From 9428bbf2b48b72495c21203aefb7c228fb96e28f Mon Sep 17 00:00:00 2001 From: jjenista Date: Sat, 31 Jul 2010 23:10:46 +0000 Subject: [PATCH] a C version of crypt to compare our compiler to --- Robust/src/Benchmarks/oooJava/C-crypt/crypt.c | 478 ++++++++++++++++++ .../src/Benchmarks/oooJava/C-crypt/makefile | 8 + 2 files changed, 486 insertions(+) create mode 100644 Robust/src/Benchmarks/oooJava/C-crypt/crypt.c create mode 100644 Robust/src/Benchmarks/oooJava/C-crypt/makefile diff --git a/Robust/src/Benchmarks/oooJava/C-crypt/crypt.c b/Robust/src/Benchmarks/oooJava/C-crypt/crypt.c new file mode 100644 index 00000000..5bdfed2d --- /dev/null +++ b/Robust/src/Benchmarks/oooJava/C-crypt/crypt.c @@ -0,0 +1,478 @@ +#include +#include +#include + + +long currentTimeMillis() { + struct timeval* t; + gettimeofday( t, NULL ); + double micros = (double)t->tv_usec; + double millis = micros / 1000.0; + return (long) millis; +} + + +void buildTestData(); + +void calcEncryptKey(); +void calcDecryptKey(); + +int mul( int a, int b ); +int inv( int x ); + +void kernel(); + +void cipher_idea( char* text1, char* text2, int* key ); + + +int size; +int* datasizes; +int array_rows; + +char* plain1; // Buffer for plaintext data. + +short* userkey; // Key for encryption/decryption. +int* Z; // Encryption subkey (userkey derived). +int* DK; // Decryption subkey (userkey derived). + +int problem_size = 2; + + +void main( int argc, char** argv ) { + + long startT; + long endT; + + datasizes = malloc( 4*sizeof(int) ); + datasizes[0] = 3000000; + datasizes[1] = 20000000; + datasizes[2] = 50000000; + datasizes[3] = 1000000000; + + if( argc > 1 ) { + problem_size = atoi( argv[1] ); + } + + startT=currentTimeMillis(); + + array_rows = datasizes[size]; + buildTestData(); + + endT=currentTimeMillis(); + + kernel(); + + printf( "init=%d\n", endT-startT ); +} + + +// buildTestData +// Builds the data used for the test -- each time the test is run. +void buildTestData() { + + int i; + + // Create three byte arrays that will be used (and reused) for + // encryption/decryption operations. + + plain1 = malloc( array_rows*sizeof( char ) ); + + srand( 136506717 ); + + // Allocate three arrays to hold keys: userkey is the 128-bit key. + // Z is the set of 16-bit encryption subkeys derived from userkey, + // while DK is the set of 16-bit decryption subkeys also derived + // from userkey. NOTE: The 16-bit values are stored here in + // 32-bit int arrays so that the values may be used in calculations + // as if they are unsigned. Each 64-bit block of plaintext goes + // through eight processing rounds involving six of the subkeys + // then a final output transform with four of the keys; (8 * 6) + // + 4 = 52 subkeys. + + userkey = malloc( 8*sizeof( short ) ); // User key has 8 16-bit shorts. + Z = malloc( 52*sizeof( int ) ); // Encryption subkey (user key derived). + DK = malloc( 52*sizeof( int ) ); // Decryption subkey (user key derived). + + // Generate user key randomly; eight 16-bit values in an array. + + for( i = 0; i < 8; i++ ) { + // Again, the random number function returns int. Converting + // to a short type preserves the bit pattern in the lower 16 + // bits of the int and discards the rest. + + userkey[i] = (short) rand(); + } + + // Compute encryption and decryption subkeys. + + calcEncryptKey(); + calcDecryptKey(); + + // Fill plain1 with "text." + for( i = 0; i < array_rows; i++ ) { + plain1[i] = (char) i; + + // Converting to a byte + // type preserves the bit pattern in the lower 8 bits of the + // int and discards the rest. + } +} + + + +void calcEncryptKey() { + // Builds the 52 16-bit encryption subkeys Z[] from the user key and + // stores in 32-bit int array. The routing corrects an error in the + // source code in the Schnier book. Basically, the sense of the 7- + // and 9-bit shifts are reversed. It still works reversed, but would + // encrypted code would not decrypt with someone else's IDEA code. + // + int i; + int j; // Utility variables. + int flag1; + int flag2; + + for( i = 0; i < 52; i++ ) { + // Zero out the 52-int Z array. + Z[i] = 0; + } + + for( i = 0; i < 8; i++ ) { // First 8 subkeys are userkey itself. + Z[i] = userkey[i] & 0xffff; // Convert "unsigned" + // short to int. + } + + // Each set of 8 subkeys thereafter is derived from left rotating + // the whole 128-bit key 25 bits to left (once between each set of + // eight keys and then before the last four). Instead of actually + // rotating the whole key, this routine just grabs the 16 bits + // that are 25 bits to the right of the corresponding subkey + // eight positions below the current subkey. That 16-bit extent + // straddles two array members, so bits are shifted left in one + // member and right (with zero fill) in the other. For the last + // two subkeys in any group of eight, those 16 bits start to + // wrap around to the first two members of the previous eight. + + for( i = 8; i < 52; i++ ) { + flag1 = 0; + j = i % 8; + if (j < 6) { + Z[i] = ((Z[i - 7] >> 9) | (Z[i - 6] << 7)) // Shift and combine. + & 0xFFFF; // Just 16 bits. + // continue; // Next iteration. + flag1 = 1; + } + + if (flag1 == 0) { + flag2 = 0; + + if (j == 6) { // Wrap to beginning for second chunk. + Z[i] = ((Z[i - 7] >> 9) | (Z[i - 14] << 7)) & 0xFFFF; + // continue; + flag2 = 1; + } + + if (flag2 == 0) { + // j == 7 so wrap to beginning for both chunks. + Z[i] = ((Z[i - 15] >> 9) | (Z[i - 14] << 7)) & 0xFFFF; + } + } + } +} + + +void calcDecryptKey() { + // Builds the 52 16-bit encryption subkeys DK[] from the encryption- + // subkeys Z[]. DK[] is a 32-bit int array holding 16-bit values as + // unsigned. + // + + int i, j, k; // Index counters. + int t1, t2, t3; // Temps to hold decrypt subkeys. + + t1 = inv(Z[0]); // Multiplicative inverse (mod x10001). + t2 = -Z[1] & 0xffff; // Additive inverse, 2nd encrypt subkey. + t3 = -Z[2] & 0xffff; // Additive inverse, 3rd encrypt subkey. + + DK[51] = inv(Z[3]); // Multiplicative inverse (mod x10001). + DK[50] = t3; + DK[49] = t2; + DK[48] = t1; + + j = 47; // Indices into temp and encrypt arrays. + k = 4; + for( i = 0; i < 7; i++ ) { + t1 = Z[k++]; + DK[j--] = Z[k++]; + DK[j--] = t1; + t1 = inv(Z[k++]); + t2 = -Z[k++] & 0xffff; + t3 = -Z[k++] & 0xffff; + DK[j--] = inv(Z[k++]); + DK[j--] = t2; + DK[j--] = t3; + DK[j--] = t1; + } + + t1 = Z[k++]; + DK[j--] = Z[k++]; + DK[j--] = t1; + t1 = inv(Z[k++]); + t2 = -Z[k++] & 0xffff; + t3 = -Z[k++] & 0xffff; + DK[j--] = inv(Z[k++]); + DK[j--] = t3; + DK[j--] = t2; + DK[j--] = t1; +} + + + +int mul( int a, int b ) { + // Performs multiplication, modulo (2**16)+1. This code is structured + // on the assumption that untaken branches are cheaper than taken + // branches, and that the compiler doesn't schedule branches. + // Java: Must work with 32-bit int and one 64-bit long to keep + // 16-bit values and their products "unsigned." The routine assumes + // that both a and b could fit in 16 bits even though they come in + // as 32-bit ints. Lots of "& 0xFFFF" masks here to keep things 16-bit. + // Also, because the routine stores mod (2**16)+1 results in a 2**16 + // space, the result is truncated to zero whenever the result would + // zero, be 2**16. And if one of the multiplicands is 0, the result + // is not zero, but (2**16) + 1 minus the other multiplicand (sort + // of an additive inverse mod 0x10001). + + // NOTE: The java conversion of this routine works correctly, but + // is half the speed of using Java's modulus division function (%) + // on the multiplication with a 16-bit masking of the result--running + // in the Symantec Caje IDE. So it's not called for now; the test + // uses Java % instead. + // + + int ret; + long p; // Large enough to catch 16-bit multiply + // without hitting sign bit. + if (a != 0) { + if (b != 0) { + p = (long) a * b; + b = (int) p & 0xFFFF; // Lower 16 bits. + a = (int) p >> 16; // Upper 16 bits. + if (b < a) + return (b - a + 1) & 0xFFFF; + else + return (b - a) & 0xFFFF; + } else + return ((1 - a) & 0xFFFF); // If b = 0, then same as + // 0x10001 - a. + } else + // If a = 0, then return + return ((1 - b) & 0xFFFF); // same as 0x10001 - b. +} + + + + +int inv( int x ) { + // Compute multiplicative inverse of x, modulo (2**16)+1 using + // extended Euclid's GCD (greatest common divisor) algorithm. + // It is unrolled twice to avoid swapping the meaning of + // the registers. And some subtracts are changed to adds. + // Java: Though it uses signed 32-bit ints, the interpretation + // of the bits within is strictly unsigned 16-bit. + // + + int t0, t1; + int q, y; + + if (x <= 1) // Assumes positive x. + return (x); // 0 and 1 are self-inverse. + + t1 = 0x10001 / x; // (2**16+1)/x; x is >= 2, so fits 16 bits. + y = 0x10001 % x; + if (y == 1) + return ((1 - t1) & 0xFFFF); + + t0 = 1; + do { + q = x / y; + x = x % y; + t0 += q * t1; + if (x == 1) + return (t0); + q = y / x; + y = y % x; + t1 += q * t0; + } while (y != 1); + + return ((1 - t1) & 0xFFFF); +} + + + +void kernel() { + int i; + int error; + + char* crypt1 = malloc( array_rows*sizeof( char ) ); + char* plain2 = malloc( array_rows*sizeof( char ) ); + + cipher_idea(plain1, crypt1, Z); // Encrypt plain1. + cipher_idea(crypt1, plain2, DK); // Decrypt. + + error = 0; + for( i = 0; i < array_rows; i++ ){ + error = (plain1 [i] != plain2 [i]); + if (error){ + printf("Validation failed\n"); + printf("Original Byte %d = %c\n", i, plain1[i]); + printf("Encrypted Byte %d = %c\n", i, crypt1[i]); + printf("Decrypted Byte %d = %c\n", i, plain2[i]); + return; + } + } + printf("Validation Success\n"); +} + + + + +void cipher_idea( char* text1, char* text2, int* key ) { + // IDEA encryption/decryption algorithm. It processes plaintext in + // 64-bit blocks, one at a time, breaking the block into four 16-bit + // unsigned subblocks. It goes through eight rounds of processing + // using 6 new subkeys each time, plus four for last step. The source + // text is in array text1, the destination text goes into array text2 + // The routine represents 16-bit subblocks and subkeys as type int so + // that they can be treated more easily as unsigned. Multiplication + // modulo 0x10001 interprets a zero sub-block as 0x10000; it must to + // fit in 16 bits. + // + int i; + int i1 = 0; // Index into first text array. + int i2 = 0; // Index into second text array. + int ik; // Index into key array. + int x1, x2, x3, x4, t1, t2; // Four "16-bit" blocks, two temps. + int r; // Eight rounds of processing. + + for( i = 0; i < array_rows; i += 8 ) + { + + ik = 0; // Restart key index. + r = 8; // Eight rounds of processing. + + // Load eight plain1 bytes as four 16-bit "unsigned" integers. + // Masking with 0xff prevents sign extension with cast to int. + + x1 = text1[i1++] & 0xff; // Build 16-bit x1 from 2 bytes, + x1 |= (text1[i1++] & 0xff) << 8; // assuming low-order byte first. + x2 = text1[i1++] & 0xff; + x2 |= (text1[i1++] & 0xff) << 8; + x3 = text1[i1++] & 0xff; + x3 |= (text1[i1++] & 0xff) << 8; + x4 = text1[i1++] & 0xff; + x4 |= (text1[i1++] & 0xff) << 8; + + do { + // 1) Multiply (modulo 0x10001), 1st text sub-block + // with 1st key sub-block. + + x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff); + + // 2) Add (modulo 0x10000), 2nd text sub-block + // with 2nd key sub-block. + + x2 = x2 + key[ik++] & 0xffff; + + // 3) Add (modulo 0x10000), 3rd text sub-block + // with 3rd key sub-block. + + x3 = x3 + key[ik++] & 0xffff; + + // 4) Multiply (modulo 0x10001), 4th text sub-block + // with 4th key sub-block. + + x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff); + + // 5) XOR results from steps 1 and 3. + + t2 = x1 ^ x3; + + // 6) XOR results from steps 2 and 4. + // Included in step 8. + + // 7) Multiply (modulo 0x10001), result of step 5 + // with 5th key sub-block. + + t2 = (int) ((long) t2 * key[ik++] % 0x10001L & 0xffff); + + // 8) Add (modulo 0x10000), results of steps 6 and 7. + + t1 = t2 + (x2 ^ x4) & 0xffff; + + // 9) Multiply (modulo 0x10001), result of step 8 + // with 6th key sub-block. + + t1 = (int) ((long) t1 * key[ik++] % 0x10001L & 0xffff); + + // 10) Add (modulo 0x10000), results of steps 7 and 9. + + t2 = t1 + t2 & 0xffff; + + // 11) XOR results from steps 1 and 9. + + x1 ^= t1; + + // 14) XOR results from steps 4 and 10. (Out of order). + + x4 ^= t2; + + // 13) XOR results from steps 2 and 10. (Out of order). + + t2 ^= x2; + + // 12) XOR results from steps 3 and 9. (Out of order). + + x2 = x3 ^ t1; + + x3 = t2; // Results of x2 and x3 now swapped. + + } while(--r != 0); // Repeats seven more rounds. + + // Final output transform (4 steps). + + // 1) Multiply (modulo 0x10001), 1st text-block + // with 1st key sub-block. + + x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff); + + // 2) Add (modulo 0x10000), 2nd text sub-block + // with 2nd key sub-block. It says x3, but that is to undo swap + // of subblocks 2 and 3 in 8th processing round. + + x3 = x3 + key[ik++] & 0xffff; + + // 3) Add (modulo 0x10000), 3rd text sub-block + // with 3rd key sub-block. It says x2, but that is to undo swap + // of subblocks 2 and 3 in 8th processing round. + + x2 = x2 + key[ik++] & 0xffff; + + // 4) Multiply (modulo 0x10001), 4th text-block + // with 4th key sub-block. + + x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff); + + // Repackage from 16-bit sub-blocks to 8-bit byte array text2. + + text2[i2++] = (char) x1; + text2[i2++] = (char) (x1 >> 8); + text2[i2++] = (char) x3; // x3 and x2 are switched + text2[i2++] = (char) (x3 >> 8); // only in name. + text2[i2++] = (char) x2; + text2[i2++] = (char) (x2 >> 8); + text2[i2++] = (char) x4; + text2[i2++] = (char) (x4 >> 8); + + } // End for loop. + +} // End routine. diff --git a/Robust/src/Benchmarks/oooJava/C-crypt/makefile b/Robust/src/Benchmarks/oooJava/C-crypt/makefile new file mode 100644 index 00000000..7cd674a4 --- /dev/null +++ b/Robust/src/Benchmarks/oooJava/C-crypt/makefile @@ -0,0 +1,8 @@ +all: crypt + +crypt: crypt.c + gcc crypt.c -o crypt + +clean: + rm -f crypt + rm -f *~ -- 2.34.1