Incremental frontend for glucose solver
[satlib.git] / glucose-syrup / incremental / SimpSolver.h
diff --git a/glucose-syrup/incremental/SimpSolver.h b/glucose-syrup/incremental/SimpSolver.h
new file mode 100644 (file)
index 0000000..5f457a8
--- /dev/null
@@ -0,0 +1,237 @@
+/***************************************************************************************[SimpSolver.h]
+ Glucose -- Copyright (c) 2009-2014, Gilles Audemard, Laurent Simon
+                                CRIL - Univ. Artois, France
+                                LRI  - Univ. Paris Sud, France (2009-2013)
+                                Labri - Univ. Bordeaux, France
+
+ Syrup (Glucose Parallel) -- Copyright (c) 2013-2014, Gilles Audemard, Laurent Simon
+                                CRIL - Univ. Artois, France
+                                Labri - Univ. Bordeaux, France
+
+Glucose sources are based on MiniSat (see below MiniSat copyrights). Permissions and copyrights of
+Glucose (sources until 2013, Glucose 3.0, single core) are exactly the same as Minisat on which it 
+is based on. (see below).
+
+Glucose-Syrup sources are based on another copyright. Permissions and copyrights for the parallel
+version of Glucose-Syrup (the "Software") are granted, free of charge, to deal with the Software
+without restriction, including the rights to use, copy, modify, merge, publish, distribute,
+sublicence, and/or sell copies of the Software, and to permit persons to whom the Software is 
+furnished to do so, subject to the following conditions:
+
+- The above and below copyrights notices and this permission notice shall be included in all
+copies or substantial portions of the Software;
+- The parallel version of Glucose (all files modified since Glucose 3.0 releases, 2013) cannot
+be used in any competitive event (sat competitions/evaluations) without the express permission of 
+the authors (Gilles Audemard / Laurent Simon). This is also the case for any competitive event
+using Glucose Parallel as an embedded SAT engine (single core or not).
+
+
+--------------- Original Minisat Copyrights
+
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ **************************************************************************************************/
+
+#ifndef Glucose_SimpSolver_h
+#define Glucose_SimpSolver_h
+
+#include "mtl/Queue.h"
+#include "core/Solver.h"
+#include "mtl/Clone.h"
+
+namespace Glucose {
+
+//=================================================================================================
+
+
+class SimpSolver : public Solver {
+ public:
+    // Constructor/Destructor:
+    //
+    SimpSolver();
+    ~SimpSolver();
+    
+    SimpSolver(const  SimpSolver &s);
+    
+
+    /**
+     * Clone function
+    */
+    virtual Clone* clone() const {
+        return  new SimpSolver(*this);
+    }   
+
+    
+    // Problem specification:
+    //
+    virtual Var     newVar    (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
+    bool    addClause (const vec<Lit>& ps);
+    bool    addEmptyClause();                // Add the empty clause to the solver.
+    bool    addClause (Lit p);               // Add a unit clause to the solver.
+    bool    addClause (Lit p, Lit q);        // Add a binary clause to the solver.
+    bool    addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver.
+    virtual bool    addClause_(      vec<Lit>& ps);
+    bool    substitute(Var v, Lit x);  // Replace all occurences of v with x (may cause a contradiction).
+
+    // Variable mode:
+    // 
+    void    setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated.
+    bool    isEliminated(Var v) const;
+
+    // Solving:
+    //
+    bool    solve       (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
+    lbool   solveLimited(const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
+    bool    solve       (                     bool do_simp = true, bool turn_off_simp = false);
+    bool    solve       (Lit p       ,        bool do_simp = true, bool turn_off_simp = false);       
+    bool    solve       (Lit p, Lit q,        bool do_simp = true, bool turn_off_simp = false);
+    bool    solve       (Lit p, Lit q, Lit r, bool do_simp = true, bool turn_off_simp = false);
+    bool    eliminate   (bool turn_off_elim = false);  // Perform variable elimination based simplification. 
+
+    // Memory managment:
+    //
+    virtual void garbageCollect();
+
+
+    // Generate a (possibly simplified) DIMACS file:
+    //
+#if 0
+    void    toDimacs  (const char* file, const vec<Lit>& assumps);
+    void    toDimacs  (const char* file);
+    void    toDimacs  (const char* file, Lit p);
+    void    toDimacs  (const char* file, Lit p, Lit q);
+    void    toDimacs  (const char* file, Lit p, Lit q, Lit r);
+#endif
+
+    // Mode of operation:
+    //
+    int     parsing;
+    int     grow;              // Allow a variable elimination step to grow by a number of clauses (default to zero).
+    int     clause_lim;        // Variables are not eliminated if it produces a resolvent with a length above this limit.
+                               // -1 means no limit.
+    int     subsumption_lim;   // Do not check if subsumption against a clause larger than this. -1 means no limit.
+    double  simp_garbage_frac; // A different limit for when to issue a GC during simplification (Also see 'garbage_frac').
+
+    bool    use_asymm;         // Shrink clauses by asymmetric branching.
+    bool    use_rcheck;        // Check if a clause is already implied. Prett costly, and subsumes subsumptions :)
+    bool    use_elim;          // Perform variable elimination.
+    // Statistics:
+    //
+    int     merges;
+    int     asymm_lits;
+    int     eliminated_vars;
+
+ protected:
+
+    // Helper structures:
+    //
+    struct ElimLt {
+        const vec<int>& n_occ;
+        explicit ElimLt(const vec<int>& no) : n_occ(no) {}
+
+        // TODO: are 64-bit operations here noticably bad on 32-bit platforms? Could use a saturating
+        // 32-bit implementation instead then, but this will have to do for now.
+        uint64_t cost  (Var x)        const { return (uint64_t)n_occ[toInt(mkLit(x))] * (uint64_t)n_occ[toInt(~mkLit(x))]; }
+        bool operator()(Var x, Var y) const { return cost(x) < cost(y); }
+        
+        // TODO: investigate this order alternative more.
+        // bool operator()(Var x, Var y) const { 
+        //     int c_x = cost(x);
+        //     int c_y = cost(y);
+        //     return c_x < c_y || c_x == c_y && x < y; }
+    };
+
+    struct ClauseDeleted {
+        const ClauseAllocator& ca;
+        explicit ClauseDeleted(const ClauseAllocator& _ca) : ca(_ca) {}
+        bool operator()(const CRef& cr) const { return ca[cr].mark() == 1; } };
+
+    // Solver state:
+    //
+    int                 elimorder;
+    bool                use_simplification;
+    vec<uint32_t>       elimclauses;
+    vec<char>           touched;
+    OccLists<Var, vec<CRef>, ClauseDeleted>
+                        occurs;
+    vec<int>            n_occ;
+    Heap<ElimLt>        elim_heap;
+    Queue<CRef>         subsumption_queue;
+    vec<char>           frozen;
+    vec<char>           eliminated;
+    int                 bwdsub_assigns;
+    int                 n_touched;
+
+    // Temporaries:
+    //
+    CRef                bwdsub_tmpunit;
+
+    // Main internal methods:
+    //
+    virtual lbool         solve_                   (bool do_simp = true, bool turn_off_simp = false);
+    bool          asymm                    (Var v, CRef cr);
+    bool          asymmVar                 (Var v);
+    void          updateElimHeap           (Var v);
+    void          gatherTouchedClauses     ();
+    bool          merge                    (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
+    bool          merge                    (const Clause& _ps, const Clause& _qs, Var v, int& size);
+    bool          backwardSubsumptionCheck (bool verbose = false);
+    bool          eliminateVar             (Var v);
+    void          extendModel              ();
+
+    void          removeClause             (CRef cr,bool inPurgatory=false);
+    bool          strengthenClause         (CRef cr, Lit l);
+    void          cleanUpClauses           ();
+    bool          implied                  (const vec<Lit>& c);
+    virtual void          relocAll                 (ClauseAllocator& to);
+};
+
+
+//=================================================================================================
+// Implementation of inline methods:
+
+
+inline bool SimpSolver::isEliminated (Var v) const { return eliminated[v]; }
+inline void SimpSolver::updateElimHeap(Var v) {
+    assert(use_simplification);
+    // if (!frozen[v] && !isEliminated(v) && value(v) == l_Undef)
+    if (elim_heap.inHeap(v) || (!frozen[v] && !isEliminated(v) && value(v) == l_Undef))
+        elim_heap.update(v); }
+
+
+inline bool SimpSolver::addClause    (const vec<Lit>& ps)    { ps.copyTo(add_tmp); return addClause_(add_tmp); }
+inline bool SimpSolver::addEmptyClause()                     { add_tmp.clear(); return addClause_(add_tmp); }
+inline bool SimpSolver::addClause    (Lit p)                 { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); }
+inline bool SimpSolver::addClause    (Lit p, Lit q)          { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); }
+inline bool SimpSolver::addClause    (Lit p, Lit q, Lit r)   { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); }
+inline void SimpSolver::setFrozen    (Var v, bool b) { frozen[v] = (char)b; if (use_simplification && !b) { updateElimHeap(v); } }
+
+inline bool SimpSolver::solve        (                     bool do_simp, bool turn_off_simp)  { budgetOff(); assumptions.clear(); return solve_(do_simp, turn_off_simp) == l_True; }
+inline bool SimpSolver::solve        (Lit p       ,        bool do_simp, bool turn_off_simp)  { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_(do_simp, turn_off_simp) == l_True; }
+inline bool SimpSolver::solve        (Lit p, Lit q,        bool do_simp, bool turn_off_simp)  { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_(do_simp, turn_off_simp) == l_True; }
+inline bool SimpSolver::solve        (Lit p, Lit q, Lit r, bool do_simp, bool turn_off_simp)  { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_(do_simp, turn_off_simp) == l_True; }
+inline bool SimpSolver::solve        (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){ 
+    budgetOff(); assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp) == l_True; }
+
+inline lbool SimpSolver::solveLimited (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){ 
+    assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp); }
+
+//=================================================================================================
+}
+
+#endif