From 8fad98f5ce9687a1d535a4dfc0da98f44c45f1a6 Mon Sep 17 00:00:00 2001 From: rtrimana Date: Tue, 2 Aug 2016 17:04:43 -0700 Subject: [PATCH] Dividing data entry formation into smaller functions, fixing loop for PutDataEntries function --- doc/iotcloud.tex | 112 ++++++++++++++++++++++++++--------------------- 1 file changed, 61 insertions(+), 51 deletions(-) diff --git a/doc/iotcloud.tex b/doc/iotcloud.tex index bf11fb0..5276310 100644 --- a/doc/iotcloud.tex +++ b/doc/iotcloud.tex @@ -559,20 +559,12 @@ $\tuple{ck,\tuple{k, v}} \in KV_s \wedge \end{algorithmic} \begin{algorithmic}[1] -\Function{HandleCollision}{$\tuple{stat_s,SL_s}$} -\State $stat_s \gets GetStatus(\tuple{stat_s,SL_s})$ -\State $SL_s \gets GetSL(\tuple{stat_s,SL_s})$ -\If{$\neg stat_s$}\Comment{Handle collision} - \State $\tuple{s_{col},sv_{col}} \gets GetColSeqN(SL_s,s_s)$ - \State $s_{col} \gets SeqN(\tuple{s_{col},sv_{col}})$ - \State $sv_{col} \gets SlotVal(\tuple{s_{col},sv_{col}})$ - \State $Dat_{col} \gets Decrypt(SK,sv_{col})$ - \State $id_{col} \gets GetMacId(Dat_{col})$ - \State $\tuple{s_{col},id_{col}} \gets CreateCR(s_{col},id_{col})$ - \State $cr_s \gets \tuple{s_{col},id_{col}}$ -\Else - \State $cr_s \gets \emptyset$ -\EndIf +\Function{HandleCollision}{$SL_s$} +\State $\tuple{s_{col},sv_{col}} \gets GetColSeqN(SL_s,s_s)$ +\State $Dat_{col} \gets Decrypt(SK,sv_{col})$ +\State $id_{col} \gets GetMacId(Dat_{col})$ +\State $\tuple{s_{col},id_{col}} \gets CreateCR(s_{col},id_{col})$ +\State $cr_s \gets \tuple{s_{col},id_{col}}$ \State $\Call{ProcessSL}{SL_s}$ \State \Return{$cr_s$} \EndFunction @@ -594,45 +586,47 @@ $\tuple{ck,\tuple{k, v}} \in KV_s \wedge \end{algorithmic} \note{Shouldn't this function do something pretty sophisticated about seeing what data we actually need to keep from the last slot and not just insert the entire thing?} -\note{Probably best to just not call this function if $need_s$ is false and not pass in such parameters. It makes it harder to read.} +\begin{algorithmic}[1] +\Function{AddSlotSeq}{$DE_s,sl_s,cp_s$}\Comment{Insert a $ss$} +\State $DE_{ret} \gets \emptyset$ +\State $id_s \gets GetID(sl_s)$ +\State $s_{s_{last}} \gets GetLastS(sl_s)$ +\State $ss_s \gets CreateSS(id_s,s_{s_{last}})$ +\State $DE_{ret} \gets DE_s \cup ss_s$ +\State $cp_s \gets cp_s - 1$ +\State \Return{$\tuple{DE_{ret},cp_s}$} +\EndFunction +\end{algorithmic} +\begin{algorithmic}[1] +\Function{AddQueSta}{$DE_s,max'_s,cp_s$}\Comment{Insert a $qs$} +\State $DE_{ret} \gets \emptyset$ +\State $qs_s \gets max'_s$ +\State $DE_{ret} \gets DE_s \cup qs_s$ +\State $cp_s \gets cp_s - 1$ +\State \Return{$\tuple{DE_{ret},cp_s}$} +\EndFunction +\end{algorithmic} \begin{algorithmic}[1] -\Function{GetDEPairs}{$KV_s,max'_s,need_s,sl_s$} +\Function{AddCollRes}{$DE_s,cr_p,cp_s$}\Comment{Insert a $cr$} \State $DE_{ret} \gets \emptyset$ -\State $cp_s \gets cp$ -\If{$cr_p \neq \emptyset$}\Comment{Check and insert a $cr$} - \State $DE_{ret} \gets DE_{ret} \cup cr_p$ - \State $cp_s \gets cp_s - 1$ -\EndIf -%\If{$cr_{p_{last}} \neq \emptyset$}\Comment{Check and insert a $cr$} -% \State $DE_{ret} \gets DE_{ret} \cup cr_{p_{last}}$ -% \State $cp_s \gets cp_s - 1$ -%\EndIf -\If{$max'_s \neq \emptyset$}\Comment{Check and insert a $qs$} - \State $qs_s \gets max'_s$ - \State $DE_{ret} \gets DE_{ret} \cup qs_s$ - \State $cp_s \gets cp_s - 1$ -\EndIf -%\If{$need_s$}\Comment{Check and insert a $ss$} -% \State $id_s \gets GetID(sl_s)$ -% \State $s_{s_{last}} \gets GetLastS(sl_s)$ -% \State $ss_s \gets CreateSS(id_s,s_{s_{last}})$ -% \State $DE_{ret} \gets DE_{ret} \cup ss_s$ -% \State $cp_s \gets cp_s - 1$ -%\EndIf -\If{$|KV_s| \leq cp$}\Comment{$KV$ set can extend multiple slots} - \State $DE_{ret} \gets DE_{ret} \cup +\State $DE_{ret} \gets DE_s \cup cr_p$ +\State $cp_s \gets cp_s - 1$ +\State \Return{$\tuple{DE_{ret},cp_s}$} +\EndFunction +\end{algorithmic} + +\begin{algorithmic}[1] +\Function{GetKVPairs}{$DE_s,KV_s,cp_s$} +\State $DE_{ret} \gets \emptyset$ +\If{$|KV_s| \leq cp$}\Comment{$KV$ set can span multiple slots} + \State $DE_{ret} \gets DE_s \cup \{\tuple{k_s,v_s} \mid \tuple{ck_s,\tuple{k_s,v_s}} \in KV_s\}$ \Else - \State $DE_{ret} \gets DE_{ret} \cup + \State $DE_{ret} \gets DE_s \cup \{\tuple{k_s,v_s} \mid \tuple{ck_s,\tuple{k_s,v_s}} \in KV_s, ck_g \leq ck_s < ck_g + cp_s\}$ - \If{$|DE_{ret}| = cp$} - \State $ck_g \gets ck_g + cp_s$\Comment{Middle of KV set} - \Else - \State $ck_g \gets 0$\Comment{End of KV set} - \EndIf \EndIf \State \Return{$DE_{ret}$} \EndFunction @@ -642,10 +636,18 @@ $\tuple{ck,\tuple{k, v}} \in KV_s \wedge \Procedure{PutDataEntries}{$th_p,m'_p$} \State $success \gets false$ \While{$\neg success$} + \State $DE_p \gets \emptyset$ \State $s_p \gets MaxLastSeqN(MS)$ + \State $cp_p \gets cp$ \State $max'_p \gets \Call{CheckResize}{MS,th_p,max'_g,m'_p}$ + \If{$max'_p \neq \emptyset$} + \State $\tuple{DE_p,cp_p} \gets \Call{AddQueueState}{DE_p,max'_p,cp_p}$\Comment{Add qs} + \EndIf \State $need_p \gets \Call{CheckNeedSS}{MS,max'_g}$ - \State $DE_p \gets \Call{GetDEPairs}{KV,max'_p,need_p,sl_{last}}$ + \If{$need_p$} + \State $\tuple{DE_p,cp_p} \gets \Call{AddSlotSequence}{DE_p,sl_{last},cp_p}$\Comment{Add ss} + \EndIf + \State $DE_p \gets \Call{GetKVPairs}{DE_p,KV,cp_p}$\Comment{Add kv pairs} \State $hmac_{c_p} \gets Hmac(DE_p,SK)$ \State $Dat_p \gets CreateDat(s_p,id_{self},hmac_{p_p},DE_p,hmac_{c_p})$ \State $hmac_{p_p} \gets hmac_{c_p}$ @@ -653,13 +655,18 @@ $\tuple{ck,\tuple{k, v}} \in KV_s \wedge \State $\tuple{stat_p,SL_p} \gets \Call{PutSlot}{s_p,sv_p,max'_p}$ \State $success \gets stat_p$ \If{$\neg success$} - \State $cr_p \gets \Call{HandleCollision}{\tuple{stat_p,SL_p}}$ + \State $cr_p \gets \Call{HandleCollision}{SL_p}$ \EndIf %\If{$need_p$} % \State $\tuple{cr_{p_{last}},hmac_{p_p}} \gets % \Call{ReinsertLastSlot}{MS,SK,sl_{last},max'_p,hmac_{p_p}}$ %\EndIf \EndWhile +\If{$|DE_p| = cp$}\Comment{Check and advance $ck_g$} + \State $ck_g \gets ck_g + cp_s$\Comment{Middle of KV set} +\Else + \State $ck_g \gets 0$\Comment{End of KV set} +\EndIf \State $MS \gets \Call{UpdateLastSeqN}{id_{self},s_p,MS}$ \EndProcedure \end{algorithmic} @@ -745,11 +752,14 @@ There are two cases: Suppose that there is a transitive closure set $\mathscr{S}$ of clients, at index $n$. Then there is some total message sequence $T$ of length $n$ such that every client $C$ in $\mathscr{S}$ sees a partial sequence $P_C$ consistent with $T$. \end{theorem} \begin{proof} -The definition of consistency of $P_C$ with $T$ is that every message $p \in P_C$ with index $i(p) \le n$ is equal to the message in that slot in $T$. Let $C_1$ be some client in the transitive closure set, with partial message sequence $P_{C_1}$, and let $u$ be some message with $i(u) > i$ that $C_1$ shares with another client. Then let $T$ be the portion of the path of $u$ ending at index $i$ and $t$ be the message at that index. Clearly, by Lemma 1, $P_{C_1}$ is consistent with $T$. We will show that, for every other client $D$ with partial sequence $P_D$, $P_D$ has some message whose path includes $t$. Because $D$ is in the transitive closure, there is a sequence of edges from $C_1$ to $D$. Call this $\mathscr{C} = (C_1, C_2, ..., D)$. I will prove by induction that $D$ has a message whose path includes $t$. +The definition of consistency of $P_C$ with $T$ is that every message $p \in P_C$ with index $i(p) \le n$ is equal to the message in that slot in $T$. Let $C_1$ be some client in the transitive closure set, with partial message sequence $P_{C_1}$, and let $u$ be some message with $i(u) > i$ that $C_1$ shares with another client. Then let $T$ be the portion of the path of $u$ ending at index $i$ and $t$ be the message at that index. Clearly, by Lemma 1, $P_{C_1}$ is consistent with $T$. We will show that, for every other client $D$ with partial sequence $P_D$, $P_D$ has some message whose path includes $t$. Because $D$ is in the transitive closure, there is a sequence of edges from $C_1$ to $D$. Call this $\mathscr{C} = (C_1, C_2, ..., D)$. -For the base case, $P_{C_1}$ includes $u$, whose path includes $t$. For the inductive step, suppose $P_{C_k}$ has an message $w$ with a path that includes $t$, and shares message $x$ with $P_{C_{k+1}}$ such that $i(x) > i$. If $i(w) = i(x)$, then $w = x$. If $i(w) < i(x)$, then, by Lemma 1, $w$ is in the path of $x$. If $i(w) > i(x)$, $x$ is in the path of $w$; note again that its index is greater than $i$. In any case, $t$ is in the path of $u_k+1$. - -Let $w$ the message of $D$ whose path includes $t$. By Lemma 1, every message in $P_D$ with index smaller than $i(w)$ is in the path of $w$. Since $t$ is in the path of $w$, every message in $P_D$ with smaller index than $i(t)$ is in $T$. Therefore, $P_D$ is consistent with $T$. +We subsequently prove by induction that $D$ has a message whose path includes $t$. +\begin{itemize} +\item For the base case, $P_{C_1}$ includes $u$, whose path includes $t$. +\item For the inductive step, suppose $P_{C_k}$ has a message $w$ with a path that includes $t$, and shares message $x$ with $P_{C_{k+1}}$ such that $i(x) > i$. If $i(w) = i(x)$, then $w = x$. If $i(w) < i(x)$, then, by Lemma 1, $w$ is in the path of $x$. If $i(w) > i(x)$, $x$ is in the path of $w$; note again that its index is greater than $i$. In any case, $t$ is in the path of $u_k+1$. +\item Let $w$ the message of $D$ whose path includes $t$. By Lemma 1, every message in $P_D$ with index smaller than $i(w)$ is in the path of $w$. Since $t$ is in the path of $w$, every message in $P_D$ with smaller index than $i(t)$ is in $T$. Therefore, $P_D$ is consistent with $T$. +\end{itemize} \end{proof} \subsection{Future Work} -- 2.34.1