::iterator It = BB->end(); + return getReg(V, BB, It); + } + unsigned getReg(Value *V, MachineBasicBlock *MBB, + MachineBasicBlock::iterator IPt) { + unsigned &Reg = RegMap[V]; + if (Reg == 0) { + Reg = makeAnotherReg(V->getType()); + RegMap[V] = Reg; + } + + // If this operand is a constant, emit the code to copy the constant into + // the register here... + // + if (Constant *C = dyn_cast(V)) { + copyConstantToRegister(MBB, IPt, C, Reg); + RegMap.erase(V); // Assign a new name to this constant if ref'd again + } else if (GlobalValue *GV = dyn_cast(V)) { + // Move the address of the global into the register + BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV); + RegMap.erase(V); // Assign a new name to this address if ref'd again + } + + return Reg; + } + }; +} + +/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 +/// Representation. +/// +enum TypeClass { + cByte, cShort, cInt, cFP, cLong +}; + +enum Subclasses { + NegOne, PosOne, Cons, Other +}; + + + +/// getClass - Turn a primitive type into a "class" number which is based on the +/// size of the type, and whether or not it is floating point. +/// +static inline TypeClass getClass(const Type *Ty) { + switch (Ty->getPrimitiveID()) { + case Type::SByteTyID: + case Type::UByteTyID: return cByte; // Byte operands are class #0 + case Type::ShortTyID: + case Type::UShortTyID: return cShort; // Short operands are class #1 + case Type::IntTyID: + case Type::UIntTyID: + case Type::PointerTyID: return cInt; // Int's and pointers are class #2 + + case Type::FloatTyID: + case Type::DoubleTyID: return cFP; // Floating Point is #3 + + case Type::LongTyID: + case Type::ULongTyID: return cLong; // Longs are class #4 + default: + assert(0 && "Invalid type to getClass!"); + return cByte; // not reached + } +} + +// getClassB - Just like getClass, but treat boolean values as bytes. +static inline TypeClass getClassB(const Type *Ty) { + if (Ty == Type::BoolTy) return cByte; + return getClass(Ty); +} + + +/// copyConstantToRegister - Output the instructions required to put the +/// specified constant into the specified register. +/// +void ISel::copyConstantToRegister(MachineBasicBlock *MBB, + MachineBasicBlock::iterator IP, + Constant *C, unsigned R) { + if (ConstantExpr *CE = dyn_cast(C)) { + unsigned Class = 0; + switch (CE->getOpcode()) { + case Instruction::GetElementPtr: + emitGEPOperation(MBB, IP, CE->getOperand(0), + CE->op_begin()+1, CE->op_end(), R); + return; + case Instruction::Cast: + emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); + return; + + case Instruction::Xor: ++Class; // FALL THROUGH + case Instruction::Or: ++Class; // FALL THROUGH + case Instruction::And: ++Class; // FALL THROUGH + case Instruction::Sub: ++Class; // FALL THROUGH + case Instruction::Add: + emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), + Class, R); + return; + + case Instruction::Mul: { + unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP); + unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP); + doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg); + return; + } + case Instruction::Div: + case Instruction::Rem: { + unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP); + unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP); + emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg, + CE->getOpcode() == Instruction::Div, + CE->getType(), R); + return; + } + + case Instruction::SetNE: + case Instruction::SetEQ: + case Instruction::SetLT: + case Instruction::SetGT: + case Instruction::SetLE: + case Instruction::SetGE: + emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), + CE->getOpcode(), R); + return; + + case Instruction::Shl: + case Instruction::Shr: + emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), + CE->getOpcode() == Instruction::Shl, CE->getType(), R); + return; + + default: + std::cerr << "Offending expr: " << C << "\n"; + assert(0 && "Constant expression not yet handled!\n"); + } + } + + if (C->getType()->isIntegral()) { + unsigned Class = getClassB(C->getType()); + + if (Class == cLong) { + // Copy the value into the register pair. + uint64_t Val = cast(C)->getRawValue(); + BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF); + BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32); + return; + } + + assert(Class <= cInt && "Type not handled yet!"); + + static const unsigned IntegralOpcodeTab[] = { + X86::MOV8ri, X86::MOV16ri, X86::MOV32ri + }; + + if (C->getType() == Type::BoolTy) { + BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True); + } else { + ConstantInt *CI = cast(C); + BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue()); + } + } else if (ConstantFP *CFP = dyn_cast(C)) { + if (CFP->isExactlyValue(+0.0)) + BuildMI(*MBB, IP, X86::FLD0, 0, R); + else if (CFP->isExactlyValue(+1.0)) + BuildMI(*MBB, IP, X86::FLD1, 0, R); + else { + // Otherwise we need to spill the constant to memory... + MachineConstantPool *CP = F->getConstantPool(); + unsigned CPI = CP->getConstantPoolIndex(CFP); + const Type *Ty = CFP->getType(); + + assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); + unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m; + addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI); + } + + } else if (isa(C)) { + // Copy zero (null pointer) to the register. + BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0); + } else if (ConstantPointerRef *CPR = dyn_cast(C)) { + BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue()); + } else { + std::cerr << "Offending constant: " << C << "\n"; + assert(0 && "Type not handled yet!"); + } +} + +/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from +/// the stack into virtual registers. +/// +void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { + // Emit instructions to load the arguments... On entry to a function on the + // X86, the stack frame looks like this: + // + // [ESP] -- return address + // [ESP + 4] -- first argument (leftmost lexically) + // [ESP + 8] -- second argument, if first argument is four bytes in size + // ... + // + unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot + MachineFrameInfo *MFI = F->getFrameInfo(); + + for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { + unsigned Reg = getReg(*I); + + int FI; // Frame object index + switch (getClassB(I->getType())) { + case cByte: + FI = MFI->CreateFixedObject(1, ArgOffset); + addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI); + break; + case cShort: + FI = MFI->CreateFixedObject(2, ArgOffset); + addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI); + break; + case cInt: + FI = MFI->CreateFixedObject(4, ArgOffset); + addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); + break; + case cLong: + FI = MFI->CreateFixedObject(8, ArgOffset); + addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); + addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4); + ArgOffset += 4; // longs require 4 additional bytes + break; + case cFP: + unsigned Opcode; + if (I->getType() == Type::FloatTy) { + Opcode = X86::FLD32m; + FI = MFI->CreateFixedObject(4, ArgOffset); + } else { + Opcode = X86::FLD64m; + FI = MFI->CreateFixedObject(8, ArgOffset); + ArgOffset += 4; // doubles require 4 additional bytes + } + addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI); + break; + default: + assert(0 && "Unhandled argument type!"); + } + ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... + } + + // If the function takes variable number of arguments, add a frame offset for + // the start of the first vararg value... this is used to expand + // llvm.va_start. + if (Fn.getFunctionType()->isVarArg()) + VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); +} + + +/// SelectPHINodes - Insert machine code to generate phis. This is tricky +/// because we have to generate our sources into the source basic blocks, not +/// the current one. +/// +void ISel::SelectPHINodes() { + const TargetInstrInfo &TII = TM.getInstrInfo(); + const Function &LF = *F->getFunction(); // The LLVM function... + for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { + const BasicBlock *BB = I; + MachineBasicBlock &MBB = *MBBMap[I]; + + // Loop over all of the PHI nodes in the LLVM basic block... + MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); + for (BasicBlock::const_iterator I = BB->begin(); + PHINode *PN = const_cast(dyn_cast(I)); ++I) { + + // Create a new machine instr PHI node, and insert it. + unsigned PHIReg = getReg(*PN); + MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, + X86::PHI, PN->getNumOperands(), PHIReg); + + MachineInstr *LongPhiMI = 0; + if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) + LongPhiMI = BuildMI(MBB, PHIInsertPoint, + X86::PHI, PN->getNumOperands(), PHIReg+1); + + // PHIValues - Map of blocks to incoming virtual registers. We use this + // so that we only initialize one incoming value for a particular block, + // even if the block has multiple entries in the PHI node. + // + std::map PHIValues; + + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; + unsigned ValReg; + std::map::iterator EntryIt = + PHIValues.lower_bound(PredMBB); + + if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { + // We already inserted an initialization of the register for this + // predecessor. Recycle it. + ValReg = EntryIt->second; + + } else { + // Get the incoming value into a virtual register. + // + Value *Val = PN->getIncomingValue(i); + + // If this is a constant or GlobalValue, we may have to insert code + // into the basic block to compute it into a virtual register. + if (isa(Val) || isa(Val)) { + // Because we don't want to clobber any values which might be in + // physical registers with the computation of this constant (which + // might be arbitrarily complex if it is a constant expression), + // just insert the computation at the top of the basic block. + MachineBasicBlock::iterator PI = PredMBB->begin(); + + // Skip over any PHI nodes though! + while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI) + ++PI; + + ValReg = getReg(Val, PredMBB, PI); + } else { + ValReg = getReg(Val); + } + + // Remember that we inserted a value for this PHI for this predecessor + PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); + } + + PhiMI->addRegOperand(ValReg); + PhiMI->addMachineBasicBlockOperand(PredMBB); + if (LongPhiMI) { + LongPhiMI->addRegOperand(ValReg+1); + LongPhiMI->addMachineBasicBlockOperand(PredMBB); + } + } + + // Now that we emitted all of the incoming values for the PHI node, make + // sure to reposition the InsertPoint after the PHI that we just added. + // This is needed because we might have inserted a constant into this + // block, right after the PHI's which is before the old insert point! + PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; + ++PHIInsertPoint; + } + } +} + +/// RequiresFPRegKill - The floating point stackifier pass cannot insert +/// compensation code on critical edges. As such, it requires that we kill all +/// FP registers on the exit from any blocks that either ARE critical edges, or +/// branch to a block that has incoming critical edges. +/// +/// Note that this kill instruction will eventually be eliminated when +/// restrictions in the stackifier are relaxed. +/// +static bool RequiresFPRegKill(const BasicBlock *BB) { +#if 0 + for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) { + const BasicBlock *Succ = *SI; + pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ); + ++PI; // Block have at least one predecessory + if (PI != PE) { // If it has exactly one, this isn't crit edge + // If this block has more than one predecessor, check all of the + // predecessors to see if they have multiple successors. If so, then the + // block we are analyzing needs an FPRegKill. + for (PI = pred_begin(Succ); PI != PE; ++PI) { + const BasicBlock *Pred = *PI; + succ_const_iterator SI2 = succ_begin(Pred); + ++SI2; // There must be at least one successor of this block. + if (SI2 != succ_end(Pred)) + return true; // Yes, we must insert the kill on this edge. + } + } + } + // If we got this far, there is no need to insert the kill instruction. + return false; +#else + return true; +#endif +} + +// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that +// need them. This only occurs due to the floating point stackifier not being +// aggressive enough to handle arbitrary global stackification. +// +// Currently we insert an FP_REG_KILL instruction into each block that uses or +// defines a floating point virtual register. +// +// When the global register allocators (like linear scan) finally update live +// variable analysis, we can keep floating point values in registers across +// portions of the CFG that do not involve critical edges. This will be a big +// win, but we are waiting on the global allocators before we can do this. +// +// With a bit of work, the floating point stackifier pass can be enhanced to +// break critical edges as needed (to make a place to put compensation code), +// but this will require some infrastructure improvements as well. +// +void ISel::InsertFPRegKills() { + SSARegMap &RegMap = *F->getSSARegMap(); + + for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { + for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I) + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { + MachineOperand& MO = I->getOperand(i); + if (MO.isRegister() && MO.getReg()) { + unsigned Reg = MO.getReg(); + if (MRegisterInfo::isVirtualRegister(Reg)) + if (RegMap.getRegClass(Reg)->getSize() == 10) + goto UsesFPReg; + } + } + // If we haven't found an FP register use or def in this basic block, check + // to see if any of our successors has an FP PHI node, which will cause a + // copy to be inserted into this block. + for (succ_const_iterator SI = succ_begin(BB->getBasicBlock()), + E = succ_end(BB->getBasicBlock()); SI != E; ++SI) { + MachineBasicBlock *SBB = MBBMap[*SI]; + for (MachineBasicBlock::iterator I = SBB->begin(); + I != SBB->end() && I->getOpcode() == X86::PHI; ++I) { + if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10) + goto UsesFPReg; + } + } + continue; + UsesFPReg: + // Okay, this block uses an FP register. If the block has successors (ie, + // it's not an unwind/return), insert the FP_REG_KILL instruction. + if (BB->getBasicBlock()->getTerminator()->getNumSuccessors() && + RequiresFPRegKill(BB->getBasicBlock())) { + BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); + ++NumFPKill; + } + } +} + + +// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into +// the conditional branch instruction which is the only user of the cc +// instruction. This is the case if the conditional branch is the only user of +// the setcc, and if the setcc is in the same basic block as the conditional +// branch. We also don't handle long arguments below, so we reject them here as +// well. +// +static SetCondInst *canFoldSetCCIntoBranch(Value *V) { + if (SetCondInst *SCI = dyn_cast(V)) + if (SCI->hasOneUse() && isa(SCI->use_back()) && + SCI->getParent() == cast(SCI->use_back())->getParent()) { + const Type *Ty = SCI->getOperand(0)->getType(); + if (Ty != Type::LongTy && Ty != Type::ULongTy) + return SCI; + } + return 0; +} + +// Return a fixed numbering for setcc instructions which does not depend on the +// order of the opcodes. +// +static unsigned getSetCCNumber(unsigned Opcode) { + switch(Opcode) { + default: assert(0 && "Unknown setcc instruction!"); + case Instruction::SetEQ: return 0; + case Instruction::SetNE: return 1; + case Instruction::SetLT: return 2; + case Instruction::SetGE: return 3; + case Instruction::SetGT: return 4; + case Instruction::SetLE: return 5; + } +} + +// LLVM -> X86 signed X86 unsigned +// ----- ---------- ------------ +// seteq -> sete sete +// setne -> setne setne +// setlt -> setl setb +// setge -> setge setae +// setgt -> setg seta +// setle -> setle setbe +// ---- +// sets // Used by comparison with 0 optimization +// setns +static const unsigned SetCCOpcodeTab[2][8] = { + { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr, + 0, 0 }, + { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr, + X86::SETSr, X86::SETNSr }, +}; + +// EmitComparison - This function emits a comparison of the two operands, +// returning the extended setcc code to use. +unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, + MachineBasicBlock *MBB, + MachineBasicBlock::iterator IP) { + // The arguments are already supposed to be of the same type. + const Type *CompTy = Op0->getType(); + unsigned Class = getClassB(CompTy); + unsigned Op0r = getReg(Op0, MBB, IP); + + // Special case handling of: cmp R, i + if (Class == cByte || Class == cShort || Class == cInt) + if (ConstantInt *CI = dyn_cast(Op1)) { + uint64_t Op1v = cast(CI)->getRawValue(); + + // Mask off any upper bits of the constant, if there are any... + Op1v &= (1ULL << (8 << Class)) - 1; + + // If this is a comparison against zero, emit more efficient code. We + // can't handle unsigned comparisons against zero unless they are == or + // !=. These should have been strength reduced already anyway. + if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) { + static const unsigned TESTTab[] = { + X86::TEST8rr, X86::TEST16rr, X86::TEST32rr + }; + BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r); + + if (OpNum == 2) return 6; // Map jl -> js + if (OpNum == 3) return 7; // Map jg -> jns + return OpNum; + } + + static const unsigned CMPTab[] = { + X86::CMP8ri, X86::CMP16ri, X86::CMP32ri + }; + + BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v); + return OpNum; + } + + // Special case handling of comparison against +/- 0.0 + if (ConstantFP *CFP = dyn_cast(Op1)) + if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) { + BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r); + BuildMI(*MBB, IP, X86::FNSTSW8r, 0); + BuildMI(*MBB, IP, X86::SAHF, 1); + return OpNum; + } + + unsigned Op1r = getReg(Op1, MBB, IP); + switch (Class) { + default: assert(0 && "Unknown type class!"); + // Emit: cmp , (do the comparison). We can + // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with + // 32-bit. + case cByte: + BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r); + break; + case cShort: + BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r); + break; + case cInt: + BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); + break; + case cFP: + BuildMI(*MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r); + BuildMI(*MBB, IP, X86::FNSTSW8r, 0); + BuildMI(*MBB, IP, X86::SAHF, 1); + break; + + case cLong: + if (OpNum < 2) { // seteq, setne + unsigned LoTmp = makeAnotherReg(Type::IntTy); + unsigned HiTmp = makeAnotherReg(Type::IntTy); + unsigned FinalTmp = makeAnotherReg(Type::IntTy); + BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r); + BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); + BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); + break; // Allow the sete or setne to be generated from flags set by OR + } else { + // Emit a sequence of code which compares the high and low parts once + // each, then uses a conditional move to handle the overflow case. For + // example, a setlt for long would generate code like this: + // + // AL = lo(op1) < lo(op2) // Signedness depends on operands + // BL = hi(op1) < hi(op2) // Always unsigned comparison + // dest = hi(op1) == hi(op2) ? AL : BL; + // + + // FIXME: This would be much better if we had hierarchical register + // classes! Until then, hardcode registers so that we can deal with their + // aliases (because we don't have conditional byte moves). + // + BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); + BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); + BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1); + BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL); + BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); + BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); + BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) + .addReg(X86::AX); + // NOTE: visitSetCondInst knows that the value is dumped into the BL + // register at this point for long values... + return OpNum; + } + } + return OpNum; +} + + +/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized +/// register, then move it to wherever the result should be. +/// +void ISel::visitSetCondInst(SetCondInst &I) { + if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch... + + unsigned DestReg = getReg(I); + MachineBasicBlock::iterator MII = BB->end(); + emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(), + DestReg); +} + +/// emitSetCCOperation - Common code shared between visitSetCondInst and +/// constant expression support. +/// +void ISel::emitSetCCOperation(MachineBasicBlock *MBB, + MachineBasicBlock::iterator IP, + Value *Op0, Value *Op1, unsigned Opcode, + unsigned TargetReg) { + unsigned OpNum = getSetCCNumber(Opcode); + OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP); + + const Type *CompTy = Op0->getType(); + unsigned CompClass = getClassB(CompTy); + bool isSigned = CompTy->isSigned() && CompClass != cFP; + + if (CompClass != cLong || OpNum < 2) { + // Handle normal comparisons with a setcc instruction... + BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg); + } else { + // Handle long comparisons by copying the value which is already in BL into + // the register we want... + BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL); + } +} + + + + +/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide +/// operand, in the specified target register. +/// +void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { + bool isUnsigned = VR.Ty->isUnsigned(); + + // Make sure we have the register number for this value... + unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg; + + switch (getClassB(VR.Ty)) { + case cByte: + // Extend value into target register (8->32) + if (isUnsigned) + BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg); + else + BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg); + break; + case cShort: + // Extend value into target register (16->32) + if (isUnsigned) + BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg); + else + BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg); + break; + case cInt: + // Move value into target register (32->32) + BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg); + break; + default: + assert(0 && "Unpromotable operand class in promote32"); + } +} + +/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, +/// we have the following possibilities: +/// +/// ret void: No return value, simply emit a 'ret' instruction +/// ret sbyte, ubyte : Extend value into EAX and return +/// ret short, ushort: Extend value into EAX and return +/// ret int, uint : Move value into EAX and return +/// ret pointer : Move value into EAX and return +/// ret long, ulong : Move value into EAX/EDX and return +/// ret float/double : Top of FP stack +/// +void ISel::visitReturnInst(ReturnInst &I) { + if (I.getNumOperands() == 0) { + BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction + return; + } + + Value *RetVal = I.getOperand(0); + unsigned RetReg = getReg(RetVal); + switch (getClassB(RetVal->getType())) { + case cByte: // integral return values: extend or move into EAX and return + case cShort: + case cInt: + promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType())); + // Declare that EAX is live on exit + BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP); + break; + case cFP: // Floats & Doubles: Return in ST(0) + BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg); + // Declare that top-of-stack is live on exit + BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP); + break; + case cLong: + BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg); + BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1); + // Declare that EAX & EDX are live on exit + BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX) + .addReg(X86::ESP); + break; + default: + visitInstruction(I); + } + // Emit a 'ret' instruction + BuildMI(BB, X86::RET, 0); +} + +// getBlockAfter - Return the basic block which occurs lexically after the +// specified one. +static inline BasicBlock *getBlockAfter(BasicBlock *BB) { + Function::iterator I = BB; ++I; // Get iterator to next block + return I != BB->getParent()->end() ? &*I : 0; +} + +/// visitBranchInst - Handle conditional and unconditional branches here. Note +/// that since code layout is frozen at this point, that if we are trying to +/// jump to a block that is the immediate successor of the current block, we can +/// just make a fall-through (but we don't currently). +/// +void ISel::visitBranchInst(BranchInst &BI) { + BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one + + if (!BI.isConditional()) { // Unconditional branch? + if (BI.getSuccessor(0) != NextBB) + BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); + return; + } + + // See if we can fold the setcc into the branch itself... + SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition()); + if (SCI == 0) { + // Nope, cannot fold setcc into this branch. Emit a branch on a condition + // computed some other way... + unsigned condReg = getReg(BI.getCondition()); + BuildMI(BB, X86::CMP8ri, 2).addReg(condReg).addImm(0); + if (BI.getSuccessor(1) == NextBB) { + if (BI.getSuccessor(0) != NextBB) + BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0)); + } else { + BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1)); + + if (BI.getSuccessor(0) != NextBB) + BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); + } + return; + } + + unsigned OpNum = getSetCCNumber(SCI->getOpcode()); + MachineBasicBlock::iterator MII = BB->end(); + OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); + + const Type *CompTy = SCI->getOperand(0)->getType(); + bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; + + + // LLVM -> X86 signed X86 unsigned + // ----- ---------- ------------ + // seteq -> je je + // setne -> jne jne + // setlt -> jl jb + // setge -> jge jae + // setgt -> jg ja + // setle -> jle jbe + // ---- + // js // Used by comparison with 0 optimization + // jns + + static const unsigned OpcodeTab[2][8] = { + { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 }, + { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE, + X86::JS, X86::JNS }, + }; + + if (BI.getSuccessor(0) != NextBB) { + BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0)); + if (BI.getSuccessor(1) != NextBB) + BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1)); + } else { + // Change to the inverse condition... + if (BI.getSuccessor(1) != NextBB) { + OpNum ^= 1; + BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1)); + } + } +} + + +/// doCall - This emits an abstract call instruction, setting up the arguments +/// and the return value as appropriate. For the actual function call itself, +/// it inserts the specified CallMI instruction into the stream. +/// +void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, + const std::vector &Args) { + + // Count how many bytes are to be pushed on the stack... + unsigned NumBytes = 0; + + if (!Args.empty()) { + for (unsigned i = 0, e = Args.size(); i != e; ++i) + switch (getClassB(Args[i].Ty)) { + case cByte: case cShort: case cInt: + NumBytes += 4; break; + case cLong: + NumBytes += 8; break; + case cFP: + NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8; + break; + default: assert(0 && "Unknown class!"); + } + + // Adjust the stack pointer for the new arguments... + BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes); + + // Arguments go on the stack in reverse order, as specified by the ABI. + unsigned ArgOffset = 0; + for (unsigned i = 0, e = Args.size(); i != e; ++i) { + unsigned ArgReg; + switch (getClassB(Args[i].Ty)) { + case cByte: + case cShort: + if (Args[i].Val && isa(Args[i].Val)) { + // Zero/Sign extend constant, then stuff into memory. + ConstantInt *Val = cast(Args[i].Val); + Val = cast(ConstantExpr::getCast(Val, Type::IntTy)); + addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) + .addImm(Val->getRawValue() & 0xFFFFFFFF); + } else { + // Promote arg to 32 bits wide into a temporary register... + ArgReg = makeAnotherReg(Type::UIntTy); + promote32(ArgReg, Args[i]); + addRegOffset(BuildMI(BB, X86::MOV32mr, 5), + X86::ESP, ArgOffset).addReg(ArgReg); + } + break; + case cInt: + if (Args[i].Val && isa(Args[i].Val)) { + unsigned Val = cast(Args[i].Val)->getRawValue(); + addRegOffset(BuildMI(BB, X86::MOV32mi, 5), + X86::ESP, ArgOffset).addImm(Val); + } else { + ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; + addRegOffset(BuildMI(BB, X86::MOV32mr, 5), + X86::ESP, ArgOffset).addReg(ArgReg); + } + break; + case cLong: + ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; + addRegOffset(BuildMI(BB, X86::MOV32mr, 5), + X86::ESP, ArgOffset).addReg(ArgReg); + addRegOffset(BuildMI(BB, X86::MOV32mr, 5), + X86::ESP, ArgOffset+4).addReg(ArgReg+1); + ArgOffset += 4; // 8 byte entry, not 4. + break; + + case cFP: + ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; + if (Args[i].Ty == Type::FloatTy) { + addRegOffset(BuildMI(BB, X86::FST32m, 5), + X86::ESP, ArgOffset).addReg(ArgReg); + } else { + assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); + addRegOffset(BuildMI(BB, X86::FST64m, 5), + X86::ESP, ArgOffset).addReg(ArgReg); + ArgOffset += 4; // 8 byte entry, not 4. + } + break; + + default: assert(0 && "Unknown class!"); + } + ArgOffset += 4; + } + } else { + BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0); + } + + BB->push_back(CallMI); + + BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes); + + // If there is a return value, scavenge the result from the location the call + // leaves it in... + // + if (Ret.Ty != Type::VoidTy) { + unsigned DestClass = getClassB(Ret.Ty); + switch (DestClass) { + case cByte: + case cShort: + case cInt: { + // Integral results are in %eax, or the appropriate portion + // thereof. + static const unsigned regRegMove[] = { + X86::MOV8rr, X86::MOV16rr, X86::MOV32rr + }; + static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; + BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]); + break; + } + case cFP: // Floating-point return values live in %ST(0) + BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg); + break; + case cLong: // Long values are left in EDX:EAX + BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX); + BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX); + break; + default: assert(0 && "Unknown class!"); + } + } +} + + +/// visitCallInst - Push args on stack and do a procedure call instruction. +void ISel::visitCallInst(CallInst &CI) { + MachineInstr *TheCall; + if (Function *F = CI.getCalledFunction()) { + // Is it an intrinsic function call? + if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { + visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here + return; + } + + // Emit a CALL instruction with PC-relative displacement. + TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true); + } else { // Emit an indirect call... + unsigned Reg = getReg(CI.getCalledValue()); + TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg); + } + + std::vector Args; + for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) + Args.push_back(ValueRecord(CI.getOperand(i))); + + unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; + doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args); +} + + +/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the +/// function, lowering any calls to unknown intrinsic functions into the +/// equivalent LLVM code. +/// +void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) + if (CallInst *CI = dyn_cast(I++)) + if (Function *F = CI->getCalledFunction()) + switch (F->getIntrinsicID()) { + case Intrinsic::not_intrinsic: + case Intrinsic::vastart: + case Intrinsic::vacopy: + case Intrinsic::vaend: + case Intrinsic::returnaddress: + case Intrinsic::frameaddress: + case Intrinsic::memcpy: + case Intrinsic::memset: + // We directly implement these intrinsics + break; + default: + // All other intrinsic calls we must lower. + Instruction *Before = CI->getPrev(); + TM.getIntrinsicLowering().LowerIntrinsicCall(CI); + if (Before) { // Move iterator to instruction after call + I = Before; ++I; + } else { + I = BB->begin(); + } + } + +} + +void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { + unsigned TmpReg1, TmpReg2; + switch (ID) { + case Intrinsic::vastart: + // Get the address of the first vararg value... + TmpReg1 = getReg(CI); + addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex); + return; + + case Intrinsic::vacopy: + TmpReg1 = getReg(CI); + TmpReg2 = getReg(CI.getOperand(1)); + BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2); + return; + case Intrinsic::vaend: return; // Noop on X86 + + case Intrinsic::returnaddress: + case Intrinsic::frameaddress: + TmpReg1 = getReg(CI); + if (cast(CI.getOperand(1))->isNullValue()) { + if (ID == Intrinsic::returnaddress) { + // Just load the return address + addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1), + ReturnAddressIndex); + } else { + addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1), + ReturnAddressIndex, -4); + } + } else { + // Values other than zero are not implemented yet. + BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0); + } + return; + + case Intrinsic::memcpy: { + assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!"); + unsigned Align = 1; + if (ConstantInt *AlignC = dyn_cast(CI.getOperand(4))) { + Align = AlignC->getRawValue(); + if (Align == 0) Align = 1; + } + + // Turn the byte code into # iterations + unsigned CountReg; + unsigned Opcode; + switch (Align & 3) { + case 2: // WORD aligned + if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { + CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); + } else { + CountReg = makeAnotherReg(Type::IntTy); + unsigned ByteReg = getReg(CI.getOperand(3)); + BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); + } + Opcode = X86::REP_MOVSW; + break; + case 0: // DWORD aligned + if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { + CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); + } else { + CountReg = makeAnotherReg(Type::IntTy); + unsigned ByteReg = getReg(CI.getOperand(3)); + BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); + } + Opcode = X86::REP_MOVSD; + break; + default: // BYTE aligned + CountReg = getReg(CI.getOperand(3)); + Opcode = X86::REP_MOVSB; + break; + } + + // No matter what the alignment is, we put the source in ESI, the + // destination in EDI, and the count in ECX. + TmpReg1 = getReg(CI.getOperand(1)); + TmpReg2 = getReg(CI.getOperand(2)); + BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); + BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); + BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); + BuildMI(BB, Opcode, 0); + return; + } + case Intrinsic::memset: { + assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!"); + unsigned Align = 1; + if (ConstantInt *AlignC = dyn_cast(CI.getOperand(4))) { + Align = AlignC->getRawValue(); + if (Align == 0) Align = 1; + } + + // Turn the byte code into # iterations + unsigned CountReg; + unsigned Opcode; + if (ConstantInt *ValC = dyn_cast(CI.getOperand(2))) { + unsigned Val = ValC->getRawValue() & 255; + + // If the value is a constant, then we can potentially use larger copies. + switch (Align & 3) { + case 2: // WORD aligned + if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { + CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); + } else { + CountReg = makeAnotherReg(Type::IntTy); + unsigned ByteReg = getReg(CI.getOperand(3)); + BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); + } + BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); + Opcode = X86::REP_STOSW; + break; + case 0: // DWORD aligned + if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { + CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); + } else { + CountReg = makeAnotherReg(Type::IntTy); + unsigned ByteReg = getReg(CI.getOperand(3)); + BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); + } + Val = (Val << 8) | Val; + BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); + Opcode = X86::REP_STOSD; + break; + default: // BYTE aligned + CountReg = getReg(CI.getOperand(3)); + BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); + Opcode = X86::REP_STOSB; + break; + } + } else { + // If it's not a constant value we are storing, just fall back. We could + // try to be clever to form 16 bit and 32 bit values, but we don't yet. + unsigned ValReg = getReg(CI.getOperand(2)); + BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); + CountReg = getReg(CI.getOperand(3)); + Opcode = X86::REP_STOSB; + } + + // No matter what the alignment is, we put the source in ESI, the + // destination in EDI, and the count in ECX. + TmpReg1 = getReg(CI.getOperand(1)); + //TmpReg2 = getReg(CI.getOperand(2)); + BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); + BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); + BuildMI(BB, Opcode, 0); + return; + } + + default: assert(0 && "Error: unknown intrinsics should have been lowered!"); + } +} + +static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) { + if (LI.getParent() != User.getParent()) + return false; + BasicBlock::iterator It = &LI; + // Check all of the instructions between the load and the user. We should + // really use alias analysis here, but for now we just do something simple. + for (++It; It != BasicBlock::iterator(&User); ++It) { + switch (It->getOpcode()) { + case Instruction::Store: + case Instruction::Call: + case Instruction::Invoke: + return false; + } + } + return true; +} + + +/// visitSimpleBinary - Implement simple binary operators for integral types... +/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for +/// Xor. +/// +void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { + unsigned DestReg = getReg(B); + MachineBasicBlock::iterator MI = BB->end(); + Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); + + // Special case: op Reg, load [mem] + if (isa(Op0) && !isa(Op1)) + if (!B.swapOperands()) + std::swap(Op0, Op1); // Make sure any loads are in the RHS. + + unsigned Class = getClassB(B.getType()); + if (isa(Op1) && Class < cFP && + isSafeToFoldLoadIntoInstruction(*cast(Op1), B)) { + + static const unsigned OpcodeTab[][3] = { + // Arithmetic operators + { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD + { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB + + // Bitwise operators + { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND + { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR + { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR + }; + + assert(Class < cFP && "General code handles 64-bit integer types!"); + unsigned Opcode = OpcodeTab[OperatorClass][Class]; + + unsigned BaseReg, Scale, IndexReg, Disp; + getAddressingMode(cast(Op1)->getOperand(0), BaseReg, + Scale, IndexReg, Disp); + + unsigned Op0r = getReg(Op0); + addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r), + BaseReg, Scale, IndexReg, Disp); + return; + } + + emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); +} + +/// emitSimpleBinaryOperation - Implement simple binary operators for integral +/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for +/// Or, 4 for Xor. +/// +/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary +/// and constant expression support. +/// +void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, + MachineBasicBlock::iterator IP, + Value *Op0, Value *Op1, + unsigned OperatorClass, unsigned DestReg) { + unsigned Class = getClassB(Op0->getType()); + + // sub 0, X -> neg X + if (OperatorClass == 1 && Class != cLong) + if (ConstantInt *CI = dyn_cast(Op0)) { + if (CI->isNullValue()) { + unsigned op1Reg = getReg(Op1, MBB, IP); + switch (Class) { + default: assert(0 && "Unknown class for this function!"); + case cByte: + BuildMI(*MBB, IP, X86::NEG8r, 1, DestReg).addReg(op1Reg); + return; + case cShort: + BuildMI(*MBB, IP, X86::NEG16r, 1, DestReg).addReg(op1Reg); + return; + case cInt: + BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg).addReg(op1Reg); + return; + } + } + } else if (ConstantFP *CFP = dyn_cast(Op0)) + if (CFP->isExactlyValue(-0.0)) { + // -0.0 - X === -X + unsigned op1Reg = getReg(Op1, MBB, IP); + BuildMI(*MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg); + return; + } + + // Special case: op Reg, + if (Class != cLong && isa(Op1)) { + ConstantInt *Op1C = cast(Op1); + unsigned Op0r = getReg(Op0, MBB, IP); + + // xor X, -1 -> not X + if (OperatorClass == 4 && Op1C->isAllOnesValue()) { + static unsigned const NOTTab[] = { X86::NOT8r, X86::NOT16r, X86::NOT32r }; + BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r); + return; + } + + // add X, -1 -> dec X + if (OperatorClass == 0 && Op1C->isAllOnesValue()) { + static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r }; + BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r); + return; + } + + // add X, 1 -> inc X + if (OperatorClass == 0 && Op1C->equalsInt(1)) { + static unsigned const DECTab[] = { X86::INC8r, X86::INC16r, X86::INC32r }; + BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r); + return; + } + + static const unsigned OpcodeTab[][3] = { + // Arithmetic operators + { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri }, // ADD + { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri }, // SUB + + // Bitwise operators + { X86::AND8ri, X86::AND16ri, X86::AND32ri }, // AND + { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri }, // OR + { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri }, // XOR + }; + + assert(Class < cFP && "General code handles 64-bit integer types!"); + unsigned Opcode = OpcodeTab[OperatorClass][Class]; + + + uint64_t Op1v = cast(Op1C)->getRawValue(); + BuildMI(*MBB, IP, Opcode, 5, DestReg).addReg(Op0r).addImm(Op1v); + return; + } + + // Finally, handle the general case now. + static const unsigned OpcodeTab[][4] = { + // Arithmetic operators + { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, X86::FpADD }, // ADD + { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB }, // SUB + + // Bitwise operators + { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0 }, // AND + { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0 }, // OR + { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0 }, // XOR + }; + + bool isLong = false; + if (Class == cLong) { + isLong = true; + Class = cInt; // Bottom 32 bits are handled just like ints + } + + unsigned Opcode = OpcodeTab[OperatorClass][Class]; + assert(Opcode && "Floating point arguments to logical inst?"); + unsigned Op0r = getReg(Op0, MBB, IP); + unsigned Op1r = getReg(Op1, MBB, IP); + BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); + + if (isLong) { // Handle the upper 32 bits of long values... + static const unsigned TopTab[] = { + X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr + }; + BuildMI(*MBB, IP, TopTab[OperatorClass], 2, + DestReg+1).addReg(Op0r+1).addReg(Op1r+1); + } +} + +/// doMultiply - Emit appropriate instructions to multiply together the +/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the +/// result should be given as DestTy. +/// +void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, + unsigned DestReg, const Type *DestTy, + unsigned op0Reg, unsigned op1Reg) { + unsigned Class = getClass(DestTy); + switch (Class) { + case cFP: // Floating point multiply + BuildMI(*MBB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg); + return; + case cInt: + case cShort: + BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg) + .addReg(op0Reg).addReg(op1Reg); + return; + case cByte: + // Must use the MUL instruction, which forces use of AL... + BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg); + BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg); + BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL); + return; + default: + case cLong: assert(0 && "doMultiply cannot operate on LONG values!"); + } +} + +// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It +// returns zero when the input is not exactly a power of two. +static unsigned ExactLog2(unsigned Val) { + if (Val == 0) return 0; + unsigned Count = 0; + while (Val != 1) { + if (Val & 1) return 0; + Val >>= 1; + ++Count; + } + return Count+1; +} + +void ISel::doMultiplyConst(MachineBasicBlock *MBB, + MachineBasicBlock::iterator IP, + unsigned DestReg, const Type *DestTy, + unsigned op0Reg, unsigned ConstRHS) { + unsigned Class = getClass(DestTy); + + // If the element size is exactly a power of 2, use a shift to get it. + if (unsigned Shift = ExactLog2(ConstRHS)) { + switch (Class) { + default: assert(0 && "Unknown class for this function!"); + case cByte: + BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); + return; + case cShort: + BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); + return; + case cInt: + BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); + return; + } + } + + if (Class == cShort) { + BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); + return; + } else if (Class == cInt) { + BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); + return; + } + + // Most general case, emit a normal multiply... + static const unsigned MOVriTab[] = { + X86::MOV8ri, X86::MOV16ri, X86::MOV32ri + }; + + unsigned TmpReg = makeAnotherReg(DestTy); + BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS); + + // Emit a MUL to multiply the register holding the index by + // elementSize, putting the result in OffsetReg. + doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg); +} + +/// visitMul - Multiplies are not simple binary operators because they must deal +/// with the EAX register explicitly. +/// +void ISel::visitMul(BinaryOperator &I) { + unsigned Op0Reg = getReg(I.getOperand(0)); + unsigned DestReg = getReg(I); + + // Simple scalar multiply? + if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) { + if (ConstantInt *CI = dyn_cast(I.getOperand(1))) { + unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant + MachineBasicBlock::iterator MBBI = BB->end(); + doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val); + } else { + unsigned Op1Reg = getReg(I.getOperand(1)); + MachineBasicBlock::iterator MBBI = BB->end(); + doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg); + } + } else { + unsigned Op1Reg = getReg(I.getOperand(1)); + + // Long value. We have to do things the hard way... + // Multiply the two low parts... capturing carry into EDX + BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); + BuildMI(BB, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL + + unsigned OverflowReg = makeAnotherReg(Type::UIntTy); + BuildMI(BB, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL + BuildMI(BB, X86::MOV32rr, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32 + + MachineBasicBlock::iterator MBBI = BB->end(); + unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL + BuildMI(*BB, MBBI, X86::IMUL32rr,2,AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); + + unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); + BuildMI(*BB, MBBI, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) + AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); + + MBBI = BB->end(); + unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH + BuildMI(*BB, MBBI, X86::IMUL32rr,2,ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); + + BuildMI(*BB, MBBI, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) + DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); + } +} + + +/// visitDivRem - Handle division and remainder instructions... these +/// instruction both require the same instructions to be generated, they just +/// select the result from a different register. Note that both of these +/// instructions work differently for signed and unsigned operands. +/// +void ISel::visitDivRem(BinaryOperator &I) { + unsigned Op0Reg = getReg(I.getOperand(0)); + unsigned Op1Reg = getReg(I.getOperand(1)); + unsigned ResultReg = getReg(I); + + MachineBasicBlock::iterator IP = BB->end(); + emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div, + I.getType(), ResultReg); +} + +void ISel::emitDivRemOperation(MachineBasicBlock *BB, + MachineBasicBlock::iterator IP, + unsigned Op0Reg, unsigned Op1Reg, bool isDiv, + const Type *Ty, unsigned ResultReg) { + unsigned Class = getClass(Ty); + switch (Class) { + case cFP: // Floating point divide + if (isDiv) { + BuildMI(*BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); + } else { // Floating point remainder... + MachineInstr *TheCall = + BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true); + std::vector Args; + Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); + Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); + doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); + } + return; + case cLong: { + static const char *FnName[] = + { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; + + unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; + MachineInstr *TheCall = + BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true); + + std::vector Args; + Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); + Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); + doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); + return; + } + case cByte: case cShort: case cInt: + break; // Small integrals, handled below... + default: assert(0 && "Unknown class!"); + } + + static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; + static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr }; + static const unsigned SarOpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }; + static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri }; + static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX }; + + static const unsigned DivOpcode[][4] = { + { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division + { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division + }; + + bool isSigned = Ty->isSigned(); + unsigned Reg = Regs[Class]; + unsigned ExtReg = ExtRegs[Class]; + + // Put the first operand into one of the A registers... + BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg); + + if (isSigned) { + // Emit a sign extension instruction... + unsigned ShiftResult = makeAnotherReg(Ty); + BuildMI(*BB, IP, SarOpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31); + BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult); + } else { + // If unsigned, emit a zeroing instruction... (reg = 0) + BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0); + } + + // Emit the appropriate divide or remainder instruction... + BuildMI(*BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg); + + // Figure out which register we want to pick the result out of... + unsigned DestReg = isDiv ? Reg : ExtReg; + + // Put the result into the destination register... + BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg); +} + + +/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here +/// for constant immediate shift values, and for constant immediate +/// shift values equal to 1. Even the general case is sort of special, +/// because the shift amount has to be in CL, not just any old register. +/// +void ISel::visitShiftInst(ShiftInst &I) { + MachineBasicBlock::iterator IP = BB->end (); + emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1), + I.getOpcode () == Instruction::Shl, I.getType (), + getReg (I)); +} + +/// emitShiftOperation - Common code shared between visitShiftInst and +/// constant expression support. +void ISel::emitShiftOperation(MachineBasicBlock *MBB, + MachineBasicBlock::iterator IP, + Value *Op, Value *ShiftAmount, bool isLeftShift, + const Type *ResultTy, unsigned DestReg) { + unsigned SrcReg = getReg (Op, MBB, IP); + bool isSigned = ResultTy->isSigned (); + unsigned Class = getClass (ResultTy); + + static const unsigned ConstantOperand[][4] = { + { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR + { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR + { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL + { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL + }; + + static const unsigned NonConstantOperand[][4] = { + { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR + { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR + { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL + { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL + }; + + // Longs, as usual, are handled specially... + if (Class == cLong) { + // If we have a constant shift, we can generate much more efficient code + // than otherwise... + // + if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { + unsigned Amount = CUI->getValue(); + if (Amount < 32) { + const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; + if (isLeftShift) { + BuildMI(*MBB, IP, Opc[3], 3, + DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount); + BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount); + } else { + BuildMI(*MBB, IP, Opc[3], 3, + DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount); + BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount); + } + } else { // Shifting more than 32 bits + Amount -= 32; + if (isLeftShift) { + BuildMI(*MBB, IP, X86::SHL32ri, 2, + DestReg + 1).addReg(SrcReg).addImm(Amount); + BuildMI(*MBB, IP, X86::MOV32ri, 1, + DestReg).addImm(0); + } else { + unsigned Opcode = isSigned ? X86::SAR32ri : X86::SHR32ri; + BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addImm(Amount); + BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); + } + } + } else { + unsigned TmpReg = makeAnotherReg(Type::IntTy); + + if (!isLeftShift && isSigned) { + // If this is a SHR of a Long, then we need to do funny sign extension + // stuff. TmpReg gets the value to use as the high-part if we are + // shifting more than 32 bits. + BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31); + } else { + // Other shifts use a fixed zero value if the shift is more than 32 + // bits. + BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0); + } + + // Initialize CL with the shift amount... + unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP); + BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); + + unsigned TmpReg2 = makeAnotherReg(Type::IntTy); + unsigned TmpReg3 = makeAnotherReg(Type::IntTy); + if (isLeftShift) { + // TmpReg2 = shld inHi, inLo + BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1) + .addReg(SrcReg); + // TmpReg3 = shl inLo, CL + BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg); + + // Set the flags to indicate whether the shift was by more than 32 bits. + BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); + + // DestHi = (>32) ? TmpReg3 : TmpReg2; + BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, + DestReg+1).addReg(TmpReg2).addReg(TmpReg3); + // DestLo = (>32) ? TmpReg : TmpReg3; + BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, + DestReg).addReg(TmpReg3).addReg(TmpReg); + } else { + // TmpReg2 = shrd inLo, inHi + BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg) + .addReg(SrcReg+1); + // TmpReg3 = s[ah]r inHi, CL + BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3) + .addReg(SrcReg+1); + + // Set the flags to indicate whether the shift was by more than 32 bits. + BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); + + // DestLo = (>32) ? TmpReg3 : TmpReg2; + BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, + DestReg).addReg(TmpReg2).addReg(TmpReg3); + + // DestHi = (>32) ? TmpReg : TmpReg3; + BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, + DestReg+1).addReg(TmpReg3).addReg(TmpReg); + } + } + return; + } + + if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { + // The shift amount is constant, guaranteed to be a ubyte. Get its value. + assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); + + const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; + BuildMI(*MBB, IP, Opc[Class], 2, + DestReg).addReg(SrcReg).addImm(CUI->getValue()); + } else { // The shift amount is non-constant. + unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); + BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); + + const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned]; + BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg); + } +} + + +void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, + unsigned &IndexReg, unsigned &Disp) { + BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0; + if (GetElementPtrInst *GEP = dyn_cast(Addr)) { + if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(), + BaseReg, Scale, IndexReg, Disp)) + return; + } else if (ConstantExpr *CE = dyn_cast(Addr)) { + if (CE->getOpcode() == Instruction::GetElementPtr) + if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), + BaseReg, Scale, IndexReg, Disp)) + return; + } + + // If it's not foldable, reset addr mode. + BaseReg = getReg(Addr); + Scale = 1; IndexReg = 0; Disp = 0; +} + + +/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' +/// instruction. The load and store instructions are the only place where we +/// need to worry about the memory layout of the target machine. +/// +void ISel::visitLoadInst(LoadInst &I) { + // Check to see if this load instruction is going to be folded into a binary + // instruction, like add. If so, we don't want to emit it. Wouldn't a real + // pattern matching instruction selector be nice? + if (I.hasOneUse() && getClassB(I.getType()) < cFP) { + Instruction *User = cast(I.use_back()); + switch (User->getOpcode()) { + default: User = 0; break; + case Instruction::Add: + case Instruction::Sub: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + break; + } + + if (User) { + // Okay, we found a user. If the load is the first operand and there is + // no second operand load, reverse the operand ordering. Note that this + // can fail for a subtract (ie, no change will be made). + if (!isa(User->getOperand(1))) + cast(User)->swapOperands(); + + // Okay, now that everything is set up, if this load is used by the second + // operand, and if there are no instructions that invalidate the load + // before the binary operator, eliminate the load. + if (User->getOperand(1) == &I && + isSafeToFoldLoadIntoInstruction(I, *User)) + return; // Eliminate the load! + } + } + + unsigned DestReg = getReg(I); + unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0; + getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp); + + unsigned Class = getClassB(I.getType()); + if (Class == cLong) { + addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), + BaseReg, Scale, IndexReg, Disp); + addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), + BaseReg, Scale, IndexReg, Disp+4); + return; + } + + static const unsigned Opcodes[] = { + X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m + }; + unsigned Opcode = Opcodes[Class]; + if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m; + addFullAddress(BuildMI(BB, Opcode, 4, DestReg), + BaseReg, Scale, IndexReg, Disp); +} + +/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov' +/// instruction. +/// +void ISel::visitStoreInst(StoreInst &I) { + unsigned BaseReg, Scale, IndexReg, Disp; + getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp); + + const Type *ValTy = I.getOperand(0)->getType(); + unsigned Class = getClassB(ValTy); + + if (ConstantInt *CI = dyn_cast(I.getOperand(0))) { + uint64_t Val = CI->getRawValue(); + if (Class == cLong) { + addFullAddress(BuildMI(BB, X86::MOV32mi, 5), + BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U); + addFullAddress(BuildMI(BB, X86::MOV32mi, 5), + BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32); + } else { + static const unsigned Opcodes[] = { + X86::MOV8mi, X86::MOV16mi, X86::MOV32mi + }; + unsigned Opcode = Opcodes[Class]; + addFullAddress(BuildMI(BB, Opcode, 5), + BaseReg, Scale, IndexReg, Disp).addImm(Val); + } + } else if (ConstantBool *CB = dyn_cast(I.getOperand(0))) { + addFullAddress(BuildMI(BB, X86::MOV8mi, 5), + BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue()); + } else { + if (Class == cLong) { + unsigned ValReg = getReg(I.getOperand(0)); + addFullAddress(BuildMI(BB, X86::MOV32mr, 5), + BaseReg, Scale, IndexReg, Disp).addReg(ValReg); + addFullAddress(BuildMI(BB, X86::MOV32mr, 5), + BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1); + } else { + unsigned ValReg = getReg(I.getOperand(0)); + static const unsigned Opcodes[] = { + X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m + }; + unsigned Opcode = Opcodes[Class]; + if (ValTy == Type::DoubleTy) Opcode = X86::FST64m; + addFullAddress(BuildMI(BB, Opcode, 1+4), + BaseReg, Scale, IndexReg, Disp).addReg(ValReg); + } + } +} + + +/// visitCastInst - Here we have various kinds of copying with or without sign +/// extension going on. +/// +void ISel::visitCastInst(CastInst &CI) { + Value *Op = CI.getOperand(0); + // If this is a cast from a 32-bit integer to a Long type, and the only uses + // of the case are GEP instructions, then the cast does not need to be + // generated explicitly, it will be folded into the GEP. + if (CI.getType() == Type::LongTy && + (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) { + bool AllUsesAreGEPs = true; + for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) + if (!isa(*I)) { + AllUsesAreGEPs = false; + break; + } + + // No need to codegen this cast if all users are getelementptr instrs... + if (AllUsesAreGEPs) return; + } + + unsigned DestReg = getReg(CI); + MachineBasicBlock::iterator MI = BB->end(); + emitCastOperation(BB, MI, Op, CI.getType(), DestReg); +} + +/// emitCastOperation - Common code shared between visitCastInst and constant +/// expression cast support. +/// +void ISel::emitCastOperation(MachineBasicBlock *BB, + MachineBasicBlock::iterator IP, + Value *Src, const Type *DestTy, + unsigned DestReg) { + unsigned SrcReg = getReg(Src, BB, IP); + const Type *SrcTy = Src->getType(); + unsigned SrcClass = getClassB(SrcTy); + unsigned DestClass = getClassB(DestTy); + + // Implement casts to bool by using compare on the operand followed by set if + // not zero on the result. + if (DestTy == Type::BoolTy) { + switch (SrcClass) { + case cByte: + BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg); + break; + case cShort: + BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg); + break; + case cInt: + BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg); + break; + case cLong: { + unsigned TmpReg = makeAnotherReg(Type::IntTy); + BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1); + break; + } + case cFP: + BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg); + BuildMI(*BB, IP, X86::FNSTSW8r, 0); + BuildMI(*BB, IP, X86::SAHF, 1); + break; + } + + // If the zero flag is not set, then the value is true, set the byte to + // true. + BuildMI(*BB, IP, X86::SETNEr, 1, DestReg); + return; + } + + static const unsigned RegRegMove[] = { + X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr + }; + + // Implement casts between values of the same type class (as determined by + // getClass) by using a register-to-register move. + if (SrcClass == DestClass) { + if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) { + BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg); + } else if (SrcClass == cFP) { + if (SrcTy == Type::FloatTy) { // double -> float + assert(DestTy == Type::DoubleTy && "Unknown cFP member!"); + BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg); + } else { // float -> double + assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy && + "Unknown cFP member!"); + // Truncate from double to float by storing to memory as short, then + // reading it back. + unsigned FltAlign = TM.getTargetData().getFloatAlignment(); + int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign); + addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg); + addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx); + } + } else if (SrcClass == cLong) { + BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); + BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1); + } else { + assert(0 && "Cannot handle this type of cast instruction!"); + abort(); + } + return; + } + + // Handle cast of SMALLER int to LARGER int using a move with sign extension + // or zero extension, depending on whether the source type was signed. + if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) && + SrcClass < DestClass) { + bool isLong = DestClass == cLong; + if (isLong) DestClass = cInt; + + static const unsigned Opc[][4] = { + { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s + { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u + }; + + bool isUnsigned = SrcTy->isUnsigned(); + BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1, + DestReg).addReg(SrcReg); + + if (isLong) { // Handle upper 32 bits as appropriate... + if (isUnsigned) // Zero out top bits... + BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); + else // Sign extend bottom half... + BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31); + } + return; + } + + // Special case long -> int ... + if (SrcClass == cLong && DestClass == cInt) { + BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); + return; + } + + // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a + // move out of AX or AL. + if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt + && SrcClass > DestClass) { + static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX }; + BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg); + BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]); + return; + } + + // Handle casts from integer to floating point now... + if (DestClass == cFP) { + // Promote the integer to a type supported by FLD. We do this because there + // are no unsigned FLD instructions, so we must promote an unsigned value to + // a larger signed value, then use FLD on the larger value. + // + const Type *PromoteType = 0; + unsigned PromoteOpcode; + unsigned RealDestReg = DestReg; + switch (SrcTy->getPrimitiveID()) { + case Type::BoolTyID: + case Type::SByteTyID: + // We don't have the facilities for directly loading byte sized data from + // memory (even signed). Promote it to 16 bits. + PromoteType = Type::ShortTy; + PromoteOpcode = X86::MOVSX16rr8; + break; + case Type::UByteTyID: + PromoteType = Type::ShortTy; + PromoteOpcode = X86::MOVZX16rr8; + break; + case Type::UShortTyID: + PromoteType = Type::IntTy; + PromoteOpcode = X86::MOVZX32rr16; + break; + case Type::UIntTyID: { + // Make a 64 bit temporary... and zero out the top of it... + unsigned TmpReg = makeAnotherReg(Type::LongTy); + BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg); + BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0); + SrcTy = Type::LongTy; + SrcClass = cLong; + SrcReg = TmpReg; + break; + } + case Type::ULongTyID: + // Don't fild into the read destination. + DestReg = makeAnotherReg(Type::DoubleTy); + break; + default: // No promotion needed... + break; + } + + if (PromoteType) { + unsigned TmpReg = makeAnotherReg(PromoteType); + unsigned Opc = SrcTy->isSigned() ? X86::MOVSX16rr8 : X86::MOVZX16rr8; + BuildMI(*BB, IP, Opc, 1, TmpReg).addReg(SrcReg); + SrcTy = PromoteType; + SrcClass = getClass(PromoteType); + SrcReg = TmpReg; + } + + // Spill the integer to memory and reload it from there... + int FrameIdx = + F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); + + if (SrcClass == cLong) { + addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), + FrameIdx).addReg(SrcReg); + addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), + FrameIdx, 4).addReg(SrcReg+1); + } else { + static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr }; + addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5), + FrameIdx).addReg(SrcReg); + } + + static const unsigned Op2[] = + { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m }; + addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx); + + // We need special handling for unsigned 64-bit integer sources. If the + // input number has the "sign bit" set, then we loaded it incorrectly as a + // negative 64-bit number. In this case, add an offset value. + if (SrcTy == Type::ULongTy) { + // Emit a test instruction to see if the dynamic input value was signed. + BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1); + + // If the sign bit is set, get a pointer to an offset, otherwise get a + // pointer to a zero. + MachineConstantPool *CP = F->getConstantPool(); + unsigned Zero = makeAnotherReg(Type::IntTy); + Constant *Null = Constant::getNullValue(Type::UIntTy); + addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), + CP->getConstantPoolIndex(Null)); + unsigned Offset = makeAnotherReg(Type::IntTy); + Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000); + + addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset), + CP->getConstantPoolIndex(OffsetCst)); + unsigned Addr = makeAnotherReg(Type::IntTy); + BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset); + + // Load the constant for an add. FIXME: this could make an 'fadd' that + // reads directly from memory, but we don't support these yet. + unsigned ConstReg = makeAnotherReg(Type::DoubleTy); + addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr); + + BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg) + .addReg(ConstReg).addReg(DestReg); + } + + return; + } + + // Handle casts from floating point to integer now... + if (SrcClass == cFP) { + // Change the floating point control register to use "round towards zero" + // mode when truncating to an integer value. + // + int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); + addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx); + + // Load the old value of the high byte of the control word... + unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy); + addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW), + CWFrameIdx, 1); + + // Set the high part to be round to zero... + addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5), + CWFrameIdx, 1).addImm(12); + + // Reload the modified control word now... + addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); + + // Restore the memory image of control word to original value + addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5), + CWFrameIdx, 1).addReg(HighPartOfCW); + + // We don't have the facilities for directly storing byte sized data to + // memory. Promote it to 16 bits. We also must promote unsigned values to + // larger classes because we only have signed FP stores. + unsigned StoreClass = DestClass; + const Type *StoreTy = DestTy; + if (StoreClass == cByte || DestTy->isUnsigned()) + switch (StoreClass) { + case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break; + case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break; + case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break; + // The following treatment of cLong may not be perfectly right, + // but it survives chains of casts of the form + // double->ulong->double. + case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break; + default: assert(0 && "Unknown store class!"); + } + + // Spill the integer to memory and reload it from there... + int FrameIdx = + F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData()); + + static const unsigned Op1[] = + { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m }; + addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5), + FrameIdx).addReg(SrcReg); + + if (DestClass == cLong) { + addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx); + addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1), + FrameIdx, 4); + } else { + static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm }; + addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx); + } + + // Reload the original control word now... + addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); + return; + } + + // Anything we haven't handled already, we can't (yet) handle at all. + assert(0 && "Unhandled cast instruction!"); + abort(); +} + +/// visitVANextInst - Implement the va_next instruction... +/// +void ISel::visitVANextInst(VANextInst &I) { + unsigned VAList = getReg(I.getOperand(0)); + unsigned DestReg = getReg(I); + + unsigned Size; + switch (I.getArgType()->getPrimitiveID()) { + default: + std::cerr << I; + assert(0 && "Error: bad type for va_next instruction!"); + return; + case Type::PointerTyID: + case Type::UIntTyID: + case Type::IntTyID: + Size = 4; + break; + case Type::ULongTyID: + case Type::LongTyID: + case Type::DoubleTyID: + Size = 8; + break; + } + + // Increment the VAList pointer... + BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size); +} + +void ISel::visitVAArgInst(VAArgInst &I) { + unsigned VAList = getReg(I.getOperand(0)); + unsigned DestReg = getReg(I); + + switch (I.getType()->getPrimitiveID()) { + default: + std::cerr << I; + assert(0 && "Error: bad type for va_next instruction!"); + return; + case Type::PointerTyID: + case Type::UIntTyID: + case Type::IntTyID: + addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); + break; + case Type::ULongTyID: + case Type::LongTyID: + addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); + addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4); + break; + case Type::DoubleTyID: + addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList); + break; + } +} + +/// visitGetElementPtrInst - instruction-select GEP instructions +/// +void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { + // If this GEP instruction will be folded into all of its users, we don't need + // to explicitly calculate it! + unsigned A, B, C, D; + if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) { + // Check all of the users of the instruction to see if they are loads and + // stores. + bool AllWillFold = true; + for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) + if (cast(*UI)->getOpcode() != Instruction::Load) + if (cast(*UI)->getOpcode() != Instruction::Store || + cast(*UI)->getOperand(0) == &I) { + AllWillFold = false; + break; + } + + // If the instruction is foldable, and will be folded into all users, don't + // emit it! + if (AllWillFold) return; + } + + unsigned outputReg = getReg(I); + emitGEPOperation(BB, BB->end(), I.getOperand(0), + I.op_begin()+1, I.op_end(), outputReg); +} + +/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and +/// GEPTypes (the derived types being stepped through at each level). On return +/// from this function, if some indexes of the instruction are representable as +/// an X86 lea instruction, the machine operands are put into the Ops +/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes +/// lists. Otherwise, GEPOps.size() is returned. If this returns a an +/// addressing mode that only partially consumes the input, the BaseReg input of +/// the addressing mode must be left free. +/// +/// Note that there is one fewer entry in GEPTypes than there is in GEPOps. +/// +void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, + std::vector &GEPOps, + std::vector &GEPTypes, unsigned &BaseReg, + unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { + const TargetData &TD = TM.getTargetData(); + + // Clear out the state we are working with... + BaseReg = 0; // No base register + Scale = 1; // Unit scale + IndexReg = 0; // No index register + Disp = 0; // No displacement + + // While there are GEP indexes that can be folded into the current address, + // keep processing them. + while (!GEPTypes.empty()) { + if (const StructType *StTy = dyn_cast(GEPTypes.back())) { + // It's a struct access. CUI is the index into the structure, + // which names the field. This index must have unsigned type. + const ConstantUInt *CUI = cast(GEPOps.back()); + + // Use the TargetData structure to pick out what the layout of the + // structure is in memory. Since the structure index must be constant, we + // can get its value and use it to find the right byte offset from the + // StructLayout class's list of structure member offsets. + Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()]; + GEPOps.pop_back(); // Consume a GEP operand + GEPTypes.pop_back(); + } else { + // It's an array or pointer access: [ArraySize x ElementType]. + const SequentialType *SqTy = cast(GEPTypes.back()); + Value *idx = GEPOps.back(); + + // idx is the index into the array. Unlike with structure + // indices, we may not know its actual value at code-generation + // time. + assert(idx->getType() == Type::LongTy && "Bad GEP array index!"); + + // If idx is a constant, fold it into the offset. + unsigned TypeSize = TD.getTypeSize(SqTy->getElementType()); + if (ConstantSInt *CSI = dyn_cast(idx)) { + Disp += TypeSize*CSI->getValue(); + } else { + // If the index reg is already taken, we can't handle this index. + if (IndexReg) return; + + // If this is a size that we can handle, then add the index as + switch (TypeSize) { + case 1: case 2: case 4: case 8: + // These are all acceptable scales on X86. + Scale = TypeSize; + break; + default: + // Otherwise, we can't handle this scale + return; + } + + if (CastInst *CI = dyn_cast(idx)) + if (CI->getOperand(0)->getType() == Type::IntTy || + CI->getOperand(0)->getType() == Type::UIntTy) + idx = CI->getOperand(0); + + IndexReg = MBB ? getReg(idx, MBB, IP) : 1; + } + + GEPOps.pop_back(); // Consume a GEP operand + GEPTypes.pop_back(); + } + } + + // GEPTypes is empty, which means we have a single operand left. See if we + // can set it as the base register. + // + // FIXME: When addressing modes are more powerful/correct, we could load + // global addresses directly as 32-bit immediates. + assert(BaseReg == 0); + BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1; + GEPOps.pop_back(); // Consume the last GEP operand +} + + +/// isGEPFoldable - Return true if the specified GEP can be completely +/// folded into the addressing mode of a load/store or lea instruction. +bool ISel::isGEPFoldable(MachineBasicBlock *MBB, + Value *Src, User::op_iterator IdxBegin, + User::op_iterator IdxEnd, unsigned &BaseReg, + unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { + if (ConstantPointerRef *CPR = dyn_cast(Src)) + Src = CPR->getValue(); + + std::vector GEPOps; + GEPOps.resize(IdxEnd-IdxBegin+1); + GEPOps[0] = Src; + std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); + + std::vector GEPTypes; + GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), + gep_type_end(Src->getType(), IdxBegin, IdxEnd)); + + MachineBasicBlock::iterator IP; + if (MBB) IP = MBB->end(); + getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); + + // We can fold it away iff the getGEPIndex call eliminated all operands. + return GEPOps.empty(); +} + +void ISel::emitGEPOperation(MachineBasicBlock *MBB, + MachineBasicBlock::iterator IP, + Value *Src, User::op_iterator IdxBegin, + User::op_iterator IdxEnd, unsigned TargetReg) { + const TargetData &TD = TM.getTargetData(); + if (ConstantPointerRef *CPR = dyn_cast(Src)) + Src = CPR->getValue(); + + std::vector GEPOps; + GEPOps.resize(IdxEnd-IdxBegin+1); + GEPOps[0] = Src; + std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); + + std::vector GEPTypes; + GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), + gep_type_end(Src->getType(), IdxBegin, IdxEnd)); + + // Keep emitting instructions until we consume the entire GEP instruction. + while (!GEPOps.empty()) { + unsigned OldSize = GEPOps.size(); + unsigned BaseReg, Scale, IndexReg, Disp; + getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); + + if (GEPOps.size() != OldSize) { + // getGEPIndex consumed some of the input. Build an LEA instruction here. + unsigned NextTarget = 0; + if (!GEPOps.empty()) { + assert(BaseReg == 0 && + "getGEPIndex should have left the base register open for chaining!"); + NextTarget = BaseReg = makeAnotherReg(Type::UIntTy); + } + + if (IndexReg == 0 && Disp == 0) + BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); + else + addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), + BaseReg, Scale, IndexReg, Disp); + --IP; + TargetReg = NextTarget; + } else if (GEPTypes.empty()) { + // The getGEPIndex operation didn't want to build an LEA. Check to see if + // all operands are consumed but the base pointer. If so, just load it + // into the register. + if (GlobalValue *GV = dyn_cast(GEPOps[0])) { + BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV); + } else { + unsigned BaseReg = getReg(GEPOps[0], MBB, IP); + BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); + } + break; // we are now done + + } else { + // It's an array or pointer access: [ArraySize x ElementType]. + const SequentialType *SqTy = cast(GEPTypes.back()); + Value *idx = GEPOps.back(); + GEPOps.pop_back(); // Consume a GEP operand + GEPTypes.pop_back(); + + // idx is the index into the array. Unlike with structure + // indices, we may not know its actual value at code-generation + // time. + assert(idx->getType() == Type::LongTy && "Bad GEP array index!"); + + // Most GEP instructions use a [cast (int/uint) to LongTy] as their + // operand on X86. Handle this case directly now... + if (CastInst *CI = dyn_cast(idx)) + if (CI->getOperand(0)->getType() == Type::IntTy || + CI->getOperand(0)->getType() == Type::UIntTy) + idx = CI->getOperand(0); + + // We want to add BaseReg to(idxReg * sizeof ElementType). First, we + // must find the size of the pointed-to type (Not coincidentally, the next + // type is the type of the elements in the array). + const Type *ElTy = SqTy->getElementType(); + unsigned elementSize = TD.getTypeSize(ElTy); + + // If idxReg is a constant, we don't need to perform the multiply! + if (ConstantSInt *CSI = dyn_cast(idx)) { + if (!CSI->isNullValue()) { + unsigned Offset = elementSize*CSI->getValue(); + unsigned Reg = makeAnotherReg(Type::UIntTy); + BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg) + .addReg(Reg).addImm(Offset); + --IP; // Insert the next instruction before this one. + TargetReg = Reg; // Codegen the rest of the GEP into this + } + } else if (elementSize == 1) { + // If the element size is 1, we don't have to multiply, just add + unsigned idxReg = getReg(idx, MBB, IP); + unsigned Reg = makeAnotherReg(Type::UIntTy); + BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg); + --IP; // Insert the next instruction before this one. + TargetReg = Reg; // Codegen the rest of the GEP into this + } else { + unsigned idxReg = getReg(idx, MBB, IP); + unsigned OffsetReg = makeAnotherReg(Type::UIntTy); + + // Make sure we can back the iterator up to point to the first + // instruction emitted. + MachineBasicBlock::iterator BeforeIt = IP; + if (IP == MBB->begin()) + BeforeIt = MBB->end(); + else + --BeforeIt; + doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize); + + // Emit an ADD to add OffsetReg to the basePtr. + unsigned Reg = makeAnotherReg(Type::UIntTy); + BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg) + .addReg(Reg).addReg(OffsetReg); + + // Step to the first instruction of the multiply. + if (BeforeIt == MBB->end()) + IP = MBB->begin(); + else + IP = ++BeforeIt; + + TargetReg = Reg; // Codegen the rest of the GEP into this + } + } + } +} + + +/// visitAllocaInst - If this is a fixed size alloca, allocate space from the +/// frame manager, otherwise do it the hard way. +/// +void ISel::visitAllocaInst(AllocaInst &I) { + // Find the data size of the alloca inst's getAllocatedType. + const Type *Ty = I.getAllocatedType(); + unsigned TySize = TM.getTargetData().getTypeSize(Ty); + + // If this is a fixed size alloca in the entry block for the function, + // statically stack allocate the space. + // + if (ConstantUInt *CUI = dyn_cast(I.getArraySize())) { + if (I.getParent() == I.getParent()->getParent()->begin()) { + TySize *= CUI->getValue(); // Get total allocated size... + unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); + + // Create a new stack object using the frame manager... + int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); + addFrameReference(BuildMI(BB, X86::LEA32r, 5, getReg(I)), FrameIdx); + return; + } + } + + // Create a register to hold the temporary result of multiplying the type size + // constant by the variable amount. + unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); + unsigned SrcReg1 = getReg(I.getArraySize()); + + // TotalSizeReg = mul , + MachineBasicBlock::iterator MBBI = BB->end(); + doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); + + // AddedSize = add , 15 + unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); + BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15); + + // AlignedSize = and , ~15 + unsigned AlignedSize = makeAnotherReg(Type::UIntTy); + BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15); + + // Subtract size from stack pointer, thereby allocating some space. + BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize); + + // Put a pointer to the space into the result register, by copying + // the stack pointer. + BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP); + + // Inform the Frame Information that we have just allocated a variable-sized + // object. + F->getFrameInfo()->CreateVariableSizedObject(); +} + +/// visitMallocInst - Malloc instructions are code generated into direct calls +/// to the library malloc. +/// +void ISel::visitMallocInst(MallocInst &I) { + unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); + unsigned Arg; + + if (ConstantUInt *C = dyn_cast(I.getOperand(0))) { + Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); + } else { + Arg = makeAnotherReg(Type::UIntTy); + unsigned Op0Reg = getReg(I.getOperand(0)); + MachineBasicBlock::iterator MBBI = BB->end(); + doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize); + } + + std::vector Args; + Args.push_back(ValueRecord(Arg, Type::UIntTy)); + MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, + 1).addExternalSymbol("malloc", true); + doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args); +} + + +/// visitFreeInst - Free instructions are code gen'd to call the free libc +/// function. +/// +void ISel::visitFreeInst(FreeInst &I) { + std::vector Args; + Args.push_back(ValueRecord(I.getOperand(0))); + MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, + 1).addExternalSymbol("free", true); + doCall(ValueRecord(0, Type::VoidTy), TheCall, Args); +} + +/// createX86SimpleInstructionSelector - This pass converts an LLVM function +/// into a machine code representation is a very simple peep-hole fashion. The +/// generated code sucks but the implementation is nice and simple. +/// +FunctionPass *llvm::createX86ReallySimpleInstructionSelector(TargetMachine &TM) { + return new ISel(TM); +} + +#include "X86GenSimpInstrSelector.inc" -- 2.34.1