From ee695402b83a6c2f03a94aa4c7510adf1971e080 Mon Sep 17 00:00:00 2001 From: David Sterba Date: Sat, 10 Oct 2015 17:59:53 +0200 Subject: [PATCH] btrfs: statfs: report zero available if metadata are exhausted commit ca8a51b3a979d57b082b14eda38602b7f52d81d1 upstream. There is one ENOSPC case that's very confusing. There's Available greater than zero but no file operation succeds (besides removing files). This happens when the metadata are exhausted and there's no possibility to allocate another chunk. In this scenario it's normal that there's still some space in the data chunk and the calculation in df reflects that in the Avail value. To at least give some clue about the ENOSPC situation, let statfs report zero value in Avail, even if there's still data space available. Current: /dev/sdb1 4.0G 3.3G 719M 83% /mnt/test New: /dev/sdb1 4.0G 3.3G 0 100% /mnt/test We calculate the remaining metadata space minus global reserve. If this is (supposedly) smaller than zero, there's no space. But this does not hold in practice, the exhausted state happens where's still some positive delta. So we apply some guesswork and compare the delta to a 4M threshold. (Practically observed delta was 2M.) We probably cannot calculate the exact threshold value because this depends on the internal reservations requested by various operations, so some operations that consume a few metadata will succeed even if the Avail is zero. But this is better than the other way around. Signed-off-by: David Sterba Signed-off-by: Greg Kroah-Hartman --- fs/btrfs/super.c | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) diff --git a/fs/btrfs/super.c b/fs/btrfs/super.c index 24154e422945..fe609b81dd1b 100644 --- a/fs/btrfs/super.c +++ b/fs/btrfs/super.c @@ -1956,6 +1956,8 @@ static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) * there are other factors that may change the result (like a new metadata * chunk). * + * If metadata is exhausted, f_bavail will be 0. + * * FIXME: not accurate for mixed block groups, total and free/used are ok, * available appears slightly larger. */ @@ -1967,11 +1969,13 @@ static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) struct btrfs_space_info *found; u64 total_used = 0; u64 total_free_data = 0; + u64 total_free_meta = 0; int bits = dentry->d_sb->s_blocksize_bits; __be32 *fsid = (__be32 *)fs_info->fsid; unsigned factor = 1; struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; int ret; + u64 thresh = 0; /* * holding chunk_muext to avoid allocating new chunks, holding @@ -1997,6 +2001,8 @@ static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) } } } + if (found->flags & BTRFS_BLOCK_GROUP_METADATA) + total_free_meta += found->disk_total - found->disk_used; total_used += found->disk_used; } @@ -2019,6 +2025,24 @@ static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) buf->f_bavail += div_u64(total_free_data, factor); buf->f_bavail = buf->f_bavail >> bits; + /* + * We calculate the remaining metadata space minus global reserve. If + * this is (supposedly) smaller than zero, there's no space. But this + * does not hold in practice, the exhausted state happens where's still + * some positive delta. So we apply some guesswork and compare the + * delta to a 4M threshold. (Practically observed delta was ~2M.) + * + * We probably cannot calculate the exact threshold value because this + * depends on the internal reservations requested by various + * operations, so some operations that consume a few metadata will + * succeed even if the Avail is zero. But this is better than the other + * way around. + */ + thresh = 4 * 1024 * 1024; + + if (total_free_meta - thresh < block_rsv->size) + buf->f_bavail = 0; + buf->f_type = BTRFS_SUPER_MAGIC; buf->f_bsize = dentry->d_sb->s_blocksize; buf->f_namelen = BTRFS_NAME_LEN; -- 2.34.1