From ce61cdc270a5e0dd18057bbf29bd3471abccbda8 Mon Sep 17 00:00:00 2001 From: Chris Metcalf Date: Thu, 15 Aug 2013 16:29:02 -0400 Subject: [PATCH] tile: make __write_once a synonym for __read_mostly This was really only useful for TILE64 when we mapped the kernel data with small pages. Now we use a huge page and we really don't want to map different parts of the kernel data in different ways. We retain the __write_once name in case we want to bring it back to life at some point in the future. Note that this change uncovered a latent bug where the "smp_topology" variable happened to always be aligned mod 8 so we could store two "int" values at once, but when we eliminated __write_once it ended up only aligned mod 4. Fix with an explicit annotation. Signed-off-by: Chris Metcalf --- arch/tile/include/asm/cache.h | 13 ++++++++++--- arch/tile/kernel/smp.c | 6 +++++- arch/tile/kernel/vmlinux.lds.S | 12 ------------ arch/tile/mm/init.c | 13 ++----------- 4 files changed, 17 insertions(+), 27 deletions(-) diff --git a/arch/tile/include/asm/cache.h b/arch/tile/include/asm/cache.h index a9a529964e07..6160761d5f61 100644 --- a/arch/tile/include/asm/cache.h +++ b/arch/tile/include/asm/cache.h @@ -49,9 +49,16 @@ #define __read_mostly __attribute__((__section__(".data..read_mostly"))) /* - * Attribute for data that is kept read/write coherent until the end of - * initialization, then bumped to read/only incoherent for performance. + * Originally we used small TLB pages for kernel data and grouped some + * things together as "write once", enforcing the property at the end + * of initialization by making those pages read-only and non-coherent. + * This allowed better cache utilization since cache inclusion did not + * need to be maintained. However, to do this requires an extra TLB + * entry, which on balance is more of a performance hit than the + * non-coherence is a performance gain, so we now just make "read + * mostly" and "write once" be synonyms. We keep the attribute + * separate in case we change our minds at a future date. */ -#define __write_once __attribute__((__section__(".w1data"))) +#define __write_once __read_mostly #endif /* _ASM_TILE_CACHE_H */ diff --git a/arch/tile/kernel/smp.c b/arch/tile/kernel/smp.c index 0ae1c594d883..01e8ab29f43a 100644 --- a/arch/tile/kernel/smp.c +++ b/arch/tile/kernel/smp.c @@ -22,7 +22,11 @@ #include #include -HV_Topology smp_topology __write_once; +/* + * We write to width and height with a single store in head_NN.S, + * so make the variable aligned to "long". + */ +HV_Topology smp_topology __write_once __aligned(sizeof(long)); EXPORT_SYMBOL(smp_topology); #if CHIP_HAS_IPI() diff --git a/arch/tile/kernel/vmlinux.lds.S b/arch/tile/kernel/vmlinux.lds.S index 8b2016307eb0..f1819423ffc9 100644 --- a/arch/tile/kernel/vmlinux.lds.S +++ b/arch/tile/kernel/vmlinux.lds.S @@ -74,20 +74,8 @@ SECTIONS __init_end = .; _sdata = .; /* Start of data section */ - RO_DATA_SECTION(PAGE_SIZE) - - /* initially writeable, then read-only */ - . = ALIGN(PAGE_SIZE); - __w1data_begin = .; - .w1data : AT(ADDR(.w1data) - LOAD_OFFSET) { - VMLINUX_SYMBOL(__w1data_begin) = .; - *(.w1data) - VMLINUX_SYMBOL(__w1data_end) = .; - } - RW_DATA_SECTION(L2_CACHE_BYTES, PAGE_SIZE, THREAD_SIZE) - _edata = .; EXCEPTION_TABLE(L2_CACHE_BYTES) diff --git a/arch/tile/mm/init.c b/arch/tile/mm/init.c index 22e41cf5a2a9..4e316deb92fd 100644 --- a/arch/tile/mm/init.c +++ b/arch/tile/mm/init.c @@ -270,14 +270,6 @@ static pgprot_t __init init_pgprot(ulong address) if (kdata_hash) return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); - /* - * Make the w1data homed like heap to start with, to avoid - * making it part of the page-striped data area when we're just - * going to convert it to read-only soon anyway. - */ - if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end) - return construct_pgprot(PAGE_KERNEL, initial_heap_home()); - /* * Otherwise we just hand out consecutive cpus. To avoid * requiring this function to hold state, we just walk forward from @@ -285,7 +277,7 @@ static pgprot_t __init init_pgprot(ulong address) * the requested address, while walking cpu home around kdata_mask. * This is typically no more than a dozen or so iterations. */ - page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK; + page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK; BUG_ON(address < page || address >= (ulong)_end); cpu = cpumask_first(&kdata_mask); for (; page < address; page += PAGE_SIZE) { @@ -980,8 +972,7 @@ void free_initmem(void) const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET; /* - * Evict the dirty initdata on the boot cpu, evict the w1data - * wherever it's homed, and evict all the init code everywhere. + * Evict the cache on all cores to avoid incoherence. * We are guaranteed that no one will touch the init pages any more. */ homecache_evict(&cpu_cacheable_map); -- 2.34.1