
Using Disjoint Reachability for Parallelization

James Jenista, Yong hun Eom, and Brian Demsky

University of California, Irvine

Abstract. We present a disjoint reachability analysis for Java. Our analysis com-
putes extended points-to graphs annotated with reachability states. Each heap
node is annotated with a set of reachability states that abstract the reachability
of objects represented by the node. The analysis also includes a global pruning
step which analyzes a reachability graph to prune imprecise reachability states
that cannot be removed with local reasoning alone. We have implemented the
analysis and used it to parallelize 9 benchmarks. Our evaluation shows the anal-
ysis results are sufficiently precise to parallelize our benchmarks and achieve an
average speedup of 16.9×.

1 Introduction
As the number of cores in mainstream processors increases, more software application
domains are challenged with developing parallelized implementations in order to har-
ness the available cores. Program analyses such as points-to analysis [1, 2] and shape
analysis [3–7] support parallelization tools, particularly in application domains like sci-
entific programs that exhibit highly regular data structures and workloads with much
parallelism. In the future, developers will likely need to parallelize programs in the
domain of object-oriented desktop and server applications where the program heap is
complicated by many levels of abstraction or arbitrary data structure composition.

We believe the key to efficient and general heap analysis in support of paralleliz-
ing object-oriented applications is to focus on reachability. Data structures often have
a single root object — disjoint reachability analysis can statically extract the property
that the objects that comprise a data structure are only reachable from at most one data
structure root object. This property is powerful for parallelizing tasks — the combi-
nation of (1) the static reachability analysis plus (2) a lightweight dynamic check to
determine that the variables live into two tasks reference different root objects suffices
to guarantee that the two tasks will not perform conflicting data accesses.

The use of reachability for parallelization is not new; points-to analysis is typically
fast and can be scaled to millions of lines of code, but reachability information derived
from it is imprecise so it can assist parallelization of only very specific code patterns. A
path of edges in a points-to graph can capture that a data structure root object can reach
the objects that comprise the data structure, but also admits the possibility that many
data structure root objects can reach the same objects.

Reachability from objects is essential and different from the reachability from vari-
ables discovered by alias analysis [8–10] — reachability from variables can only ex-
press a finite number of disjoint sets. Variable reachability cannot discover that an un-
bounded set of live data structures do not share objects. This property is often necessary
to parallelize computations on data structures.

The strategy of shape analysis is to statically model a potentially unbounded heap
with a shape graph, where heap objects that share a common pattern of references are
summarized with a shape node. While reachability properties can be deduced from a

2

precise shape graph, in the worst case a program’s heap shape is difficult to analyze to
the effect that the derived reachability properties are much less precise.

Naik and Aiken introduced the concept of disjoint reachability in support of static
race detection [11]. We introduce a new static heap analysis, disjoint reachability anal-
ysis, for discovering precise reachability properties in Java programs with general heap
structures. Our analysis compactly represents the reachability of the many objects ab-
stracted by a single node of a points-to graph by annotating each node with a set of
reachability states. The reachability of an object is conservatively approximated by one
of the reachability states for the corresponding node in the points-to graph. Shape in-
formation is not preserved in general; in this regard, shape analysis and disjoint reacha-
bility analysis are complementary. For instance, a compiler might generate tree-specific
parallel code when shape analysis discovers that a structure is a valid tree.

Existing heap analyses have primarily either used equivalence classes of objects
(e.g. TVLA [5], separation logic [12], storage shape graphs [3]) or access paths [4, 10]
to reason about heap references. Disjoint reachability analysis combines aspects of both
approaches — it combines an abstraction that decomposes the heap into static regions
with reachability annotations that provide access path information. Choi et al. used a
combination of storage and paths for alias analysis [13], however that approach focuses
only on reachability from variables and is subject to the limitations discussed above.

1.1 Basic Approach
Disjoint reachability analysis extends a standard points-to graph with reachability an-
notations. The nodes in our points-to graph abstract objects and the edges abstract heap
references between objects. While the points-to graph captures some reachability infor-
mation; nodes in the points-to graph by necessity must abstract many objects. In general
it is impossible to determine whether a path of edges in a points-to graph from a node
nsrc to a node ndst represents a path of references from one object or many objects ab-
stracted by nsrc to an object abstracted by ndst. We therefore annotate nodes with sets of
reachability states. A reachability state for an object o contains a tuple for each node n
that gives an abstract count of how many objects abstracted by node n can reach o.

Using reachability states only on nodes can make it difficult to precisely propagate
changes to reachability states. We therefore also annotate edges with sets of reachability
states. The reachability state for an edge abstracts the reachability states for the objects
that can be reached through that edge. In addition to enabling the analysis to more
precisely propagate changes to reachability states, edge reachability annotations can
also serve to refine the reachability information for a node based on the reference used
to access an object abstracted by the node.

We evaluate the precision of disjoint reachability analysis in support of a task-level
parallelizing approach that relies on reachability properties rather than exploiting heap
shape. Out-of-order Java (OoOJava) [14, 15] decomposes a sequential program into
tasks and discovers which data structure root objects a task uses to obtain references to
other objects. OoOJava then queries disjoint reachability analysis to discover whether
the objects reachable by two tasks are disjoint conditionally on whether the root ob-
jects of the tasks are distinct at runtime. This information enables parallelization when
combined with a constant-time dynamic check that verifies the tasks access distinct root
objects. OoOJava reports disjoint reachability results back to the developer to identify

3

unintended sharing that prevents parallelization. We also note disjoint reachability anal-
ysis is employed by Bamboo [16], another task-based parallel programming model.

Our analysis is demand-driven — it takes as input a set of allocation sites that are
of interest to the analysis client. The analysis then computes the reachability only from
the objects allocated at the selected allocation sites to all objects in the program.

1.2 Contributions
The paper makes the following contributions:
• Disjoint Reachability Analysis: It presents a new demand-driven analysis that dis-

covers precise disjoint reachability properties for a wide variety of programs.
• Reachability Abstraction: It extends the points-to graph abstraction with reachabil-

ity annotations to precisely reason about reachability properties.
• Global Pruning: It introduces a global pruning algorithm to improve the precision

of reachability states.
• Experimental Results: It presents experimental results for several benchmarks. The

results show that the analysis successfully discovers disjoint reachability properties
and that it is suitable for parallelizing the benchmarks with significant speedups.

The remainder of the paper is organized as follows. Section 2 presents an example
that illustrates how the analysis operates. Section 3 presents the program representa-
tion and the reachability graph. Section 4 presents the intraprocedural analysis. Sec-
tion 5 presents the interprocedural analysis. Section 6 evaluates the analysis on several
benchmarks. Section 7 presents related work; we conclude in Section 8. The appendix
formalizes the reachability abstraction and overviews the correctness of the analysis.

2 Example
Figure 1 presents an example that constructs several graphs and then updates the ver-
tices in those graphs. The graphLoop method populates an array with Graph ob-
jects. The developer uses the task keyword to indicate that the annotated block is
worth executing in parallel with the current thread if it is safe to do so without vio-
lating the program’s sequential semantics. Our analysis will show that each Vertex
object is reachable from at most one Graph object. This information could be used to
parallelize the execution of tasks in the loop in Line 8. If a runtime check shows that
instances of the task in Line 9 operate on different Graph objects, then our static anal-
ysis results will imply that task instances operate on disjoint sets of Vertex objects.
The OoOJava compiler [14] therefore flags the allocation site on Line 4 to indicate to
the analysis that it needs information about the reachability from Graph objects to all
objects. In this example, the disjoint reachability results allow the OoOJava compiler to
generate a parallel implementation.

2.1 Intraprocedural Analysis
We next examine the analysis of the graphLoop method. Our analysis computes a
reachability graph for each program point. Figure 2(a) presents the analysis results just
after the allocation of the Graph and Vertex objects referenced by variables g and
v1, respectively. The rectangular heap node n2 abstracts the most recently allocated
Graph object and is associated with a flagged allocation site; we call such heap nodes
flagged heap nodes and shade them in all graphs in this paper. The analysis computes

4

1 p u b l i c vo id graphLoop (i n t nGraphs) { Graph [] a=new Graph [nGraphs] ;
2 f o r (i n t i =0 ; i<nGraphs ; i ++) {
3 Graph g=new Graph () ; /∗ A n a l y s i s c l i e n t
4 f l a g s t h i s s i t e ∗ / V er t e x v1=new V er t e x () ;
5 g . v e r t e x =v1 ; Ve r t ex
6 v2=new V er t e x () ; v2 . f =v1 ;
7 v1 . f =v2 ; a [i]= g ; }
8 f o r (i n t i =0 ; i<nGraphs ; i ++) { Graph g=a [i] ;
9 ta sk { /∗ T h i s t a s k u p d a t e s t h e graph

10 v e r t i c e s . ∗ / V er t e x v=g . v e r t e x ; whi le (! v . marked) { v . marked= t rue ;
11 v . u p d a t e V e r t e x () ; v=v . f ; } } } }

Fig. 1. Graph Example

reachability only from flagged nodes. Heap nodes are assigned unique identifiers of
form ni, where i is an unique integer. The reachability set {[〈n2, 1〉]} on n2 indicates
the object abstracted by that node has the reachability state [〈n2, 1〉]. The reachability
set {[〈n2, 1〉]} on the g edge indicates that the corresponding heap reference can only
reach objects whose reachability state is [〈n2, 1〉].

A reachability state for object o contains a set of reachability tuples: a reachability
tuple consists of a heap node abstracting objects that may reach o and an arity that
indicates how many objects abstracted by that node may reach o. The reachability state
[〈n2, 1〉] means that the object with that reachability state is reachable from at most one
Graph object abstracted by heap node n2 and no other flagged objects. In Figure 2(a),
node n4 abstracts the most recently allocated Vertex object from Line 5 and has the
reachability set {[]}, meaning at this program point the object abstracted by n4 is not
reachable from any flagged objects. Appendix A precisely defines the abstraction.

Figure 2(b) presents the analysis results after the vertex field of the Graph object
is updated to reference the Vertex object in Line 5. The set of reachability states for
n4 is updated to {[〈n2, 1〉]} to reflect that the Vertex object is now reachable from
at most one Graph object. The newly created edge models the reference from the
vertex field of the Graph object. Edges are marked with the field they abstract.

Figure 2(c) presents the analysis results after Line 7. At this point a second Vertex
object has been allocated and the two Vertex objects have references to one another.
The heap reference from n4 to n6 propagated the reachability set {[〈n2, 1〉]} to n6.

The intraprocedural analysis continues until it computes a fixed-point solution. Fig-
ure 2(d) presents the analysis results after visiting Line 7 a second time. Node n2 ab-
stracts the most recently allocated Graph object while node n3 summarizes the Graph
object from the previous loop iteration. We denote summary heap nodes as rectangles
with chords across each corner. The reachability state [〈n3, 1〉] has propagated back-
ward across all edges up to the reference from variable a. Disjoint reachability analysis
maintains the invariant that a reference is annotated with the reachability states of any
objects reachable by following that reference. Note we omit the empty reachability state
[] in some reachability sets for brevity.

Figure 3 presents the analysis results at Line 7 of the example program. These re-
sults state that any Vertex object is reachable from at most one Graph object because
(1) the analysis client flagged the only allocation site for Graph objects and (2) there is
no heap node abstracting Vertex objects with a reachability state indicating the con-

5

single-object heap
region node

heap region node
containing

multiple-object
heap region node

reference edge
reachability state

set of reachability
states

{[<n ,1>],
[<n ,1>] }

1

2

[<n ,1>]1

g

Vertex
alloc line 5

Graph
alloc line 4

n 2

n 4

{[<n ,1>] }2

{[<n ,1>]}2

{ } []

v1
{ } []

(a) First Itera-
tion of Line 5

g

Vertex
alloc line 5

vertex

Graph
alloc line 4

n 2

n 4

{[<n ,1>] }2

{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2

v1
{[<n ,1>]}2

(b) First Itera-
tion of Line 5

g

Vertex
alloc line 5

Vertex
alloc line 7

vertex

Graph
alloc line 4

f

f

n 2

n 4 n 6

{[<n ,1>] }2

{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2 {[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2

v1
{[<n ,1>]}2

v2
{[<n ,1>]}2

(c) First Iteration of Line 7

a

Graph[]
alloc line 2

Vertex
alloc line 5

Graph Sum.
alloc line 4

vertex

elementGraph
alloc line 4

Vertex Sum.
alloc line 5

Vertex
alloc line 7

vertex

f

f

n 2 n 1 n 3

n 4 n 5 n 6

{[<n ,1>]}3

{ [] }
{[<n ,1>]}3{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}3

{[<n ,1>]}3 {[<n ,1>]}3{[<n ,1>]}3

{[<n ,1>]}3

g

{[<n ,1>]}2

v1
{[<n ,1>]}2

{[<n ,1>]}3

(d) Second Iteration of Line 5

Fig. 2. Intraprocedural reachability graph results for several program points.

a

Graph[]
alloc line 2

Vertex
alloc line 5

Vertex
alloc line 7

Graph Sum.
alloc line 4

vertex

elementGraph
alloc line 4

element

f

f

Vertex Sum.
alloc line 5

Vertex Sum.
alloc line 7

vertex

f

f

n 2 n 1 n 3

n 4 n 6 n 5 n 7

{[<n ,1>]}2

{[<n ,1>],[<n ,1>]}2 3

{ [] }
{[<n ,1>]}3{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2 {[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}3

{[<n ,1>]}3 {[<n ,1>]}3{[<n ,1>]}3

{[<n ,1>]}3

{[<n ,1>]}3

Fig. 3. Analysis result at Line 7 of graphLoop.

trary. Examples of reachability states for a Vertex object that is possibly reachable
from more than one Graph object are [〈n2, 1〉, 〈n3, 1〉] and [〈n3, MANY〉].

Disjoint reachability analysis will determine that a given Vertex object is reach-
able from at most one Graph object regardless of the relative shape of Vertex objects
in the heap. In Section 6 we describe how OoOJava queries disjoint reachability results
such as this in order to parallelize benchmarks with a variety of heap structures. In this
example, the OoOJava compiler will use the analysis results to generate a simple dy-

6

namic check: if the Graph object referenced by variable g is different from Graph
objects referenced in previous iterations, then the task in Line 9 may safely execute in
parallel with the current thread.

3 Analysis Abstractions
This section presents the analysis abstractions for the input program, elements of the
reachability graph, and reachability annotations that extend reachability graphs.

3.1 Program Representation
The analysis takes as input a standard control flow graph representation of each method.
Program statements have been decomposed into statements relevant to the analysis:
copy, load, store, object allocation, and call site statements.

3.2 Reachability Graph Elements
Our analysis computes a reachability graph for the exit of each program statement.
Reachability graphs extend the standard points-to graph representation to maintain ob-
ject reachability properties. Heap nodes abstract objects in the heap. There are two heap
nodes for each allocation site m ∈ M in the program — one heap node abstracts the
single most recently allocated object at the allocation site, and the other is a summary
node that abstracts all other objects allocated at the site1.

In general, analysis clients only need to determine reachability from some subset of
the objects in the program. The analysis takes as input a set of allocation sitesMF ⊆M
for objects of interest — the analysis then computes for all objects in the program their
reachability from objects allocated at those sites.

The reachability graph G has the set of heap nodes n ∈ N = M × {0,summary}.
The analysis client specifies a set of flagged heap nodesNF = MF ×{0,summary} ⊆
N that it is interested in determining reachability from.

Graph edges e ∈ E abstract references r ∈ R in the concrete heap and are of the
form 〈v, n〉 or 〈n, f, n′〉. The heap node or variable that edge e originates from is given
by src(e) and the heap node that edge e refers to is given by dst(e). Every reference
edge between heap nodes has an associated field f ∈ F = Fields ∪ element2.

The equation E ⊆ V × N ∪ N × F × N gives the set of reference edges E in a
reachability graph. We define the convenience functions:
En(v) = {n | 〈v, n〉 ∈ E} (3.1)

Ee(v) = {〈v, n〉 | 〈v, n〉 ∈ E} (3.2)

En(n) = {n′ | 〈n, f, n′〉 ∈ E} (3.3)

Ee(n) = {〈n, f, n′〉 | 〈n, f, n′〉 ∈ E} (3.4)

En(v, f) = {n′ | 〈v, n〉, 〈n, f, n′〉 ∈ E} (3.5)

Ee(v, f) = {〈n, f, n′〉 | 〈v, n〉, 〈n, f, n′〉 ∈ E} (3.6)

3.3 Reachability Annotations
This section discusses how our analysis augments a points-to graph with reachability
annotations; Appendix A formalizes this abstraction. A reachability tuple 〈n, µ〉 is a
heap node and arity pair where the arity value µ is taken from the set {0, 1, MANY}. The
arity µ gives the number of objects from the heap node n that can reach the relevant

1 Our implementation generalizes this to support abstracting the k most recently allocated ob-
jects from the allocation site with single-object heap nodes.

2 The special field element abstracts all references from an array’s elements.

7

object. The arity 0 means the object is not reachable from any objects in the given heap
node, the arity 1 means the object is reachable from at most one object in the given heap
node, and the arity MANY means the object is reachable from any number of objects in
the given node. The arities have the following partial order 0 v 1 v MANY.

A reachability state φ ∈ Φ contains exactly one reachability tuple for every distinct
flagged heap node. For efficiency, our implementation elides arity-0 reachability tuples.
When we write reachability states, we use brackets to enclose the reachability tuples to
make them visually more clear. For example, the reachability state φn = [〈n3, 1〉] ∈
Φn7 that appears on node n7 in Figure 3 indicates that it is possible for at most one
object in heap node n3, and zero objects from any other flagged heap nodes (i.e. n2) to
reach an object from heap node n7.

The function AN : N → P(P(M)) maps a heap node n to a set of reachability
states. The reachability of an object abstracted by the heap node n is abstracted by one
of the reachability states given by the function AN . We represent AN as a set of tuples
of heap nodes and reachability states and define the helper function:

AN (n) = {φ | 〈n, φ〉 ∈ AN}. (3.7)

When a new reference is created, the analysis must propagate reachability informa-
tion. Simply using the graph edges to do this propagation would yield imprecise results.
To improve the precision of this propagation step, the analysis maintains for each edge
the reachability states of all objects that can be reached from that edge. The function
AE : E → P(P(M)) maps a reference edge e to the set of reachability states of all
the objects reachable from the references abstracted by e. If there exists a path of heap
references r1; r2; rj that leads to an object o with the reachability state φ then for each
edge ei that abstracts a reference ri, φ ∈ AE(ei). We representAE as a set of tuples of
edges and reachability states and define the helper functions:

AE(v) = {φ | 〈〈v, n〉, φ〉 ∈ AE}, (3.8)

AE◦(v) = {〈〈v, n〉, φ〉 | 〈〈v, n〉, φ〉 ∈ AE}, (3.9)
AE(e) = {φ | 〈e, φ〉 ∈ AE}. (3.10)

In programs that construct unbounded data structures, heap nodes and reference
edges must be summarized in the finite heap abstraction. Summarization in basic points-
to analysis rapidly loses precision for reachability properties. Disjoint reachability anal-
ysis improves the precision of reachability information withAN because it can express
that an object is reachable from only a single object abstracted by a given summary
node. The abstraction AE is instrumental for precisely updating the reachability states
of heap nodes because it refines path information present in the points-graph alone and
allow the analysis to more precisely propagate changes to reachability states than is
possible from the points-to graph alone. Another critical aspect of AE is that an edge
in effect selects some subset of reachability states of a node — the analysis uses this
information to refine the reachability states for a node.

4 Intraprocedural Analysis
We begin by presenting the intraprocedural analysis. Section 5 extends this analysis to
support method calls. The analysis is structured as a fixed-point computation.

8

y
Φy

x=y

y
Φy

x
Φy

Φn Φn

(a) Copy Statement

E′ = (E − Ee(x)) ∪ ({x} × En(y)) (4.1)

AE ′ = (AE−AE◦(x))∪
[

〈v,n〉∈Ee(y)

({〈x, n〉}×AE(y)) (4.2)

y
Φy

x=y.f

Φn

Φff

Φn’

y
Φy

Φn

Φff

Φn’ Φx ΦfΦy

x

= ∩

(b) Load Statement

E′ = (E − Ee(x)) ∪ ({x} × En(y, f)) (4.3)

AE ′ = (AE−AE◦(x)) ∪
[

〈n,f,n′〉∈Ee(y,f)

8:{〈x, n′〉}×“
AE(〈y, n〉) ∩ AE(〈n, f, n′〉)

”9; (4.4)

y
Φy

x=new

sum.

Φsum

sing.
Φn

sum.

Φsum

sing.

Φn∪

{[]}
z

Φz

y
Φy

z
Φz

x
{[]}

(c) Allocation Statement

AN ′ = {〈SN (n, nalloc),Sφ(φ, nalloc)〉 | 〈n, φ〉 ∈ AN}
∪{〈nalloc, φalloc〉} (4.5)

AE ′ = {〈SE(e, nalloc),Sφ(φ, nalloc)〉 | 〈e, φ〉 ∈ AE}
∪{〈〈x, nalloc〉, φalloc〉} (4.6)

E′ = {SE(e, nalloc) | e ∈ E} ∪ {〈x, nalloc〉} (4.7)

φalloc =

(
[〈nalloc, 1〉] if nalloc is flagged
[] otherwise

(4.8)

Fig. 4. Transfer Functions for Copy, Load, and Allocation Statements

4.1 Method Entry
The method entry transfer function creates an initial reachability graph to abstract the
part of the calling methods’ heaps that are reachable from parameters. In the example,
the initial reachability graph is empty because the method graphLoop does not take
parameters. Method context generation is explained in detail in Section 5.1.

4.2 Copy Statement
A copy statement of the form x=y makes the variable x point to the object that y refer-
ences. The analysis always performs strong updates for variables — it discards all the
reference edges from variable x and then copies all the edges along with their reachabil-
ity states from variable y. Equation 4.1 and Equation 4.2 describe the transformations.

4.3 Load Statement
Load statements of the form x=y.f make the variable x point to the object that y.f
references. Existing reference edges for the field are copied to x as described by Equa-
tion 4.3. Note that this statement does not change the reachability of any object. The
reachability on new edges from x, as described by Equation 4.4, is the intersection of
AE(〈y, n〉) and AE(〈n, f, n′〉), because x can only reach objects that were reachable
from both the variable y and a heap reference abstracted by the edge 〈n, f, n′〉.

4.4 Object Allocation Statement
The analysis abstracts the most recently allocated object from an allocation site as a
single-object heap node. A summary node for the allocation site abstracts any objects
from the allocation site that are older than the most recent.

9

The object allocation transfer function merges the single-object node nalloc into
the site’s summary node. The single-object node nalloc is then the target of a vari-
able assignment. Equations 4.5 through 4.7 describe the basic transformation. We de-
fine the helper function SN (n, nalloc) to return the corresponding summary node for
nalloc if n = nalloc and n otherwise. We define SE(〈v, n〉, nalloc) = 〈v,SN (nalloc)〉 and
SE(〈n, f, n′〉, nalloc) = 〈SN (n, nalloc), f,SN (n′, nalloc)〉.

As stated, the single-object node and its reachability information merge with the
summary node. We define the helper function Sφ(φ, nalloc) to update a reachability
state by rewriting all reachability tuples with nalloc to use the summary node. If both
the single-object node and the summary node appeared in the same reachability state
before this transform, after rewriting the tuples there will be, conceptually, two sum-
mary node tuples in the state. In this case the tuples are combined and the new arity
for the summary heap node tuple is computed by +4, which is addition in the domain
{0, 1, MANY}. Note that the reachability annotations enable the analysis to maintain pre-
cise reachability information over summarizations.

Finally, if the heap node is flagged, the analysis generates the set of reachability
states {[〈nf , 1〉]}, where nf is the given heap node, for the new object’s node and edge.
Otherwise, it generates the set {[]} with the empty state for the node and edge.

4.5 Store Statement
Store statements of the form x.f=y point the f field of the object referenced by x
to the object referenced by y. Store statements can change the reachability of objects
reachable from y. Equation 4.9 describes how a store changes the edge set.

E′ = E ∪ (En(x)× {f} × En(y)) (4.9)

Let ox be the object referenced by x in the concrete heap and oy be the object
referenced by y. The new edge from the object ox to the object oy can only add new
paths from objects that could previously reach ox to objects that were reachable from
oy. In the reachability graph, the heap nodes nx ∈ En(x) abstract ox and the heap nodes
ny ∈ En(y) abstract oy. The set of flagged heap nodes containing objects that could
potentially reach ox is given by the set of reachability states:

Ψx = AN (nx) ∩ AE(〈x, nx〉). (4.10)
The reachability states of the objects reachable from oy is

Ψy = AE(〈y, ny〉). (4.11)

We define ∪4 to compute the union of two reachability states. When two reachability
states are combined, tuples with matching heap nodes merge arity values according to
+4. We divide updating the reachability graph into the following steps:
1. Construct the New Graph: The analysis first constructs the new edge set as de-

scribed by Equation 4.9.
2. Update Reachability States of Downstream Heap Nodes: The reachability of ev-

ery object o′ reachable from oy is (i) abstracted by some ψy ∈ Ψy and (ii) there exist
a path of edges from the heap node that abstracts oy to the heap node that abstracts
o′ in which each edge has ψy in its reachability state. The newly created edge can
make the object o′ reachable from the objects that can reach ox — this set of objects
is abstracted by some reachability state ψx ∈ Ψx. Therefore the new reachability state
for o′ should be ψy∪4ψx. We capture this reachability change with the change tuple

10

set Cny
= {〈ψy, ψy ∪4 ψx〉 | ψy ∈ Ψy, ψx ∈ Ψx}. Constraints 4.12 and 4.13 express

the path constraint (ii). The analysis uses a fixed point to solve these constraints and
then uses Equation 4.14 to update the reachability states of downstream nodes.

Λnode(ny) ⊇ Cny (4.12)

Λnode(n′) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λnode(n), 〈n, f, n′〉 ∈ E, φ ∈ AE(〈n, f, n′〉)} (4.13)

AN ′(n) = {φ′ | φ ∈ AN (n), 〈φ, φ′〉 ∈ Λnode(n)}∪

{φ | φ ∈ AN (n),@φ′.〈φ, φ′〉 ∈ Λnode(n)} (4.14)

3. Propagate Reachability from Downstream Nodes to Edges: The analysis must
propagate the reachability changes of objects back to any edge that abstracts a ref-
erence that can reach the object. Constraint 4.15 ensures that edges contain reach-
ability change tuples that capture the reachability changes in the incident objects.
Constraint 4.16 ensures that the change set contains tuples to re-establish the transi-
tive reachability state property.

Λedge(e)⊇{〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λnode(dst(e)), φ ∈ AN (dst(e)), φ ∈ AE(e)} (4.15)
Λedge(e)⊇{〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λedge(e′), φ ∈ AE(e),dst(e) = src(e′)} (4.16)

4. Propagate Reachability Changes Upstream of ox: The reachability states of edges
that abstract references that can reach ox must be updated to reflect the objects they
can now reach through the newly created edge. We define the change tuple set Cnx

=
{〈ψx, ψy ∪4 ψx〉 | ψy ∈ Ψy, ψx ∈ Ψx} that updates the reachability states of edges
that can reach ox. Constraint 4.17 ensures that edges incident to the heap nodes that
abstract ox contain reachability change tuples that capture the reachability states of
the newly reachable objects. Constraint 4.18 ensures that the change set contains
tuples to re-establish the transitive reachability state property.

Υ edge(e)⊇{〈φ, φ′〉 | 〈φ, φ′〉 ∈ Cnx
, φ ∈ AE(e),dst(e) = nx} (4.17)

Υ edge(e)⊇{〈φ, φ′〉 | 〈φ, φ′〉 ∈ Υ edge(e′), φ ∈ AE(e),dst(e) = src(e′)} (4.18)

5. Update Edge Reachability: Finally, the analysis generates the reachability states
for the edges in the new graph. Equation 4.19 computes the reachability states of
all edges that existed before the store operation using the change tuple sets. Equa-
tion 4.20 computes the reachability for the newly created edges from the reachability
of the edges for y with the constraint that every reachability state on the edge must
be at least as large as the reachability state for the object ox. We define φ ⊆4 φ′ if
∀〈n, µ〉 ∈ φ there exists a reachability tuple 〈n, µ′〉 ∈ φ′ such that µ v µ′.

AE ′(e)=AE(e) ∪ {φ′ | 〈φ, φ′〉 ∈ Λedge(e), φ ∈ AE(e)} ∪
{φ′ | 〈φ, φ′〉 ∈ Υ edge(e), φ ∈ AE(e)} (4.19)

AE ′(〈nx, f, ny〉)⊆{φ ∈ AE
′
(〈y, ny〉) | ∃φ′ ∈ AN

′
(nx), φ′ ⊆4 φ} (4.20)

11

Strong Updates While in general the analysis performs weak updates that simply add
edges, under certain circumstances the analysis can perform strong updates that also
remove edges to increase the precision of the results. Strong updates are possible under
either of two conditions. First, when variable x is the only reference to a heap node nx.
In this case we can destroy all reference edges from nx with field f because no other
variables can reach nx. Second, when the variable x references exactly one heap node
nx and nx is a single-object heap node. When this is true x definitely refers to the object
in nx and the existing edges with field f from nx can be removed.

For strong updates, the analysis first removes edges that the strong update elimi-
nates. It then performs the normal transform as described in this section. Note that when
strong updates remove edges, reachability of graph elements may change if the removed
edges provided the reachability path. Therefore, reachability states may become impre-
cise. After a store transform with a strong update occurs, a global pruning step improves
imprecise reachability states. Section 4.9 presents the global pruning step.

4.6 Element Load and Store Statements
Our analysis implements the standard pointer analysis treatment of arrays: Array ele-
ments are treated as a special field of array objects and always have weak store seman-
tics. The analysis does not differentiate between different indices. This treatment can
cause imprecision for operations such as vector removes that move a reference from
one array element to another. Our implementation uses a special analysis to identify
array store operations that acquire an object reference from an array and then create a
reference from a different element of that array to the same object. Because the graph
already accounts for this reachability, the effects of such stores can be safely omitted.

4.7 Return Statement
Return statements are of the form return x and return the object referenced by x.
Each reachability graph has a special Return variable that is out of program scope. At
a method return the transfer function assigns the Return variable to the references of
variable x. We assume without loss of generality that the control flow graph has been
modified to merge the control flow for all return statements.

4.8 Control Flow Join Points
To analyze a statement, the analysis first computes the join of the incoming reachability
graphs. The operation for merging reachability graphs r0 and r1 into rout follows below:
1. The set of variables for rout is the set of live variables into the statement.
2. The set of heap nodes for rout is the union of the heap nodes in the input graphs. The

union of the reachability states is taken, ANout(n) = AN0 (n) ∪ AN1 (n).
3. The set of reference edges for rout is the union of the reference edges of the input

graphs. Reference edges are unique in a reachability graph with respect to source,
field, and destination. For a reference edge e, AEout(e) = AE0 (e) ∪ AE1 (e).

4.9 Global Pruning
When strong updates remove edges, the reachability states may become imprecise. The
call site transfer function in Section 5 can also introduce imprecise reachability states.
Our analysis includes a global pruning step that uses global reachability constraints
to prune imprecise reachability states to improve the precision of the analysis results.

12

The intuition behind global pruning is that multiple abstract states can correspond to
the same set of concrete heaps, and the global pruning step generates an equivalent
abstraction that locally has more precise reachability states.
Global Reachability Constraints Reachability information must satisfy two reacha-
bility constraints that follow from the discussion in Section 3.3.
• Node reachability constraint: For each node n, ∀φ ∈ AN (n), ∀〈n′, µ〉 ∈ φ, if
µ ∈ {1, MANY} then there must exist a set of edges e1, . . . , em such that φ ∈ AE(ei)
for all 1 ≤ i ≤ m and the set of edges e1, . . . , em form a path through the reachability
graph from n′ to n.
• Edge reachability constraint: For each edge e, ∀φ ∈ AE(e) there exists n ∈ N and
e1, . . . , em ∈ E such that φ ∈ AN (n); φ ∈ AE(ei) for all 1 ≤ i ≤ m; and the set of
edges e1, . . . , em form a path through the reachability graph from e to n.

The first phase of the algorithm generates a reachability graph with the most precise
set of reachability states for the nodes. The second phase of the algorithm generates the
most precise set of reachability states for the edges.
1. Improve the precision of the node reachability states: The algorithm first uses
the node reachability constraint to prune the reachability states of nodes. This phase
uses the existing AE to prune reachability tuples from imprecise reachability states to
generate a more preciseAN ′ from the previousAN . The algorithm iterates through each
flagged node nf . The function AEf (e) maps the edge e ∈ E to the set of reachability
states Φ for which each φ ∈ Φ (1) includes a non-zero arity reachability tuple with the
node nf and (2) there exist a path from nf to e for which every edge along the path
contains φ in its set of reachability states. We computeAEf using a fixed-point algorithm
on the following two constraints:

∀e ∈ Ee(nf),AEf (e) ⊇ AE(e), (4.21)

∀e ∈ E, e′ ∈ Ee(dst(e)),AEf (e′) ⊇ AE(e′) ∩ AEf (e). (4.22)

For each node n and each reachability state φ ∈ AN (n) the analysis shortens φ to
remove tuples nf or n∗f to generate a new reachability state φ′ if φ does not appear in
AEf (e) of any edge e incident to n. This step does not prune nf or n∗f from the reacha-
bility states of flagged nodes nf . The analysis then propagates these changes to AE of
the upstream edges using the same propagation procedure described by Equations 4.15
and 4.16 to generate AEr .
2. Improve the precision of the edge reachability states: The algorithm next uses the
pruned node reachability states inAN ′ andAEr to generate a more preciseAE ′. The in-
tuition is that an edge can only have a given reachability state if there exists a path from
that edge to a node with that reachability state such that all edges along the path contain
the reachability state. The analysis starts from every heap node n and propagates the
reachability states of AN (n) backwards over reference edges. The analysis initializes
AE ′ = {AEr (e)∩AN ′(n) | ∀e ∈ E,n = dst(e)}. The analysis then propagates reach-
ability information backwards to satisfy the constraint:AE ′(e) ⊇ AEr (e)∩AE ′(e′) for
all e′ ∈ Ee(dst(e)). The propagation continues until a fixed-point is reached.

4.10 Static Fields
We have omitted analysis of static fields or globals. We assume that the preprocessing
stage creates a special global object that contains all of the static fields and passes it to

13

every call site. Through this semantics-preserving program transformation, static field
store and load statements become normal store and load statements, respectively.

5 Interprocedural Analysis
The interprocedural analysis adds a call site transfer function to the intraprocedural
analysis. It uses a standard fixed-point algorithm that accomodates recursive call chains
and begins by analyzing the main method. Our analysis processes each method using
one context that summarizes the heaps for all call sites.

We expose only the callee reachable portion of the caller’s heap when analyzing a
callee method, similar to previous work [17, 18] but with extensions to accommodate
reachability properties. A summary of the transform follows:

i) Compute the portion of the heap that is reachable from the callee.
ii) Rewrite reachability states to abstract flagged heap nodes that are not in the callee

heap with special out-of-context heap nodes.
iii) Merge this portion of the heap with the callee’s current initial graph. If the graph

changes, schedule the callee for reanalysis.
iv) Specialize the callee’s current analysis result using the caller context.
v) Replace the callee reachable portion of the caller’s heap with the specialized callee

results.
vi) Merge nodes such that each allocation site has at most one summary heap node and

one single object heap node.
vii) Call the global pruning step introduced in Section 4.9 to improve the precision of

the caller reachability graph.

5.1 Compute Callee Context Subgraph
For each call site, the analysis computes the subgraph Gsub ⊆ G that is reachable
from the call site’s arguments. For each incoming edge 〈n, f, n′〉 ∈ E into Gsub where
n /∈ Gsub and n′ ∈ Gsub, the analysis generates a new placeholder node np and a new
edge e′ = 〈np,R(n′)〉 where AE(e′) = AE(e). The placeholder node np serves as a
proxy flagged node for all reachability nodes in AN (n) during global pruning in the
callee context. For each incoming edge 〈v, n′〉 ∈ E into Gsub where n′ ∈ Gsub, the
analysis generates a new placeholder variable vp and placeholder edge ep = 〈vp, n′〉
where AE(ep) = AE(e).

5.2 Out-of-Context Reachability
Summarization presents a problem for any out-of-context flagged heap node nf /∈ Gsub
that appears in reachability states of an in-context heap node n ∈ Gsub. The interpro-
cedural analysis uses placeholder flagged nodes to rewrite out-of-context flagged heap
nodes in reachability states. Each heap node nf that appears in AN of a placeholder
node is (1) outside of the graph Gsub and (2) abstracts objects that can potentially reach
objects abstracted by the subgraph Gsub. The analysis replaces all such nodes in all in-
context reachability states with special out-of-context heap nodes for the allocation site.
There can be up to two out-of-context heap nodes per an allocation site: one is a sum-
mary node and one abstracts the most recently allocated object from the allocation site.

14

The purpose of these heap nodes is to allow the analysis of the callee context to summa-
rize in-context, single-object heap nodes without affecting out-of-context flagged heap
nodes that can reach objects in the callee’s reachability graph.

The analysis maps (1) the newest single-object heap node for an allocation site that
is out of the callee’s context to the special single-object out-of-context heap node and
(2) all other nodes for the allocation site that are out of the callee’s context for the heap
node to the special summary out-of-context heap node. The analysis stores this mapping
for use in the splicing step. These special out-of-context nodes serve as placeholders to
track changes to the reachability of out-of-context edges.

5.3 Merge Graphs
The analysis merges the subgraphs from all calling contexts using the join operation
from Section 4.8 to generate Gmerge. The analysis of the callee operates on Gmerge.

5.4 Predicates
The interprocedural analysis extends all nodes, edges, and reachability states in Gmerge
with a set of predicates. These predicates are included to prevent nodes and edges from
escaping to the wrong call site and are used to correctly propagate reachability states
in the caller. Predicates are comprised of the following atomic predicates, which can be
combined with logical disjunction (or):
• Edge e exists with reachability state φ in Gsub of the caller
• Node n exists with reachability state φ in Gsub of the caller
• Edge e exists in Gsub of caller
• Node n exists in Gsub of caller
• true

The caller analysis begins by initializing the predicates for all nodes, edges, and
reachability states to tautologies. For example, the initial predicate for a node n is that
the node n exists in the caller — this prevents node n from escaping to the wrong call
site. The initial predicate for a reachability state φ on node n is that node n exists in
Gsub of the caller with reachability state φ.

Store operations can change the reachability states of both edges and heap nodes.
When the propagation of a change set creates a new reachability state on a node or an
edge, the new state inherits the predicate from the previous state on the node or edge,
respectively. Object allocation operations can merge single-object heap nodes into the
corresponding summary node. In this case, predicates for the nodes are or’ed together.
Likewise, if the operation causes two edges to be merged, their predicates are also
or’ed together. Duplicated reachability states may also be merged and their predicates
are or’ed together.

Newly created nodes or edges are assigned the true predicate.

5.5 Specializing the Graph
The algorithm uses Gsub to specialize the callee heap reachability graph Gcallee. The
analysis makes a copy of the heap reachability graph Gcallee. It then prunes all elements
of the graph whose predicates are not satisfied by the caller subgraph Gsub. The callee
predicates of each heap element in Gcallee are replaced with the caller predicate for the
heap element in Gsub that satisfied the callee predicate.

15

If a reachability state contains out-of-context heap nodes, then the analysis uses the
stored mapping to translate the out-of-context heap nodes to caller heap nodes. The
stored mapping may map multiple heap nodes to the same out-of-context summary
heap node. If the arity of the reachability tuple for an out-of-context heap node was 1,
then the analysis generates all permutations of the reachability state using the stored
mapping from Section 5.2. If the arity was MANY, the analysis replaces the reachability
tuple with a set of reachability tuples that contains one tuple for each heap node that
mapped to the out-of-context summary node and that tuple has arity MANY.

5.6 Splice in Subgraph
This step splices the physical graphs together. The placeholder nodes are used to splice
references from the caller graph to the callee graph. The placeholder edges are used to
splice caller edges into the callee graph.

Finally, the reachability changes are propagated back into the out-of-context heap
nodes of the caller reachable portion of the reachability graph. The analysis uses pred-
icates to match the reachability states on the original edges from the out-of-context
portion of the caller graph into Gsub. The analysis generates a change set for each edge
that tracks the out-of-context reachability changes made by the callee. It then solves
constraints of the same form as Constraints 4.15 and 4.16 to propagate these changes to
upstream portions of the caller graph.

5.7 Merging Heap Nodes
At this point, the graph may have more than one single object heap node or summary
heap node for a given allocation site. The algorithm next merges all but the newest single
object heap node into the summary heap node. It rewrites all tokens in all reachability
states to reflect this merge, and then updates the arities.

5.8 Global Pruning
Finally, the analysis calls the global pruning algorithm to remove imprecision poten-
tially caused by our treatment of reachability from out-of-context heap nodes.

6 Evaluation
We have implemented the analysis in our compiler and analyzed eight OoOJava bench-
marks [14]. In OoOJava the developer annotates code blocks as tasks that the compiler
may decouple from the parent thread. OoOJava uses disjointness analysis combined
with other analyses to generate a set of runtime dependence checks that parallelize the
execution only when it can preserve the behavior of the original sequential code — an-
notations do not affect the correctness of the program. The analysis and benchmarks are
available at http://demsky.eecs.uci.edu/compiler.php.

6.1 Benchmarks
We analyzed and parallelized the following eight benchmarks. From Java Grande [19]
we ported all of the large benchmarks: RayTracer, a ray tracer; MonteCarlo, a Monte
Carlo simulation; and MolDyn, a molecular dynamics simulation. We also ported Crypt,
an IDEA encryption algorithm, from Java Grande. We ported KMeans, a data clustering
benchmark and Labyrinth, a maze-routing benchmark, from STAMP [20]. Power is a
power pricing benchmark from JOlden [21] and Tracking is a vision benchmark from
the SDVBS [22]. The benchmarks range from 5,669 to 1,846 lines of code, with an
average of 96.3 methods per benchmark.

16
Benchmark Time (s) Lines Speedup
Crypt 1.2 2,035 17.7×
KMeans 3.5 3,220 13.8×
Labyrinth 84.8 4,315 11.1×
MolDyn 13.8 2,299 13.8×
MonteCarlo 4.8 5,669 18.7×
Power 6.2 1,846 20.2×
RayTracer 22.1 2,832 20.0×
Tracking 331.2 4,747 20.2×

Fig. 5. Out-of-order Java Results (24 cores)

6.2 Disjoint Reachability Analysis Results
We next examine the reachability properties that the analysis extracted for our bench-
marks. We expect developers might examine the results for particular program points
to learn about possible sharing. For instance, disjoint reachability analysis reported that
iterations of the main loop in RayTracer reached a common scratchpad object which
prevented OoOJava from parallelizing the loop. The information allowed the authors to
move the scratchpad object into the loop scope to obtain a parallel implementation.

Section 4.6 states that disjoint reachability analysis does not differentiate between
array indices, however, it is common programming practice to store a parallelizable
workload in an array. Disjoint reachability analysis can provide sufficient precision for
parallelization in such a case by examining the disjoint reachability properties of an
object just after it is selected from an array, as shown in the example presented in Sec-
tion 2. We ported the array-based benchmarks using this simple pattern.

Labyrinth allocates Grid data structures in a way that makes it difficult for many
heap analyses to determine the inner loop for finding routes may be parallelized. The
main complication is that an array of Grid data structures is allocated in a separate
method and then Grid data structures are reused in each iteration of the inner loop for
calculating a route. OoOJava flags the allocation of Grid root objects; disjoint reach-
ability analysis then determines that, at the work division program point, the objects
that comprise a Grid data structure are only reachable from exactly one Grid data
structure root object. Determining statically that different tasks access unique Grid
objects is likely to be challenging for any static analysis and therefore purely static ap-
proaches are likely to fail. Instead, OoOJava generates a dynamic check that each task
has a unique Grid data structure root object that, combined with the static reachability
information, guarantees that there are no conflicts on the Grid data structures.

Power calculates the price of power in a simulated network; each major branch of
the network is modeled with a Lateral object that references a tree of Branch and
Leaf objects. Disjoint reachability analysis discovers that all Demand objects which
are written to during the simulation are reachable from at most one Lateral object.
This information allows OoOJava to parallelize the task by verifying the tasks operate
on different Lateral objects.

MolDyn allocates a collection of scratchpad data structures and gives one scratch-
pad data structure to each parallel task. In the main loop a second task aggregates the
results by reading all scratchpad objects. OoOJava flags the scratchpad root object;
disjoint reachability analysis concludes that all objects in the scratchpad data struc-
tures accessed by a parallel task are reachable from at most one scratchpad root object.

17

OoOJava therefore parallelized the main computation using a dynamic check on the
scratchpad data structures and serializes the aggregation steps.

The benchmarks Tracking, KMeans, Crypt, and Monte use different data structures
but have a common work division pattern: the main loop consists of a parallel phase
followed by an aggregation phase. The results of disjoint reachability analysis for each
of these benchmarks correctly informed OoOJava that the aggregation phases must be
serialized because they have actual data structure conflicts.

6.3 Parallelization Speedups
We used OoOJava to analyze and parallelize eight benchmarks on a 2.27 GHz Xeon.
OoOJava makes queries to disjoint reachability analysis when generating a parallel im-
plementation. We then executed our benchmark applications on a 1.9 GHz 24-core
AMD Magny-Cour Opteron with 24 cores and 16 GB of memory. Figure 5 presents
the speedups and the time column shows the analysis time. The speedups are relative to
the single-threaded Java versions compiled to C using the same compiler.

The significant speedups indicate that disjoint reachability analysis extracts reach-
ability properties with sufficient precision for OoOJava to generate efficient parallel
implementations. The speedups in Crypt, KMeans, Labyrinth and MolDyn are limited
by significant sequential dependences. RayTracer’s and MonteCarlo’s speedups were
impacted by task dispatch overheads. We compared our parallel implementations of
KMeans and Labyrinth to the parallelized TL2 versions included in STAMP, with and
without the additional overheads from array bounds checks in our compiler. With array
bounds checks our versions of KMeans and Labyrinth ran 1.70× and 1.51× faster than
TL2 versions, respectively, and without the checks they ran 2.62× and 2.08× faster.

To quantify the overhead of our research compiler, we compared the generated code
against the OpenJDK JVM 14.0-b16 and GCC 4.1.2. The sequential version of Crypt
compiled with our compiler ran 4.6% faster than on the JVM. We also developed a C++
version compiled with GCC and found our compiler’s version ran 25% slower than
the C++ version. Our compiler implements array bounds checking; with array bounds
checking disabled, the binary from our compiler runs only 5.4% slower than the C++
binary. We used the optimization flag -O3 for both the C++ version and the C code
generated by our compiler. This is in close agreement with more extensive experiments
we performed. Those experiments measured an average overhead for our compiler with
array bounds checks disabled of 4.9% relative to GCC.

7 Related Work
We discuss related work in heap analyses, logics, and type systems.

7.1 Shape Analysis
Disjoint reachability analysis discovers properties that are related to but different from
those discovered by shape analysis [3–7]. Shape analysis, in general, discovers local
properties of heap references and from these properties infers a rich set of derived prop-
erties including reachability and disjointness. Where shape analysis can find proper-
ties that arise from local invariants, disjoint reachability analysis can find the relative
disjointness and reachability properties for any pair of objects. Disjoint reachability
analysis complements shape analysis by discovering disjoint reachability properties for

18

Graph Vertex Vertexh v
v

Graph Vertex Vertexh v
c

c

c

c
v

(a) Concrete heap

n1
Graph

{[<n ,1>]}
1 c

h
v n3

{[<n ,1>,1

2

3

n2
Vertex

{[<n ,1>,
1

<n ,many>]}2
<n ,many>,
<n ,1>]}

(b) Reachability graph

Fig. 6. An example concrete heap with a reachability graph

arbitrarily complex structures. Calcagno et al. present a shape analysis that focuses on
discovering different heap properties [23].

We motivate our discussion of shape analysis with a concrete heap example. Fig-
ure 6(a) illustrates a simple concrete heap where a Graph can reach several Vertex
objects that all point to a graph-local Config object. We expect that many real pro-
grams construct data structures with sharing patterns similar to this example. A possible
reachability graph in Figure 6(b) contains enough information to show that Config
and Vertex objects are reachable from at most one Graph object. Some shape analy-
ses [3, 4] focus on local shape properties (is every node in a tree a valid tree node?) and
understandably lose precision with the above example or the singleton design pattern.
Singleton design patterns include references to globally shared objects. Some paralleliz-
able phases may not even access the shared object, but the presence of a shared object
will cause problems for many shape analyses. Our analysis can infer that operations on
different graphs that access both Vertex and Config objects may execute in parallel.
Note that this result is independent of the relative shape of Vertex objects in the heap.

Marron et al. extend the shape approach for more general heaps with edge-sharing
analysis [7, 24]. Their analysis can discover that the Vertex objects from different
Graph objects are disjoint. However, their edge-sharing abstraction is localized and
thus cannot always resolve non-local reachability properties.

TVLA [5] is a framework for developing shape analysis. Disjointness properties can
be written as instrumentation predicates in TVLA, but the system will evaluate them
using the default update rule, providing acceptable results only for trivial examples.
To maintain precision, update rules for the disjointness predicates must be supplied, a
task that we expect is equivalent in difficulty to disjoint reachability analysis. While
TVLA contains reachability predicate update rules, these cannot capture that an object
is reachable from exactly one member of a summarized node. Furthermore, the TVLA
framework does not scale to the size of our benchmarks.

Separation logic [12] can express that formulas hold on disjoint heap regions. Diste-
fano [25] proposes a shape analysis for linked lists based on separation logic. Raza [26]
extends separation logic with assertions to identify statements that can be parallelized.
These shape analyses based on separation logic are at an early stage and cannot extract
disjoint reachability properties for our examples.

7.2 Alias and Pointer Analysis
Alias analysis [8–10] and pointer analysis [1, 2], like disjoint reachability analysis, ana-
lyze source code to discover heap referencing properties. Aiken [11] is similar, but their
type system names objects by allocation site and loop iteration. Unlike our analysis,
their approach cannot maintain disjointness properties for mutation outside of the allo-
cating loop. Lattner [27] employs a unification-based pointer analysis that scales well,
but cannot maintain disjointness properties for data structures that are merged at a later

19

program point. Conditional must not aliasing analysis by Naik and Chatterjee et al. de-
scribe a modular points-to analysis that does not extract disjoint reachability properties,
but introduces an alternative approach to abstracting caller contexts [28].

7.3 Other Analyses and Type Systems
Sharing analysis [29] computes sharing between variables. Sharing analysis could not
determine disjoint reachability properties for the example in Figure 1 of our paper as it
would lose information about the relative disjointness of graphs in the array.

Connection analysis discovers which heap-directed pointers may reach a common
data structure [30]. There are a finite number of pointers in a program which implies
that connection analysis can only maintain a finite number of disjoint relations. For
example, connection analysis cannot determine that all of the Graph objects in our
paper’s example reference mutually disjoint sets of Vertex objects.

Ownership type systems have been developed to restrict aliasing of heap data struc-
tures [31, 32]. Our analysis infers similar properties without requiring annotations.

Craik and Kelly use the property of ownership among objects [33] to discover dis-
joint ownership contexts, similar to disjoint reachability properties. They do not attempt
to track side effects so their analysis, in comparison to disjoint reachability analysis, can
scale better but has significantly less precision.

8 Conclusion
If a compiler can determine that code blocks perform memory accesses that do not
conflict, it can safely parallelize them. Traditional pointer analyses have difficulty rea-
soning about reachability from objects that are abstracted by the same node. We present
disjoint reachability analysis, a new analysis for extracting reachability properties from
code. The analysis uses a reachability abstraction to maintain precise reachability infor-
mation even for multiple objects from the same allocation site. We have implemented
the analysis and analyzed eight benchmark programs. The analysis results enabled par-
allelization of these benchmarks that achieved significant performance improvements.

Acknowledgements

This research was supported by the National Science Foundation under grants CCF-
0846195 and CCF-0725350. We thank Mark Marron and the reviewers for feedback.

References

1. Shapiro, M., Horwitz, S.: Fast and accurate flow-insensitive points-to analysis. In: POPL.
(1997)

2. Landi, W., Ryder, B.G., Zhang, S.: Interprocedural modification side effect analysis with
pointer aliasing. In: PLDI. (1993)

3. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In: PLDI.
(1990)

4. Ghiya, R., Hendren, L.J.: Is it a tree, a dag, or a cyclic graph? A shape analysis for heap-
directed pointers in C. In: POPL. (1996)

20

5. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. TOPLAS
(2002)

6. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms. In: CAV.
(2005)

7. Marron, M., Kapur, D., Hermenegildo, M.: Identification of logically related heap regions.
In: ISMM. (2009)

8. Diwan, A., McKinley, K.S., Moss, J.E.B.: Type-based alias analysis. In: PLDI. (1998)
9. Ruf, E.: Partitioning dataflow analyses using types. In: POPL. (1997)

10. Deutsch, A.: Interprocedural may-alias analysis for pointers: Beyond k-limiting. In: PLDI.
(1994)

11. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In: POPL.
(2007)

12. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. LICS (2002)
13. Choi, J.D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural computation of

pointer-induced aliases and side effects. In: POPL. (1993)
14. Jenista, J.C., Eom, Y., Demsky, B.: OoOJava: An out-of-order approach to parallel program-

ming. In: HotPar. (2010)
15. Jenista, J.C., Eom, Y., Demsky, B.: OoOJava: Software out-of-order execution. In: PPoPP.

(2011)
16. Zhou, J., Demsky, B.: Bamboo: A data-centric, object-oriented approach to multi-core soft-

ware. In: PLDI. (June 2010)
17. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for procedure local

heaps and its abstractions. In: POPL. (2005)
18. Marron, M., Hermenegildo, M., Kapur, D., Stefanovic, D.: Efficient context-sensitive shape

analysis with graph based heap models. In: CC. (2008)
19. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel Java Grande benchmark suite. In: SC.

(2001)
20. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional ap-

plications for multi-processing. In: IISWC. (2008)
21. Cahoon, B., McKinley, K.S.: Data flow analysis for software prefetching linked data struc-

tures in Java. In: PACT. (2001)
22. Venkata, S.K., Ahn, I., Jeon, D., Gupta, A., Louie, C., Garcia, S., Belongie, S., Taylor, M.B.:

SD-VBS: The San Diego Vision Benchmark Suite. In: IISWC. (2009)
23. Calcagno, C., Distefano, D., OHearn, P., Yang, H.: Compositional shape analysis by means

of bi-abduction. In: POPL. (2009)
24. Marron, M., Méndez-Lojo, M., Hermenegildo, M., Stefanovic, D., Kapur, D.: Sharing anal-

ysis of arrays, collections, and recursive structures. In: PASTE. (2008)
25. Distefano, D., OHearn, P.W., Yang, H.: A local shape analysis based on separation logic.

LNCS (2006)
26. Raza, M., Calcagno, C., Gardner, P.: Automatic parallelization with separation logic. In:

ESOP. (2009)
27. Lattner, C., Adve, V.: Automatic pool allocation: improving performance by controlling data

structure layout in the heap. In: PLDI. (2005)
28. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: POPL. (1999)
29. Méndez-Lojo, M., Hermenegildo, M.V.: Precise set sharing analysis for Java-style programs.

In: VMCAI. (2008)
30. Ghiya, R., Hendren, L.J.: Connection analysis: A practical interprocedural heap analysis for

C. IJPP (1996)
31. Clarke, D.G., Drossopoulou, S.: Ownership, Encapsulation and the Disjointness of Type and

Effect. In: OOPSLA. (2002)

21

32. Heine, D.L., Lam, M.S.: A practical flow-sensitive and context-sensitive C and C++ memory
leak detector. In: PLDI. (2003)

33. Craik, A., Kelly, W.: Using ownership to reason about inherent parallelism in object-oriented
programs. In: CC. (2010)

22

Appendix

A Semantics for Intraprocedural Analysis

Define the concrete heap H = 〈O,R〉 as a set of objects o ∈ O and a set of references
r ∈ R ⊆ O × {Fields} × O. We assume a straightforward collecting semantics for
the statements in the control flow graph that are relevant to our analysis. The collecting
semantics would record the set of concrete heaps that a given statement operates on.

The concrete domain for the abstraction function is a set of concrete heaps h ∈
P(H). The abstract domain is defined in Section 3.2. The abstract state is given by the
tuple 〈E,AN ,AE〉, whereE is the set of edges,AN is the mapping from nodes to their
sets of reachability states, andAE is the mapping from edges to their sets of reachability
states. We next define the lattice for the abstract domain. The bottom element has the
empty set of edges E and empty reachability information for both the nodes AN and
the edgesAE . The top element for the lattice has (1) all the edges in E that are allowed
by type constraints between all reachability nodes, (2) each heap node n has tuples in
AN for the powerset of all heap nodes that are allowed by types to reach n, and (3)
each edge 〈n, f, n′〉 ∈ E has the powerset of the maximal set of tuples in AE that are
allowed by type constraints.

We next define the partial order for the reachability graph lattice. Equation A.1
defines the partial order. The definition for the ⊆4 relation between reachability states
is given in the Update Edge Reachability step of Section 4.5.

〈E,AN ,AE〉 vA 〈E′,AN
′
,AE ′〉 iff E ⊆ E′ ∧ 〈AN ,AE〉 v 〈AN ′,AE ′〉(A.1)

〈AN ,AE〉 v 〈AN ′,AE ′〉 iff ∀n ∈ N, ∀φ ∈ AN (n),∃φ′ ∈ AN ′(n),
φ ⊆4 φ′ ∧

(
∀〈n1, f1, n2〉, ..., 〈nk, fk, n〉 ∈ E,

φ ∈ AE(〈n1, f1, n2〉) ∩ ... ∩ AE(〈nk, fk, n〉)⇒
φ′ ∈ AE ′(〈n1, f2, n2〉) ∩ ... ∩ AE

′
(〈nk, fk, n〉)

)
(A.2)

The join operation (〈E1,AN 1,AE1〉 t 〈E2,AN 2,AE2〉) on the heap reachability
graph lattice simply takes the set unions of the individual components: 〈E1∪E2,AN 1∪
AN 2,AE1 ∪ AE2〉.

We next define several helper functions. Equation A.3 defines the meaning of the
statement that object o is reachable from the object o′ in the concrete heap R. We
define the object abstraction function rgn(o) to return the single object heap node for
o’s allocation site if o is the most recently allocated object and the allocation site’s
summary node otherwise. Equation A.4 returns the number of objects abstracted by
heap node nf that can reach the object o. Equation A.5 abstracts the natural numbers
into one of three arities. Equation A.6 computes the abstract reachability state for object
o in the concrete heap 〈O,R〉.

23

rch(o′, o, R) = ∃f, o1, f1, ..., ol, fl.〈o′, f, o1〉, ..., 〈oi, fi, oi+1〉, ...,
〈ol, fl, o〉 ∈ R (A.3)

count(o,O,R, nf) = | {o′ | ∀o′ ∈ O.rgn(o′) = nf , rch(o′, o, R)} | (A.4)

abst(n) =

0 n = 0
1 n = 1
MANY otherwise

(A.5)

φ(o,O,R) = {〈nf , abst(count(o,O,R, nf))〉 | nf ∈ NF } (A.6)

We next define abstraction functions that return the most precise reachability graph
for the set of concrete heaps h ⊆ P(H). We use the standard subset partial order-
ing relation for our concrete domain of sets of concrete heaps. Equation A.7 gen-
erates the edge abstraction, Equation A.8 generates the reachability state abstrac-
tion for each node, and Equation A.9 generates the reachability state abstraction for
each edge. Note that from the form of the definition of the abstraction function, we
can see that it is monotonic. We mechanically synthesize a concretization function
γ(〈E,AN ,AE〉) = t{h | α(h) @ 〈E,AN ,AE〉} to create a Galois connection. The
pair α and γ do not form a Galois insertion as two abstract reachability graphs can
have the exact same set of concretizations. The global pruning algorithm addresses the
practical effects on analysis precision of this issue by converting abstract reachability
graphs into equivalent graphs that contain locally more precise reachability states.

αE(h) = {〈rgn(o), f, rgn(o′)〉 | ∀〈o, f, o′〉 ∈ R,∀〈O,R〉 ∈ h} (A.7)
αAN (h) = {〈rgn(o), φ(o,O,R)〉 | ∀o ∈ O,∀〈O,R〉 ∈ h} (A.8)
αAE (h) = {〈〈rgn(o′), f, rgn(o′′)〉, φ(o,O,R)〉 | ∀o ∈ O,

∀〈o′, f, o′′〉 ∈ R,∀〈O,R〉 ∈ h.rch(o′′, o, R)} (A.9)

B Termination
Termination of the analysis is straightforward. Reachability graphs form a lattice, and
for a given set of allocation sites the lattice has a finite height. All transfer functions in
the analysis are monotonic except stores with strong updates and method calls. With a
simple modification to enforce monotonicity the analysis will terminate.

Our approach to enforcing monotonicity is to store the latest reachability graph
result for every back edge and program point after a method call. The fixed point inter-
procedural algorithm takes the join of its normal result with these graphs to ensure the
local result becomes no smaller.

C Soundness of the Core Intraprocedural Analysis
In this section, we outline the soundness of the core intraprocedural analysis. For all
soundness lemmas, we argue (α ◦ f)(h) vA (f# ◦ α)(h), where f represents the con-
crete operation and f# is the corresponding transfer function on the abstract domain,
to show soundness.

24

Lemma 1 (Soundness of Copy Statement Transfer Function). The transfer function
for the copy statement x=y is sound with respect to the concrete copy operation.

Proof Sketch: The soundness of the transfer function for the copy statement x=y is
straightforward. After the execution of the copy statement on the concrete heap, the
variable x references the object that y referenced before the statement. We note that
applying the abstraction function after the concrete copy statement yields the exact
same abstract reachability graph as applying the abstraction function followed by the
transfer function for the copy statement, therefore the copy transfer function is sound.

Lemma 2 (Soundness of Load Statement Transfer Function). The transfer function
for the load statement x=y.f is sound with respect to the concrete load operation.

Proof Sketch: The soundness of the transfer function for the load statement x=y.f is
also relatively straightforward. After the execution of the load statement on the concrete
heap, the variable x references the object referenced by the f field of the object refer-
enced by y. After abstraction, the edge for x would reference the same objects as the f
field of the objects referenced by y and have the same reachability set.

The soundness of the edge set transform follows from the definition of αE — all
objects that y.f could possibly reference are included in the set En(y, f). Therefore,
applying the abstraction function followed by removing the previous edges for x and
adding the set of edges {x} × En(y) gives an E set that contains all of the edges
generated by applying the transfer function and then abstraction function.

From the definition of αAE we can determine that for each n that could abstract
the object referenced by y and each corresponding n′ that could abstract the object
referenced by y.f, that the reference y.f could only reach objects with reachability
states included in the set AE(〈y, n〉) ∩ AE(〈n, f, n′〉). Note the subtle point that the
correctness of the intersection operation follows from the edge reachability aspect of
the abstraction function definition (and not from the lattice ordering) — there must
exist a path through the y reference and y.f to any objects that can be reached by the
new x and by the abstraction function both y and y.f will include the reachability
states of those objects. Therefore, the application of the abstraction function followed
by the transfer function generates a set of reachability states for edges of y that include
all of the reachability states generated by applying the concrete load statement followed
by the abstraction function.

Lemma 3 (Soundness of Allocation Statement Transfer Function). The transfer
function for the allocation statement x=new is sound with respect to the concrete allo-
cation operation.

Proof Sketch: The transfer function for the allocation statement is similarly straightfor-
ward. The execution of the allocation statement on the concrete heap followed by the
abstraction function yields an abstract reachability graph in which the previous newest
allocated object at the site is now mapped to the summary node. The allocation state-
ment transfer function applied to the abstraction function yields the exact same reacha-
bility graph and therefore the transfer function is sound.

If the allocation site is flagged, the new heap node has a single reachability state that
contains a single reachability token with its own heap node and the arity 1. The variable

25

edge contains the same set of reachability states. If the allocation site is not flagged, the
sets of reachability states contains only the empty reachability state.

Lemma 4 (Soundness of Store Statement Transfer Function). The transfer function
for the allocation statement x.f=y is sound with respect to the concrete store opera-
tion.

Proof Sketch: We define ox to be the concrete object referenced by x and oy to be the
concrete object referenced by y. The store operation can only add new paths in the
concrete heap that include the newly created reference 〈ox, f, oy〉. In the abstraction,
En(x) gives the heap nodes that abstract the objects that x may reference and En(y)
gives the heap nodes that abstract the objects that y may reference. The concrete op-
eration x.f=y creates a reference from the f field of the object that x references to
the object that y references. Applying the abstraction function, the creation of this new
reference in all concrete heaps represented by the abstract heap adds a set of edges
Enew ⊆ En(x)×{f}×En(y) to the abstract heap. Since the application of the transfer
function to the initial abstraction adds a larger set of edges, it generates an abstract edge
set that is higher in the partial order and therefore our treatment of edges in the store
statement is sound.

We next discuss the soundness of the transfer function with respect to the reacha-
bility states for nodes. We note that the addition of the concrete reference can only (1)
introduce new reachability from objects that could reach ox to objects that oy can reach
and (2) allow edges that could reach ox to reach objects that oy can reach. The set Ψx
defined in Equation 4.10 abstracts the reachability states for the objects that can reach
ox by the abstraction function. Similarly, Ψy from Equation 4.11 abstracts the allocation
sites for the objects that can reach the objects downstream of oy.

By the abstraction function and the partial order, if an object abstracted by a heap
node ny ∈ En(y) can reach an object abstracted by the heap node n′ with the abstract
reachability state φ, then there must exist a path of edges from ny to n′ ∈ N in the
abstract reachability graph in which every edge along the path has φ in its set of reach-
ability states and n′ has φ in its set of reachability states and φ ∈ Ψy. By the abstraction
function, the set of reachability states ψx ∈ Ψx for nx abstract ox’s reachability from
all objects from flagged nodes. Therefore, the constraints given by Equations 4.12 and
4.13 will propagate the correct reachability change set to n′ and Equation 4.14 applies
these reachability changes to n′. This implies that the set of reachability states for the
nodes is higher or equal in the partial order of reachability graphs to the graph gener-
ated by applying a concrete operation followed by abstraction and therefore the node
reachability states are sound.

We next discuss soundness with respect to edges that are upstream of the objects
downstream of oy in the pre-transformed concrete heap. Consider an object o abstracted
by the heap node n that the store operation changed its reachability state from φ to φ′.
By the abstraction function and partial order function, for any reference in the concrete
heap, which we abstract by e, that can reach an object abstracted by the heap node n,
there must exist a path of edges from e to n in the pre-transformed heap in which φ is
in the reachability state of each edge along the path. Therefore, Constraints 4.15 and
4.16 propagate the reachability change tuple 〈φ, φ′〉 to e which Equation 4.19 will then
apply to e and all edges along the path from e to e′.

26

Finally, we discuss soundness with respect to edges upstream of ox that the newly
created edge allows to reach objects downstream of oy. Consider any upstream reference
in the concrete heap, which we abstract by the edge e that can reach an object abstracted
by the heap node nx ∈ En(x) — any reachability state it has for the source object of
the store must be abstracted by φ ∈ Ψx in pre-transformed abstract reachability graph
and there must exist a path of edges from e to nx such that φ is in the reachability state
of every edge along the path. Therefore, Constraints 4.17 and 4.18 propagate the new
reachability change tuples {〈φ, φ ∪ ψy〉 | ψy ∈ Ψy} to e and Equation 4.19 will then
apply the change tuple to e.

At this point, only the new edge remains. Constraint 4.20 simply copies the reach-
ability states from the edge for y whose reachability must be the same. It eliminates
reachability states that are smaller in the partial order than any state in the source node
as they must be redundant with some larger state. The previous three paragraphs imply
that the set of reachability states for edges are higher or equal in the partial order of
reachability graphs to the graph generated by applying a concrete operation followed
by abstraction and therefore the edge reachability states are sound.

Lemma 5 (Soundness of Global Pruning Transformation). The global pruning
transformation is sound (it generates an abstraction that abstracts the same concrete
heaps).

Proof Sketch: We begin by overviewing the soundness of the first phase of the global
pruning algorithm. Consider a flagged heap node nf and a node n that contains nf in its
reachability state φ with non-0 arity. From the abstraction function and partial order, if
there is no path from nf to nwith φ in each edge’s set of reachability states, then objects
in the reachability state φ cannot be reachable from objects abstracted by nf . Therefore,
removing nf from the reachability set φ on n and adding this new reachability set to
all edges that (1) have φ in their reachability state and (2) have a path to n in which all
edges along the path have φ in their reachability state generates an abstract reachability
graph that abstracts the same concrete heaps and therefore the first phase is sound.

We next discuss the soundness of the second phase. Consider an edge e with a
reachability state φ. If there is no path from edge e to some node n with all edges along
the path containing φ in their sets of reachability states and node n including φ in its set
of reachability states, then dropping φ from edge e’s set of reachability states yields an
abstract state that abstracts the same concrete heaps because if a reference abstracted by
e could actually reach an object with the reachability state φ then the path would exist.
Therefore, the second phase is sound.

D Interprocedural Analysis
We next outline the soundness of the interprocedural analysis. There is a small issue in
the interprocedural analysis with the abstraction function for single-object heap nodes.
It is possible to have a callee method that only conditionally allocates an object at an
allocation site that the caller has a single-object heap node for. The mapping procedure
will then merge the caller’s single-object heap node into the summary node even though
it may abstract the most recently allocated object from the site. One can see that this
does not pose a correctness issue through a simple transform of the program that adds

27

a special instruction at each method return that allocates an unreachable object at the
given allocation site if the callee did not. It is straightforward to see that such a transform
preserves the semantics of the program because it does not change the reachable runtime
object graph and after this transform the abstract semantics exactly match the concrete
program.

We outline the soundness of the interprocedural analysis by analogy to the intrapro-
cedural analysis with inlining. We note that the callee operates on a graph that is a
superset of the callee reachable part of the heap. If we consider only those elements
that are in the callee reachable part of the heap, the analysis (1) generates a reachability
subgraph that is greater in the partial order than the reachability graph that the inlined
version would have and (2) all of those elements get mapped to the caller’s heap. We
note that reachability state changes on the placeholder edges and edges from place-
holder nodes summarize the reachability changes of upstream edges and are sound for
the same reasons as the store transfer function.

