
Disjointness Analysis for Java-Like Languages

James Jenista Brian Demsky

Abstract
This paper presents a disjointness analysis for Java-like lan-
guages. Two objects are disjoint if the parts of the heap
reachable from the two objects are disjoint. The analysis is
based on static reachability graphs, which characterize the
reachability of each object in the heap from a set of objects
of interest. Reachability graphs contain nodes to represent
objects and edges to represent heap references. The graphs
are annotated with sets of reachability states that describe
which objects can reach other objects. The analysis includes
a global pruning step which analyzes the entire reachability
graph to prune impossible reachability states that cannot be
removed with local information alone.

We have developed an implementation of the analysis and
have evaluated the implementation on several benchmarks.
We examined the analysis results to verify that the analysis
reported all known aliases.

1. Introduction
This paper introduces a static analysis that discovers dis-
jointness properties for select objects in Java-like languages.
Two objects are disjoint if the parts of the heap reachable
from each object are disjoint. While other analyses like alias
analysis (Banning 1979; Cooper and Kennedy 1989; Diwan
et al. 1998; Ruf 1997), pointer analysis (Shapiro and Hor-
witz 1997; Landi et al. 1993; Weihl 1980; Burke et al. 1995),
and shape analysis (Chase et al. 1990; Ghiya and Hendren
1996b; Sagiv et al. 2002) also extract heap reference proper-
ties from a program’s source, disjointness analysis answers a
different question: Given that two objects (possibly from the
same allocation site) are determined to be distinct at runtime
or through other means, are the parts of the heap reachable
from these two objects disjoint?

Our analysis is based on reachability graphs, which di-
vide the heap into disjoint regions and characterize for each
region the set of heap regions with objects that can reach

[Copyright notice will appear here once ’preprint’ option is removed.]

the given region. The analysis is interprocedural and com-
positional. The analysis processes a method once for a given
aliasing context and uses the summarized analysis results for
future calling contexts; recursive methods may require ana-
lyzing a method multiple times until a fixed-point is reached.

1.1 Uses for Disjointness
We have used disjointness analysis to automatically generate
parallelized implementations of programs written using in
a task-based extension to Java called Bamboo. Disjointness
analysis can extract fundamental referencing properties from
object-oriented programs and therefore is likely to have a
wide range of applications.

Disjointness results are useful for determining whether
code can be parallelized. For example, to execute two serial
method calls p(r) and q(s) in parallel, it is necessary to de-
termine that they do not have any conflicting data structure
accesses. If the objects referenced by r and s are allocated at
the same allocation site, it is difficult for many pointer anal-
ysis to determine whether they reference disjoint data struc-
tures. If disjointness analysis determines that the parameter
objects referenced by r and s of the two calls are mutually
disjoint, checking that r 6= s suffices to ensure that the two
calls cannot access the same data (by following any fields of
r or s) and therefore can be safely executed in parallel.

Disjointness analysis results can also help software de-
velopers discover important data structure invariants that
a program maintains. For example, developers often make
changes to legacy code that cause it to modify parts of ex-
isting data structures in new ways. One potential concern
is whether those parts can be shared with other data struc-
tures and therefore affect other parts of the program. Dis-
jointness analysis extracts information that tells program-
mers which parts of a data structure may be shared with other
data structures and could therefore help the developer deter-
mine whether such modifications are safe.

1.2 Basic Approach
The analysis represents reachability information with reach-
ability graphs. Reachability graphs contain label nodes that
represent program labels and heap region nodes that rep-
resent disjoint collections of objects. These nodes are con-
nected with edges that represent heap references. We say
that one object can reach a second object if there exists a
path of references in the reachability graph from the first

1 2009/11/23



object to the second object. A reachability state for an ob-
ject gives the heap region nodes of the objects that can reach
the given object. The reachability state contains an arity for
each heap region node which constrains how many objects
from that heap region can reach the given object. The anal-
ysis annotates heap region nodes with sets of reachability
states that describe what objects can reach the given object.
The analysis annotates edges with sets of reachability states
that give the possible reachability states for the objects that
can be reached from that edge. The analysis can determine
that two objects are disjoint if they do not appear together in
any reachability states of a reachability graph.

Our analysis is compositional — it analyzes each method
once to produce a reachability graph. Future call sites to the
method use the previously computed reachability graph.

The analysis can perform strong updates in certain cases.
The analysis includes a global pruning step that globally ana-
lyzes the reachability graph to prune impossible reachability
states that cannot be removed with just local knowledge. The
global pruning step primarily serves to improve the precision
of reachability information after strong updates and method
calls.

1.3 Contributions
The paper makes the following contributions:
• Disjointness Analysis: It presents a new compositional

disjointness analysis that can discover heap reachability
properties for objects of interest.

• Selective Analysis: The analysis client can flag the set
of object allocation sites for the objects whose disjoint-
ness information is of interest. The analysis only analyzes
reachability information for the objects of interest.

• Global Pruning: It introduces a global pruning step that
globally analyzes the reachability graph to remove impos-
sible reachability states that cannot be removed with just
local knowledge.

• Experimental Results: It presents experimental results
from a prototype implementation of the analysis. The re-
sults show that the analysis successfully discovers dis-
jointness properties for our benchmarks.
The remainder of the paper is organized as follows. Sec-

tion 2 presents an example that illustrates how the analysis
operates. Section 3 presents the program representation and
the reachability graph. Section 4 presents the intraprocedu-
ral analysis. Section 5 presents the interprocedural analysis.
Section 6 presents an extension to the intraprocedural analy-
sis that reasons about reachability at the variable granularity.
Section 7 presents an evaluation of the analysis on several
benchmarks. Section 8 presents related work; we conclude
in Section 9.

2. Example
In this section we present an example to illustrate how our
analysis works. Figure 1 presents an example that constructs

several graphs and then runs a graph analysis that mod-
ifies information stored in the graph nodes. The method
graphLoop populates an array with graph objects that are
fully constructed by makeGraph. Our analysis will show that
the objects reachable from a Graph object constructed in
the loop are disjoint from objects reachable from the other
Graph objects allocated in the same loop. This information
could be used to parallelize the iterations of the second loop
in conjunction with a simple dynamic check; if the iterations
operate on different Graph objects at run-time, then our anal-
ysis results imply that the methods operate on disjoint sets of
objects.

1 public void makeGraph(Graph graph) {

2 Node s = new Node();

3 Node t = new Node();

4 s.f = t;

5 t.f = s;

6 graph.node = s;

7 }

8

9 public void graphLoop() {

10 Graph[] a = new Graph[nGraphs];

11 for(int i=0; i<nGraphs; i++) {

12 Graph g = new Graph();

13 makeGraph(g);

14 a[i] = g;

15 }

16 for(int i=0; i<nGraphs; i++) {

17 analyzeGraph(a[i]);

18 }

19 }

Figure 1. Graph Example

We begin with an intraprocedural analysis of the
makeGraph method. Figure 2(a) presents the analysis results
for the example at the beginning of the makeGraph method.
The ellipse labeled graph represents the parameter variable
graph. The rectangular heap region node labeled ID1 repre-
sents the first parameter object. The shading of the node rep-
resents that the analysis must compute reachability informa-
tion from this node. The set {[1]} indicates that the objects
represented by this heap region node have the reachability
state [1]. The reachability state [1] means that objects with
this reachability state may be reachable from heap region
node ID1. The edge from the label node graph to the heap
region node ID1 indicates that the label graph may reach
an objects within the heap region ID1. The set {[1], [2]} on
this edge indicates that the edge models a heap reference that
may reach objects in the reachability states [1] and [2].

The rectangular heap region node labeled ID2 represents
the part of the caller’s heap reachable from the first param-
eter object. The chords on the corners of the node indicate
that the heap region may represent multiple objects. The re-
flexive edge on the heap region node labeled ID2 indicates
that objects in this heap region can reference other objects
in the same heap region. The set {[2]} on this edge indicates
that the edge models a heap reference that may reach objects
in the reachability state [2].

2 2009/11/23



graph

ID1
param
{ [1] }

{ [1],[2] }

ID2
param
{ [2] }

node
{ [2] }

Rflx
{ [2] }

(a) Reachability
graph after line 1

graph

ID1
param
{ [1] }

{ [1],[2] }

ID2
param
{ [2] }

node
{ [2] }

Rflx
{ [2] }

ID4
alloc line 3

Node
0 oldest

{ [] }

ID3
alloc line 2

Node
0 oldest

{ [] }

t

{ [] }

s

{ [] }

(b) Reachability graph after line 3

ID1
param
{ [1] }

ID3
alloc line 2

Node
0 oldest
{ [1] }

node 
{ [1] }

ID2
param
{ [2] }

Rflx
{ [2] }

ID4
alloc line 3

Node
0 oldest
{ [1] }

f
{ [1] }

f
{ [1] }

t

{ [1] }

graph

{ [1] }

s

{ [1] }

(c) Reachability graph after line 6

Reference Edge

Heap Region Node
containing Flagged Object

Multiple-Object
Heap Region Node

Single-Object
Heap Region Node

Label Node

Figure 2. Intraprocedural Reachability Graphs for
makeGraph

Figure 2(b) presents the reachability graph immediately
after line 3. Two new label nodes have been created for s
and t that have references to heap regions ID3 and ID4, re-
spectively. These heap regions are associated with the allo-
cation site that allocated the objects. Heap regions ID3 and
ID4 have no chords as they represent the most recently allo-
cated object at the corresponding allocation sites. They are
labeled with the corresponding allocation site. The analysis
uses a k-limited abstraction for the allocation sites — these
nodes are marked as the zeroth oldest, or newest node from
the allocation sites.

As in Figure 2(a), the heap region nodes ID1 and ID2 are
shaded. Shaded heap regions are flagged; heap regions are
flagged only when they may contain objects in which the
analysis client is interested in finding disjointness informa-
tion about. The empty reachability state in the set of reach-
ability states for heap regions ID3 and ID4 implies that no
objects from flagged heap regions can reach heap regions
ID3 and ID4 at this program point.

Figure 2(c) shows the reachability graph at the exit of the
makeGraph method. Lines 4, 5, and 6 create reference edges
〈ID3, f, ID4〉, 〈ID4, f, ID3〉, and 〈ID1, node, ID3〉, respec-
tively. Note that the set of reachability states for ID1 remains
{[1]} and therefore the final reachability graph shows that
the method does not change the reachability states of the pa-
rameter objects.

ID5
alloc line 10

Graph[]
0 oldest

{[]}

ID6
alloc line 12

Graph
0 oldest

{[6]}

element
{[6]}

ID9
alloc line 12

Graph
summary

{[9]}

element
{[9]}

ID7
alloc line 2

Node
0 oldest

{[6]}

node
{[6]}

ID8
alloc line 3

Node
0 oldest

{[6]}

f
{[6]}

ID10
alloc line 2

Node
summary

{[9]}

node
{[9]}

ID11
alloc line 3

Node
summary

{[9]}

f
{[9]}

f
{[6]}

f
{[9]}

a

{[6],[9]}

g

{[6]}

Figure 3. Reachability graph for graphLoop after line 15
At this point, the makeGraph method has been fully

analyzed and its results are available for analyzing
the graphLoop method. By inspection, it is clear that
graphLoop populates an array with references to graphs that
are disjoint. In Figure 3 the array object is represented by a
single-object heap region ID5, and the result of assigning its
elements is to create a reference edge that acts like a member
field with the special label element. Element references are
not removed by strong updates.

The analysis combines information about allocated ob-
jects that are older than the k-limit into a per allocation
site, multiple-object, summary heap region node. Figure 3
shows that label node g always references the newest allo-
cated Graph object. The objects that are allocated in line 12
are flagged so the heap region nodes for that allocation site
are shaded.

Consider this reachability graph without reachabil-
ity states on edges or nodes. The reference edge
〈ID9, node, ID10〉 could represent references from disjoint
pairs of objects from heap regions ID9 and ID10 or it could
represent more than one object from the heap region ID9

3 2009/11/23



referencing the same object from ID10. Because the set
of reachability states for heap region ID10 only contains a
reachability state with a single token [9] it is clear that any
object in that region is reachable only from at most one ob-
ject in heap region ID9. If two different Graph objects repre-
sented by the summary node ID9 could reference the nodes
ID10 and ID11, the nodes ID10 and ID11 would contain
the reachability state [9∗], where 9∗ means that multiple
objects in the summary node ID9 can reach an object repre-
sented by the heap region node. Therefore, this reachability
graph implies that Graph objects from the allocation site in
line 12 reference disjoint heap regions. This extra reacha-
bility information is the key difference between disjointness
analysis and pointer analysis — disjointness analysis uses
this reachability information to determine distinct disjoint-
ness properties for objects that are represented by the same
node in the disjointness graph.

3. Analysis Representations
This section presents the representation of the input for the
analysis and the representation of the reachability graph.

3.1 Program Representation
The analysis takes as input a control flow graph intermedi-
ate representation for each method; edges indicate control
flow and all program statements have been decomposed into
statements relevant to the analysis: copy statements, load
statements, store statements, object allocation statements,
and method invocation statements.

We define for a statement st in a method’s control flow
graph:
- •st is the program point just before st
- st• is the program point just after st
- parents(st) is the set of statements that may flow to st

- children(st) is the set of statements that st may flow to.
For each method m there is a single entry statement

entry(m) and a set of return statements returns(m).

3.2 Reachability Graph Elements
Label nodes represent the values of program variables —
there is exactly one label node l ∈ L for each program
variable. Heap region nodes represent objects in the heap.
Their properties are listed below:
• Heap region nodes can bound a single object or multiple

objects. Multiple-object heap region nodes have chords
across each corner in visualized reachability graphs.

• Flagged heap regions contain objects that the analysis
is interested in tracking the disjointness properties of or
reachability from. These regions are shaded in visualized
reachability graphs.

• A heap region associated with a parameter is marked with
the parameter’s index.

• We use a k-limited approximation for heap regions as-
sociated with an allocation site. The most recent k ob-

jects at an allocation site are assigned their own single-
object heap region node, and all older object allocations
are mapped to the summary node for the allocation site.
The set of all heap region nodes n ∈ N for the method m

is given by Equation 1.

n ∈ N := Allocation sites× {0, 1, . . . , k} ∪NP (1)
np ∈ NP := Parameter nodes for the method m (2)

The set of flagged heap region nodes to track reachability
of is given by Equation 3.

nf ∈ NF := Flagged allocation sites ⊆ N (3)

Reference edges e ∈ E are of the form 〈l, n〉 or 〈n, f, n′〉.
The heap region node or label node that reference edge e
originates from is given by src(e). The heap region node e
refers to is given by dst(e). Every reference edge between
heap region nodes has an associated field f ∈ F , including
element access or the special field type F that matches all
fields, as given in Equation 4. The special field Ff indicates
that the edge represents a possible caller context reference
for field f and exempts the edge from adding new edges into
a caller’s reachability graph in the interprocedural mapping
procedure.

The field f refers to is given by field(〈n, f, n′〉).

f ∈ F := Fields ∪ [] ∪ F ∪ Ff (4)

The initial reflexive edge on a parameter heap region
always has the F field and is specially marked Rlfx. The
marking is required so that, for any particular invocation, a
parameter object can be arbitrarily dereferenced to get an
internal object by taking the reflexive edge. However, the
Rlfx marking exempts the edge from adding new edges into
a caller’s reachability graph in the interprocedural mapping
process.

The set of reference edges E in a reachability graph is
given by Equation 5.

E ⊆ N × F ×N ∪ L×N (5)

We define five convenience functions for reachability
graph elements given by Equation 10.

E(l) = {n | 〈l, n〉 ∈ E} (6)
E◦(l) = {〈l, n〉 | 〈l, n〉 ∈ E} (7)
E(n) = {n′ | 〈n, f, n′〉 ∈ E} (8)

E(l, f) = {n′ | 〈l, n〉, 〈n, f, n′〉 ∈ E} (9)
E◦(l, f) = {〈n, f, n′〉 | 〈l, n〉, 〈n, f, n′〉 ∈ E} (10)

3.3 Reachability Annotations
This section describes how the analysis extends the basic
graph representation of the heap with a set of reachability

4 2009/11/23



annotations. A token ηn is the symbol of a heap region
node n that we are interested in the disjointness properties
of. A token tuple 〈η, µ〉 ∈ M is a token and arity pair
where the arity value µ in this analysis is taken from the set
{ZERO, ONE, ZERO-OR-MORE}. The arity gives the number of
objects from a given heap region that can reach the relevant
object. Our notation for token tuples is to write just the token
η for the arity ONE or η∗ for the arity ZERO-OR-MORE. Token
tuples with arity ZERO are not written explicitly.

A reachability state φ ∈ Φ contains exactly one token
tuple for every distinct token, and when written omits token
tuples with arity ZERO. For example, the reachability state
φn = [ηn1 , η

∗
n2

] ∈ Φn at some heap region node n indicates
that it is possible for at most one object in heap region n1,
zero-or-more objects from heap region n2 and exactly zero
objects from all other heap regions to reach the objects of
heap region n. This reachability state implies that objects
from heap regions n1 and n2 are not disjoint.

The function α(n) → 22M

maps a heap region node n
to sets of possible reachability states. The reachability of an
object represented by the heap region node n is described
by one of the reachability states given by the function α.
Two heap regions n1 and n2 are definitely disjoint in a
reachability graph if there is no heap region node n whose
set of reachability states contains a reachability state with
both ηn1 and ηn2 with non-ZERO arity. We represent the
function α as a set of tuples. We define the helper function

α(n) = {φ | 〈n, φ〉 ∈ α}. (11)

The function β(e)→ 22M

maps a reference edge e to sets
of reachability states that are possible for objects accessible
through e. We represent the function β as a set of tuples. We
define the helper functions

β(l) = {φ | 〈〈l, n〉, φ〉 ∈ β}, (12)
β◦(l) = {〈〈l, n〉, φ〉 | 〈〈l, n〉, φ〉 ∈ β}, (13)
β(e) = {φ | 〈e, φ〉 ∈ β}. (14)

The analysis maintains the invariant that for heap region
node n with φ ∈ α(n), an edge e that can reach an object o
represented by n whose reachability state is represented by
φ must have φ ∈ β(e), and φ ∈ β(e′) for every edge e′ along
the path from e to o.

4. Intraprocedural Analysis
The intraprocedural analysis of a method m begins by ini-
tializing the reachability graph associated with s• for each
statement s in m to the empty graph. Then entry(m) is
scheduled for analysis.

The reachability graphs associated with statements dur-
ing the intraprocedural analysis are a partial result r and may
be revisited many times. The analysis uses a standard fixed-
point algorithm which performs the following basic steps at
each statement:

1. Create a new, empty reachability graph, r′.
2. Merge each graph in parents(s) into r′. This represents

the reachability for •s.
3. Use the type of s to transform r′ as described below.
4. If r′ 6= r, r ← r′ and schedule children(s) for analysis.

4.1 Method Entry
The parameter information for a method m is contained in
a special statement that is always entry(m). We first de-
scribe how the analysis processes methods whose param-
eters are disjoint. We then extend the approach to handle
aliases between objects reachable from different parameters.
The transform for this statement creates, for each parame-
ter pi, a new single-object heap region node npi that repre-
sents the parameter object and a new multiple-object heap
region node nγi

that represents objects reachable from the
parameter object. Then a label node pi is added along with
reference edge 〈pi, npi〉. A special label qi that is out of the
program scope is also added with 〈qi, npi〉; the purpose of qi

is described in the discussion of method calls in Section 5.1.
Similarly, a special label ri that is out of the program scope
is also added with 〈ri, nγi〉. Finally, reference edges between
parameter nodes as described in Section 5 are added to sum-
marize the caller context reference edges..

Each method contains an aliasing context set Π that con-
tains the parameter indices for any parameters that may con-
tain aliases to or from other parameters. In this case, the anal-
ysis generates a single multiple-object heap region node nγΠ

for all parameters that may be aliased. The multiple object
heap nodes for each parameter in Π all refer to nγΠ . Each
parameter in the aliased context set has its own single-object
heap region node npi .

The statement entry(m) has no parent statements and
always generates the same reachability graph; therefore it
is analyzed once per intraprocedural method analysis.

4.2 Copy Statement
A copy statement of the form x = y makes the variable
x point to the object that y points to. The analysis always
uses strong updates for label nodes. The analysis models the
effect of this statement by discarding all the old references
from label x and then copying all the references from label
y. Equation 15 and Equation 16 give the transformations.

E′ = (E − E◦(x)) ∪ ({x} × E(y)) (15)
β′ = (β − β◦(x)) ∪ ({x} × β(y)) (16)

4.3 Load Statement
Load statements of the form x = y.f make the variable
x point to the object that y.f points to. The analysis uses
strong updates for the label node x. The reference edges
from the field, including the reachability information, are
copied to x. Note that this statement does not create any new
references for reachability information to flow across.

5 2009/11/23



E′ = (E − E◦(x)) ∪ ({x} × E(y, f)) (17)
β′ = (β − β◦(x)) ∪⋃

〈n,f,n′〉∈E◦(y,f)

{〈x, n′〉} × (
β(〈y, n〉) u β(〈n, f, n′〉)

)(18)

4.4 Store Statement
Store statements of the form x.f = y point the f field of the
object to which x points at the object to which y points. The
transform for store statements is broken into three steps:
1. Remove reference edges for strong updates.
2. Calculate reachability changes and propagate them.
3. Add reference edges to model the store operation.

While in general the analysis performs weak updates that
simply add edges, under certain circumstances the analysis
can perform strong updates that also remove edges to in-
crease the precision of the analysis results. Weak updates
are given in Equation 19.

E′ = E ∪ (E(x)× {f} × E(y)) (19)

Strong updates are possible under either of two condi-
tions. First, when label node x is the only reference to some
heap region node nu. In this case we can destroy all refer-
ence edges from nu with field f because no other label nodes
can reach nu.

The second condition for strong updates is when the label
node x references exactly one heap region node nw and nw

is a single-object heap region. When this is true x definitely
refers to the object in nw and the existing edges with field f
from nw can be removed.

Note that when reference edges are removed by a strong
update, reachability for any heap region node or reference
edge in the reachability graph may change if the removed
edge provided the reachability path. When a strong update
occurs, a global reachability sweep is used to prune impos-
sible reachability states following the completion of the store
statement transform. The global sweep is discussed in Sec-
tion 4.9.

The store statement creates reference edges between heap
region nodes and may create new reachability paths. There-
fore reachability must propagate in two ways when a store
statement creates a new reference edge enew. Heap region
nodes upstream of enew may now have a reachability path to
heap regions downstream of enew so new tokens may appear
in α information downstream. Additionally, β may change
for reference edges upstream of any heap region node whose
reachability changes.

For each heap region node nx ∈ E(x) and ny ∈ E(y):
• The set of source reachability states that x can contribute

is R = α(nx) ∩ β(〈x, nx〉).
• The set of reachability states reachable from y is O =

β(〈y, ny〉).

∪N 0 1 *
0 0 1 *
1 1 * *
* * * *

Table 1. Results of taking union of two input arity values.

• Define Cny
= {〈o, o ∪4 r〉 | o ∈ O, r ∈ R}, and

Cnx
= {〈r, o ∪4 r〉 | o ∈ O, r ∈ R}, where ∪4 takes the

union of two reachability states.
Recall that each token of the token tuples in a reacha-
bility state must be unique. When two reachability states
are combined, however, token tuples with matching to-
kens should merge arity values according to ∪N shown in
Table 1.
The second step of the store statement transform is to

propagate the reachability change tuple sets captured in Cnx

and Cny
. Intuitively, to update a set of reachability states the

first item in a change tuple must match an existing reacha-
bility state; if it does the second item should be added to the
set.

There are five phases to the propagation.
1. Calculate change function Λnode(n) for each heap region

node n that is reachable from ny using the two constraints

Λnode(ny) ⊇ Cny
, (20)

Λnode(n′) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λnode(n),
〈n, f, n′〉 ∈ E, φ ∈ β(〈n, f, n′〉)}. (21)

The implementation uses a fixed-point strategy to com-
pute a solution to these constraints.

2. Next, calculate the new reachability set for each heap
region n

α′(n) =α(n) ∪ {φ′ | φ ∈ α(n), 〈φ, φ′〉 ∈ Λnode(n)} ∪
{φ | φ ∈ α(n), @φ′.〈φ, φ′〉 ∈ Λnode(n)}. (22)

3. The analysis next computes the update for β from the
changes made to α. The change function Λedge satisfies
the two constraints:

Λedge(e) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λnode(dst(e)),
φ ∈ α(dst(e)), φ ∈ β(e)} (23)

Λedge(e) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λedge(e′),
φ ∈ βe, dst(e) = src(e′)} (24)

The implementation computes a solution for Λedge with a
fixed-point algorithm.

4. Similar to the previous phase, the analysis propagates
Cnx

upstream from nx using the change function Υedge.
Υedge satisfies the two constraints:

6 2009/11/23



Υedge(e) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Cnx
,

φ ∈ β(e), dst(e) = nx} (25)

Υedge(e) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Υedge(e′),
φ ∈ β(e), dst(e) = src(e′)} (26)

5. Finally, the analysis calculates the new reachability set
for edge e using Λedge(e) and Υedge(e)

β′(e) = β(e) ∪ {φ′ | 〈φ, φ′〉 ∈ Λedge(e), φ ∈ β(e)}
∪{φ′ | 〈φ, φ′〉 ∈ Υedge(e), φ ∈ β(e)}. (27)

After the propagation is completed, the analysis adds the
reference edges enew = {〈nx, f, ny〉 | nx ∈ E(x), ny ∈
E(y)}. The reachability states for a new edge must be (1) in
the set of reachability states for the edge 〈y, ny〉 and (2) must
be a superset or equal to some reachability state in α′(nx) as
nx can reach the new edge.

We give the formula for β′ for the new edge

β′(〈nx, f, ny〉) = {φ ∈ β′(〈y, ny〉) |
∃φ′ ∈ α′(nx), φ′ ⊆4 φ}, (28)

where φ′ ⊆4 φ if φ contains all tokens with a non-ZERO
arity that φ′ contains with a non-ZERO arity.

4.5 Element Load and Store Statements
Array elements are treated as a single, special field of an
array object and always have weak store semantics. The
analysis does not differentiate between the statements y[1]
= z and y[2] = z.

4.6 Object Allocation Statement
Objects created at an allocation site are represented as
single-object heap regions for the k most recently allocated
objects at that allocation site. Any references to objects from
the allocation site that are older than the kth object refer to a
summarization node for the allocation site.

The transform for an allocation program point merges
the kth single-object heap region into the site’s summary
node. The newest single-object heap region node is then the
target of the label assignment similar to label assignments
described above.

This step merges the reachability information for the kth
single-object heap region nk into the summary node ns.
Note that when ηns and ηnk

appear in the same token set
before the aging operation there will be two ηns tokens af-
terward. In this case the new arity for the summary token is
given by ∪N. The reachability annotations enable the analy-
sis to maintain precise reachability information in the pres-
ence of the summarization step.

4.7 Return Statement
Return statements are of the form return x which returns
the object referenced by the label x to the caller. The analysis
introduces a special Return label that is out of program
scope to each reachability graph. At a method return the
transform is to assign the Return label to the references
of label x. We assume without loss of generality that the
control flow graph has been modified to merge the control
flow for all return statements. The Return label is discussed
in the call site section when mapping callee information to
the caller context.

4.8 Control Flow Join Points
To analyze a statement, the analysis first must compute the
join of the incoming reachability graphs. The operation for
merging reachability graphs r0 and r1 into rout follows be-
low:
1. The set of label nodes for rout is the union of the label

nodes in the input graphs r0 and r1.
2. The set of heap region nodes for rout is the union of the

heap region nodes in the input graphs. A simple union of
the reachability states is taken, α(nout) = α(n0)∪ α(n1).

3. The set of reference edges for rout is the union of the
reference edges of the input graphs. Recall that reference
edges are unique in a reachability graph with respect to
source, field, and destination. If a reference edge e0 in
r0 and e1 in r1 have these attributes in common then
β(eout) = β(e0) ∪ β(e1).

4.9 Global Reachability
Strong updates for store statements may remove reference
edges leaving some impossible reachability states in the
reachability graph. Transformations that model method in-
vocations (which will be given in the interprocedural anal-
ysis in Section 5.1) can also introduce impossible reacha-
bility states. These impossible reachability states potentially
make the analysis results less precise. Our analysis includes
a global pruning step that uses global reachability constraints
to identify and prune impossible reachability states.

4.9.1 Global Reachability Constraints
Reachability information must satisfy two reachability con-
straints:
• Node Reachability Constraint: For each node n, ∀φ ∈

α(n), ∀〈n′, µ〉 ∈ φ if µ ∈ {ONE, ZERO-OR-MORE}, then
there must exist a set of edges e1, . . . , em such that φ ∈
β(ei) for all 1 ≤ i ≤ m and the set of edges e1, . . . , em

form a path through the reachability graph from n′ to n.
• Edge Reachability Constraint: For each edge e, ∀φ ∈

β(e) there exists n ∈ N and e1, . . . , em ∈ E such that
φ ∈ α(n); φ ∈ β(ei) for all 1 ≤ i ≤ m; and the set
of edges e1, . . . , em form a path through the reachability
graph from e to n.

7 2009/11/23



4.9.2 Global Reachability Algorithm
The algorithm proceeds in two phases: the first phase en-
forces the node reachability constraint and the second phase
enforces the edge reachability constraint.

The first phase uses the existing β information to prune
impossible reachability sets to generate a consistent α′ from
the previous α. The algorithm iterates through each flagged
node nf . It uses a standard graph reachability algorithm
to enforce the node reachability constraint. We define the
function Bf : E → 22M

to store reachability informa-
tion from node nf . We represent Bf as a set of tuples. Bf

satisfies the constraints: ∀e ∈ E(nf ),Bf (e) ⊇ β(e) and
∀e ∈ E, e′ ∈ E(dst(e)),Bf (e′) ⊇ β(e′) ∩ Bf (e). It uses a
fixed point algorithm to propagate reachability information
to solve the constraints. Finally, for each node n and each
reachability state φ ∈ α(n) the analysis shortens the reach-
ability state φ to remove tokens of the form ηnf

or η∗nf
to

generate a new reachability state φ′ if the reachability state
φ does not appear in Bf (e) of any edge e incident to n. Note
the exception that this step should not shorten the reacha-
bility states of the flagged node nf to prune the tokens ηnf

or η∗nf
. The analysis then propagates these changes to β of

the upstream edges using the same procedure described in
step 3 of the propagation phase for store operation presented
in Section 4.4 to generate βr.

The second phase uses the now internally consistent α′

information and the βr information that existed before the
first phase to generate a consistent β′. Conceptually, the
analysis starts from every heap region node n and propagates
the reachability states of α(n) backwards over reference
edges. The analysis initializes β′ = {βr(e) ∩ α′(n) | ∀e ∈
E,n = dst(e)}. The analysis then propagates reachability
information backwards to satisfy the constraint: β′(e) ⊇
βr(e) ∩ β′(e′) for all e′ ∈ E(dst(e)). The propagation
continues until a fixed-point is reached.

4.10 Static Fields
We have omitted a description of how to analyze static fields
or globals. We assume that the preprocessing stage creates
a special global object that contains all of the static fields
and that passes the global object through every call site.
Through this semantics-preserving program transformation,
static field store statements become normal store statements
and static field load statements become normal field load
statements.

5. Interprocedural Analysis
The interprocedural analysis uses a standard fixed point al-
gorithm. The analysis begins at the top level method mmain
with the aliasing context Π = ∅. The analysis removes a
method m and aliasing context Π from the workset for anal-
ysis. If the intraprocedural result for a method m in the alias-
ing context Π is different from the previously stored rm,Π

then the new result replaces rm,Π and all methods that can
potentially call m in context Π are added to the work set.

5.1 Analyzing Call sites
We next present how the interprocedural analysis adds sup-
port for analyzing call sites to the intraprocedural analysis.
For the call site cs, the analysis maps the heap regions of the
caller reachability graph at •cs onto the heap regions of the
callee’s current reachability graph at the call site. Then the
callee graph is used to update the caller’s reachability graph.

Some definitions for the concepts in call site analysis:
• The ith argument passed to the callee has a label node

ai in the caller reachability graph and ai references ji

parameter object heap regions, {nai0, . . . , naiji} in the
caller. The heap regions {nri0, . . . , nriki} are reachable
from the ith parameter heap region nodes.
• The ith parameter of the callee has a label node pi in the

callee reachability graph referencing a single-object heap
region npi

that models the parameter object. There is a
second multiple-object heap region nγi that models the
objects reachable from the parameter object. The separate
single-object heap region node enables the analysis to
maintain precise information about the parameter object.
The parameter part of the heap initially contains the fol-
lowing edges as allowed by type constraints and aliasing
context: the edges 〈npi , Ff , npj 〉 for each field f of the
parameter object that can point to itself or other param-
eter objects, the edge 〈npi

, Ff , nγi
〉 for each field f of

the parameter object, the edge 〈nγi , F, nγi〉, and the edge
〈nγi , F, npi〉. Note that nγ may be entirely omitted if the
parameter object only contains primitive fields.
• Special labels qi and ri model out-of-method-context ref-

erences to npi and nγi , respectively. During analysis of
the callee the reference edges 〈qi, npi〉 and 〈ri, nγi〉 will
naturally capture changes to β useful for updating caller
reachability information.
• Define M = {〈np0 , na00〉, 〈np0 , na01〉, 〈nγ0 , nr00〉, . . . ,
〈np1 , na10〉, 〈nγ1 , nr10〉, . . . } to describe the mapping
from heap region nodes in the callee graph to heap region
nodes in the caller graph.
• For each allocation site Gt = {ngt0 , . . . , ngtk

, ngts} of
the callee the same nodes temporarily exist in the caller
separately as G′

t = {ng′t0
, . . . , ng′tk

, ng′ts
}.

Let the program point for the call site callee(a0, a1)
be cs and the method declaration be void callee(p0,
p1). Figure 4(a) presents an example caller context reach-
ability graph for the method caller at the callsite cs and
Figure 4(b) presents an example callee reachability graph
for the method callee.

We establish a mapping between heap region nodes in the
caller graph and the callee to determine how the reachability
of the callee may affect the caller graph. Figure 4 shows
the caller-to-callee heap region node and reference edge
mapping. Figure 4(c) shows the updated caller context.

8 2009/11/23



a0

na0,0

�

a1

na1,0

κ

nr1,0

◊ ◊

‡
†

‡

†

ξ

(a) Caller Context: ∂ maps into np0 , κ maps into np1 ,
ξ maps into nγ1 , † maps into 〈q0, np0 〉, ‡ maps into
〈q1, np1 〉, � maps into 〈np1 , F, np1 〉

p1

np1

κ

q1

‡

p0

np0
�

q0

†

§

ng0,0

§

§

n
γ0

�
n
γ1

ξ◊ ◊

(b) Callee Context: § nodes and edges generated by
callee program statements.

a0

na0,0
ζ

ζ

a1

na1,0
ζ

ζ

nr1,0

ζ

ζ

ng’1,0

§

ζ

§

ζ

ζ

ζ

ζ

§

(c) Updated Caller: § nodes and edges generated by
callee program statements, ζ nodes and edges have altered
reachability from call site transform.

Figure 4. Classification of nodes and edges in the caller-
callee mapping are shown in (a) and (b). The effect of updat-
ing the caller context reachability graph of (a) with the callee
(b) is shown in (c).

5.2 Conceptual Steps for Call Site Analysis
The following steps describe how the caller-to-callee map-
ping of edges and heap regions is used to fold callee effects
into the caller context reachability graph.

• Aliasing Context: The caller computes the alias context
set Π for the call site. It then checks whether the analysis
has processed this call site before for the given caller
aliasing context. If the analysis has already processed this
call site for the same caller alias context, the analysis
looks up the previous call site alias context Πold. The
analysis adds any parameters in Πold to the new aliasing
context Π to ensure termination.

• Parameter Object Reachability: The callee may change
reachability states of the parameter objects. The reachabil-
ity states in α(npi

) summarize how the callee may change
the reachability of parameter objects.

• Other Caller Node Reachability: The callee may change
reachability states of objects reachable from the parameter
objects. The reachability states in α(nγi) summarize how
the callee may change the reachability of any objects that
are reachable from the parameter objects.

• Caller/Callee Edge Reachability: The callee may
change reachability states of caller reference edges that
are reachable from the callee’s parameters. The reachabil-
ity states in β for the edges 〈npi

, Ff , npj
〉, 〈npi

, Ff , nγi
〉,

〈nγi , F, nγi〉, and 〈nγi , F, npi〉 summarize how the callee
may change the reachability of the corresponding caller
edges. The edge rewrite sets JpFp and JpFγ are used when
the caller passes an object into the callee that is derived
from the parameter class. They are used to model reach-
ability changes to any class fields from the derived class
that the callee is not aware of.
• Upstream Caller Edge Reachability: The callee may

change the reachability states of caller reference edges
that are upstream from the callee’s parameters. The reach-
ability state for the callee reference edge β(〈qi, npi

〉)
summarizes how the callee may change the reachabil-
ity of edges that are upstream of the parameter object
and the reachability state for the callee reference edge
β(〈ri, nγi〉) summarizes how the callee may change the
reachability of edges that are upstream of the objects
reachable from the parameter object.
• Callee Node Reachability: The caller’s reachability in-

formation for the reachability of the parameter objects is
used to update the parameter object reachability tokens
that appear in α for the nodes allocated by the callee.
• Callee Edge Reachability: The caller’s reachability in-

formation for the reachability of the parameter objects is
used to update the parameter object reachability tokens
that appear in β for the edges created by the callee.
• Summarize Allocation Site Nodes: The graph at this

point may contain allocation site nodes for the same al-
location site from both the caller and callee. The analysis
summarizes the oldest nodes to ensure the abstraction fits
within its normal k-limit.

9 2009/11/23



5.3 Helper Functions
This section defines several helper functions and operators
that the call site transfer function uses.
1. Parameter Object Reachability: For each pi, define the

node rewrite set Hp
i = α(npi). The rewrite rule Hp

i

captures with respect to npi’s initial reachability state at
the beginning of the callee how the callee changed the
reachability of the ith parameter object heap region node.

2. Other Caller Node Reachability: For each γi, define
the node rewrite set Hγ

i = α(nγi). The rewrite rule Hγ
i

captures with respect to nγi’s initial reachability state at
the beginning of the callee how the callee changed the
reachability of heap region nodes that are reachable from
the ith parameter object.

3. Caller/Callee Edge Reachability: The reference
edges 〈npi , Ff , npj 〉, 〈npi , Ff , nγi〉, 〈nγi , F, nγi〉, and
〈nγi , F, npi〉 abstract the reference edges between objects
reachable from the parameter pi at the beginning of the
callee. For each pi, define the edge rewrite sets:

Jpfp
ij = β(〈npi , Ff , npj 〉)

JpFp
ij = β(〈npi , F, npj 〉)

Jpfγ
i = β(〈npi , Ff , nγi〉)

JpFγ
i = β(〈npi , F, nγi〉)
Jγγ

i = β(〈nγi , F, nγi〉)
Jγp

i = β(〈nγi , F, npi〉)

The rewrite rules Jpfp
ij , JpFp, Jpfγ

i , JpFγ , Jγγ
i , and Jγp

i

capture, with respect to the corresponding edge’s initial
reachability state at the beginning of the callee, how the
callee changed the reachability sets of the edges between
the corresponding objects. The edge rewrite sets JpFp and
JpFγ model parameter object edges from derived objects
that the callee is unaware of.

4. Upstream Caller Edge Reachability: The reference
edges 〈qi, npi〉 and 〈ri, nγi〉 abstract the caller reference
edges upstream of parameter nodes npi and nγi , respec-
tively. For each pi, define the edge rewrite sets Kp

i =
β(〈qi, npi

〉) and Kγ
i = β(〈ri, nγi

〉). The rewrite rules Kp
i

and Kγ
i capture with respect to 〈qi, npi〉’s and 〈ri, nγi〉’s

initial reachability states at the beginning of the callee how
the callee changed the reachability sets of the upstream
caller edges that can reach the objects in npi and nγi , re-
spectively.

5. Reachability States For Token ηnpi
: For each pi, define:

dp
i =

⋃
〈ai,naij〉

β(〈ai, naij〉) ∩ α(naij)

The set of reachability states dp
i is a simple union of all

reachability states on the reference edges out of label node
ai intersection with the reachability states of the nodes
they reference in the caller. Conceptually, dp

i represents

all reachability states that are present on any parameter
object heap region node referenced by ai. This set pro-
vides a conservative approximation of the caller-context
reachability states in heap region npi

before the callee’s
execution may change its reachability.

6. Reachability States For Token ηnγi
: For each pi, define:

dγ
i =

⋃
〈ai,nrij〉

β(〈ai, nrij〉)

The set of reachability states dγ
i is a simple union of all

reachability states on the reference edges out of label node
ai in the caller. Conceptually, dγ

i represents all reachabil-
ity states that are present on any heap region node reach-
able from ai. This set provides a conservative approxima-
tion of the caller-context reachability states in heap region
nγi before the callee’s execution may change its reacha-
bility.

7. Reachability States For Token η∗nγi
: For each pi, define:

Let dγ
i = {φi0, . . . , φij}

Dγ
i =



{
si0 ∪ · · · ∪ sij | sia ∈

{∅, φia, φia ∪4 φia}
}

if | dγ
i |< ωmax

{⋃
4

[〈ηi0,µi0〉,...,〈ηij,µij〉]∈d
γ
i

[η∗i0, . . . , η
∗
ij ]

}
otherwise

If a parameter token appears in a reachability state with an
arity of ZERO-OR-MORE, that token represents the tokens
of any number of heap regions that are reachable from
the parameter in the caller. We define Dγ

i to generate
all possible combinations of caller reachability sets by
taking any combination of the reachability states in dγ

i any
number of times.
Note that the calculation of Dγ

i is intractable when the
set dγ

i is large. When the size of dγ
i is greater than a

threshold ωmax, we approximate the calculation with one
reachability state that is union of every state in dγ

i with
token arity values all ZERO-OR-MORE.
Conceptually, Dγ

i gives the possible caller reachability
states that the callee token η∗npi

represents.
8. Mapping Operator: The ∆ operator computes caller

reachability states from callee reachability states with re-
spect to parameter pi. ∆ takes as input (1) a set of callee-
context rewrite rules R and (2) a map from tokens to a set
of caller-context reachability states S and produces a set
of caller-context reachability states.

∆(R,S) =
⋃

{〈η0,µ0〉,...,〈ηj ,µj〉}∈R

Θ({〈η0, µ0〉, . . . , 〈ηj , µj〉}), where

Θ({〈η0, µ0〉, . . . , 〈ηj , µj〉}) = {
j⋃

a=0

τa | τ0 ∈ Ω(〈η0, µ0〉),

. . . , τn ∈ Ω(〈ηj , µj〉)}, where

10 2009/11/23



Ω(〈η, µ〉) =



S(ηnt) if 〈η, µ〉 = ηnt , S(ηnt) 6= ∅
dp

b if 〈η, µ〉 = ηnpb
, S(ηnpb

) = ∅
dγ

b if 〈η, µ〉 = ηnγb
, S(ηnγb

) = ∅
Dγ

b if 〈η, µ〉 = η∗nγb

{[〈ηng′tz
, µ〉]} if 〈η, µ〉 = ηµ

ngtz

{[〈η, µ〉]} otherwise.

5.4 Call Site Algorithm
This section presents the call site algorithm. The algorithm
performs the following steps:
1. Parameter Object Reachability: Rewrite α for each

caller heap region node naij referenced by argument label
i.

δ = ∆
(
Hp

i , {〈ηnpi
, α(naij)〉}

)
α′(naij) = α′(naij) ∪ δ.

It is possible for a caller heap region node to be reachable
from two or more argument labels, therefore the calcula-
tion for α′ iteratively adds the effects from each argument
index.

2. Other Caller Node Reachability: Rewrite α for each
caller heap region node nrij reachable from argument
label i.

δ = ∆
(
Hγ

i , {〈ηnpi
, {[]}〉, 〈ηnγi

, α(nrij)〉}
)
,

α′(nrij) = α′(nrij) ∪ δ.

It is possible for a caller heap region node to be reachable
from two or more argument labels, therefore the calcu-
lation for α′ iteratively adds the effects from each argu-
ment index. Note we remove the token ηnpi

because the
caller context reachability states for nodes in nrij already
accounts for those nodes being reachable from the corre-
sponding parameter object.

3. Caller/Callee Edge Reachability: Rewrite β for caller
reference edges reachable from argument label i. We use
ai to represent the ith parameter object and ri to represent
a non-parameter object that is reachable from ai.
We split the edges into 4 cases:

(a) Edges from ai to aj: For the edge 〈nai
, f, naj

〉 we
select J = Jpfp

ij . S = {〈ηnpj
, β(〈ni0z0 , f, ni1z1〉)〉}.

(b) Edges from ai to rj: For the edge 〈nai , f, nrj 〉 we
select J = Jpfγ

i . S = {〈ηnγj
, β(〈ni0z0 , f, ni1z1〉)〉}.

(c) Edges from ri to aj: For the edge 〈nri , f, naj 〉 we
select J = Jγp

i . S = {〈ηnpj
, β(〈ni0z0 , f, ni1z1〉)〉}.

(d) Edges from ri to rj: For the edge 〈nri , f, nrj 〉 we
select J = Jγγ

i . S = {〈ηnγj
, β(〈ni0z0 , f, ni1z1〉)〉}.

Note that the last three cases only need a single index
because i 6= j implies that both i and j are in Π and
therefore share the multiple-object heap region nγΠ .

δ = ∆
(
J, S

)
β′(〈ni0z0 , f, ni1z1〉) = β′(〈ni0z0 , f, ni1z1〉) ∪ δ.

The process for reference edges reachable from argument
labels is similar to the parameter-reachable heap region
nodes above. Note that an edge can fall into multiple
cases and the analysis simply applies the rules from all
applicable cases.

4. Upstream Caller Edge Reachability: This step gener-
ates β′ for caller reference edges upstream from the heap
region nodes reachable from parameter i. We first give
the updates for edges that point directly to the parameter
object. For a parameter i in the aliasing context we split
Kp

i into two parts: Kp1
i contains the reachability states

that contain either ηnpi
tokens or ηnγi

tokens. Kp2
i con-

tains the reachability states that contain both tokens. For
a parameter i that is not in the aliasing context, we set
Kp1

i = Kp
i and Kp2

i = ∅.
We differentiate between the two aliasing cases because
without aliasing, the caller reachability states for the up-
stream edges already account for reaching objects that are
reachable from the ηnpi

token and/or a single ηnγi
token.

If the parameter i is in the aliasing context, the callee can
introduce sharing between objects reachable from other
aliased parameters in the heap region nγΠ and npi

that are
not accounted for by the current caller reachability states.
We include Kp2

i to account for this case.

δhp = ∆
(
Kp1

i , {〈ηnpi
, β(〈n, f, naiz〉)〉,

〈ηnγi
, β(〈n, f, naiz〉)〉}

)
δhp2 = ∆

(
Kp2

i , {〈ηnpi
, β(〈n, f, naiz〉)〉}

)
β′(〈n, f, naiz〉) = β′(〈n, f, naiz〉) ∪ δhp ∪ δhp2

δlp = ∆
(
Kp1

i , {〈ηnpi
, β(〈l, naiz〉)〉,

〈ηnγi
, β(〈l, naiz〉)〉}

)
δlp2 = ∆

(
Kp2

i , {〈ηnpi
, β(〈l, naiz〉)〉}

)
β′(〈l, naiz〉) = β′(〈l, naiz〉) ∪ δlp ∪ δlp2

We next give the updates for edges that reference objects
reachable from the parameter object.

δhγ = ∆
(
Kγ

i , {〈ηnpi
, {[]}〉,

〈ηnγi
, β(〈n, f, nriz〉)〉}

)
β′(〈n, f, nriz〉) = β′(〈n, f, nriz〉) ∪ δhγ

δlγ = ∆
(
Kγ

i , {〈ηnpi
, {[]}〉,

〈ηnγi
, β(〈l, nriz〉)〉}

)
β′(〈l, nriz〉) = β′(〈l, nriz〉) ∪ δlγ .

11 2009/11/23



The analysis performs these updates only on the caller
reference edges that directly reference the parts of the
heap reachable from parameter objects. The analysis then
uses the reachability change propagation algorithm for
edges described in Section 4.4 to propagate the changes
through upstream caller edges. Note that an upstream an
edge can fall into multiple cases and the analysis simply
applies the rules for all applicable cases.

5. Callee Nodes: This step generates reachability informa-
tion for the callee nodes. It rewrites the callee reachability
sets in terms of the caller reachability tokens.

δ = ∆(R(α(ngtz
)), {})

α′(ng′tz
) = δ

When bringing callee-allocated heap region node ngtz ∈
Gt into the caller context note that the analysis need not
convert the R(α(ngtz )) with respect to any particular
parameter index because the set of objects represented
by ngtz in the callee were newly allocated by the callee.
Therefore, an empty mapping function is supplied to ∆ to
prevent rewriting parameter tokens. As a result, only cases
3, 4, and 5 of Ω will be used to convert the possible tokens
inR(α(ngtz )).
We note that the reachability state for the token ηnγi

al-
ready accounts for reachability from the parameter token
ηnpi

. Therefore, if both tokens appear on a callee node
reachability state, R serves to prune the token ηnpi

if pa-
rameter i is not in the aliasing context Π.

R(X) = {R(x) | x ∈ X}
R(x = {t0, . . . , tj} = {t′0 ∪ . . . ∪ t′j | t′i = C(ti, x)}

C(〈η, µ〉, x) =


∅ if 〈η, µ〉 = ηnpb

, b /∈ Π,

(ηnγb
∈ x ∨ η∗nγb

∈ x)

{〈η, µ〉} otherwise

6. Callee Edges: This step generates reachability informa-
tion for the new caller edges by rewriting the callee reach-
ability sets in terms of the caller reachability tokens.
The algorithm first calculates β′ for a new edge ecaller from
some callee edge e.

δ = ∆(R(β(e)), {})
β′(ecaller) = δ.

In a similar manner to callee-allocated heap region nodes
described above, callee-generated reference edges must
calculate caller-context reachability. The calculation is
given, but the next step describes the sets of possible caller
reference edges that will be created, all of which will have
this β information.
The next step computes the set of possible edges created
by the callee in the new reachability graph. A callee ref-
erence edge e has either parameter heap region nodes or

allocated heap region nodes for the source and destina-
tion, making four classes of callee reference edges. Each
callee reference edge maps into the caller context as a set
of edges:

Ssrc =



{ng′tz
} if src(e)=ngtz and ngtz

has a field name matching field(e),

{nai0, . . . , naij} if src(e)=npi
and naij

has a field name matching field(e),

{nri0, . . . , nrij} if src(e)=nγi
and nrij

has a field name matching field(e).

Sdst =



{ng′tz
} if dst(e)=ngtz and ngtz ’s

type matches field(e) or is nγ ,

{nai0, . . . , naij} if dst(e)=npi
and naij ’s

type matches field(e) or is nγ ,

{nri0, . . . , nrij} if dst(e)=nγi
and nrij ’s

type matches field(e) or is nγ .

Ecaller = {〈s,field(e), d〉, s ∈ Ssrc, d ∈ Sdst}
Note that some edge eexisting = ecaller ∈ Ecaller may exist
in the caller context already if e is between two parameter
regions in the callee. If the edge does not exist in the
caller then add it with β(ecaller). Otherwise, β(eexisting) =
β(eexisting) ∪ β(ecaller).

7. Update α, β: The analysis next replaces α and β with the
updated versions α′ and β′, respectively.

8. Return Value Assignment: If the call site assigns the re-
turn value to a caller label then the transform discussed in
Section 4.2 is used to capture the effect. The analysis iden-
tifies all heap region nodes of the callee that are referenced
by the label node Return that is out of the program scope
and then it map that set of callee heap region nodes into
the caller using mappings described above. From there the
copy statement transform is trivial and can be committed
in the midst of this larger call site transform.

9. Summarizing Allocation Site Nodes: The graph at this
point may contain allocation site nodes for the same al-
location site from both the caller and callee. The analy-
sis summarizes the oldest nodes to ensure the abstract fits
withing its normal k-limit.

5.5 Aliasing Contexts
We next discuss how the analysis creates the initial reacha-
bility graph for a given method aliasing context Π. It creates
one multiple object heap region for all the parameters in the
aliasing context Π and a single parameter object heap region
for each parameter. In the mapping procedure, the node nγi

for each parameter in Π refers to the same shared node nγΠ .
The analysis then proceeds to generate all references be-

tween these regions that are allowed by the types of the pa-
rameters. It generates references between a parameter label
and all of the single object parameter heap regions in the
aliasing context that are allowed by type constraints. It sets

12 2009/11/23



α for each node equal to a reachability state that just con-
tains that node’s token. It then adds these reachability states
to all edges in the graph. Finally, it performs a global sweep
to clean up the reachability information.

5.6 Mapping Strong Updates
Under two conditions the analysis can map strong updates to
a parameter object from a callee to a caller. First when the
parameter label node a is the only reference to the heap re-
gion node nu. In this case, if the callee context has removed
the original special edge for a field f, we can destroy all ref-
erences from nu with field f because no other label nodes
can reach nu.

The second condition for strong updates is when the pa-
rameter label node a references exactly one heap region node
nw and nw is a single-object heap region. In this case, if the
callee context is missing the original special edge for a field
f, we can destroy all references from nu with field f because
a definitely refers to the object nu.

5.7 Termination
Termination of the disjointness analysis is straightforward.
There are only two complications: strong updates and call
site aliasing contexts. All of the other transfer functions in
the analysis are monotonic and the reachability graphs form
a lattice.

While a strong update can be initially non-monotonic
if it is processed before the variable on its left hand side
is defined, we note that the strong update becomes (and
remains) monotonic once the program variable on the left
hand side is defined.

If adding a new edge changes the aliasing context for
a call site, the new callee reachability graph may be only
partially analyzed and therefore can contain fewer edges
than the previous callee reachability graph. We note that
once the final result is computed for the callee reachability
graph for the new aliasing context, it will contain at least as
many edges. For a given caller aliasing context, the analysis
ensures that the aliasing context for a call site monotonically
increases. Therefore, at some point the aliasing context for
each call site will either include all parameter indices or stop
increasing. At this point the analysis becomes monotonic
and therefore terminates.

5.8 Discussion
Many heap analyses that attempt to extract more precise
properties than pointer analysis attempt to extract shape
properties. In general, extracting shape properties has proven
difficult. Our analysis is designed to carefully avoid the dif-
ficult problem of reasoning about data structures shapes and
to instead extract disjointness properties for data structures.

We note that pointer analysis in some circumstances can
extract disjointness information for a set of statically named
data structures. Disjointness analysis was designed to main-
tain reachability annotations for heap nodes and therefore

can reason about the mutual disjointness of an unbounded
number of data structures.

We have found that many programs use object fields to
temporarily store references across method calls. To main-
tain precise reachability information, it is critical to perform
strong updates on the parameter object. We have designed
the initial method context to include two nodes for each pa-
rameter: the single object parameter node that abstracts the
parameter object and the multiple object parameter node ab-
stracts the objects reachable from the parameter node.

This context also enables the analysis to maintain preci-
sion for many common paradigms. For example, disjoint-
ness analysis can precisely handle reachability information
for methods that takes a linked list node as a parameter ob-
ject and remove the next linked list node or splice in a new
linked list node. The insight is that the analysis is able to
remember that the reachability state for the multiple object
parameter node already accounts for reachability from the
single object parameter node.

We note the analysis loses precision if a data structure
that may point to many flagged objects is passed as a param-
eter to a method that generates new references in this data
structure. This remains a topic for further research.

6. Definite Reachability Extension
When the analysis processes code that updates summarized
data structures, it can lose precision. For example, remov-
ing an object from a linked list can cause the analysis to
lose information about how many instances of a summa-
rized flagged object can reach objects in the linked list. We
present a definite reachability extension that allows the anal-
ysis to reason about reachability information between vari-
ables. The idea is to keep track of what reachability is al-
ready accounted for by the reachability graph at the variable
level, so that the analysis can avoid performing redundant
updates that degrade the precision of the analysis results.

The definite reachability analysis computes the relation
R := L × L × E that maps pairs of variables to a set of
edges. The relation R maps a pair of variables if the reach-
ability graph already accounts for the first variable pointing
to an object that is reachable from the object pointed at by
the second variable. The set of edges conservatively gives
the edges along the path from the object referenced by the
second variable to the object referenced by the first variable.

The partial function Rs : L → {unknown, new} keeps
track of whether the definite reachability analysis contains
all reachability information for an object since the object’s
allocation. The relation Fu : L× (L ∪ {unknown}) maps a
label that points to an object to the set of labels for all objects
that point to the first object. The relation Fd : L × F × L
maps a label that points to an object and a field name to the
label of the second object that the field of the first object
points at.

13 2009/11/23



• Method Entry: At the beginning of a method with the set
of parameters P :

R′ := {} (29)
R′

s := P × {unknown} (30)
F ′

u := {} (31)
F ′

d := {} (32)

• Load Statement: At the end of a load statement of the
form x = y.f, the reachability graph definitely accounts
for the object referenced by y and objects that can reach
this object reaching the object referenced by x. Nothing is
known about what the fields of the object pointed to by x
reference.

R′ := (R− 〈x, ∗, ∗〉 − 〈∗, x, ∗〉) ∪
({〈x, y〉} × E◦(y, f)) ∪⋃
〈y,z,e〉∈R

{〈x, z〉} × (E◦(y, f) ∪ {e}) (33)

R′
s := (Rs − 〈x, ∗〉) ∪ {〈x, unknown〉} (34)
F ′

u := Fu − 〈x, ∗〉 − 〈∗, x〉 ∪
{〈z, unknown〉 | 〈z, 〈x〉〉 ∈ Fu} (35)

F ′
d := Fd − 〈x, ∗, ∗〉 − 〈∗, ∗, x〉 (36)

• Copy Statement: At the end of a copy statement of the
form x = y, the object reference by x is definitely reach-
able from any objects that can definitely reach y. The anal-
ysis simply copies the information it had maintained for y
to x.

R′ := (R− 〈x, ∗, ∗〉 − 〈∗, x〉, ∗) ∪
{〈x, z, e〉 | 〈y, z, e〉 ∈ R} ∪
{〈z, x, e〉 | 〈z, y, e〉 ∈ R} (37)

R′
s := (Rs − 〈x, ∗〉) ∪

{〈x, v〉 | 〈y, v〉 ∈ Rs} (38)
F ′

u := (Fu − 〈x, ∗〉 − 〈∗, x〉) ∪
{〈x, v〉 | 〈y, v〉 ∈ Fu} ∪
{〈v, x〉 | 〈v, y〉 ∈ Fu} ∪
{〈z, unknown〉 | 〈z, 〈x〉〉 ∈ Fu} (39)

F ′
d := (Fd − 〈x, ∗, ∗〉 − 〈∗, ∗, x〉) ∪

{〈x, f, z〉 | 〈y, f, z〉 ∈ Fd} ∪
{〈z, f, x〉 | 〈z, f, y〉 ∈ Fd} (40)

• Store Statements: A store statement of the form x.f =
y has two effects on definite reachability: 1) it may pro-
duce strong updates that remove the set of edges Eremove

and therefore change the definitely reachability between
previous variables and 2) it makes y definitely reachable
from x.

R′ := (R− {〈w, z, e〉 | 〈w, z, e〉 ∈ R,

∀〈w, z, e′〉 ∈ R, e′ /∈ Eremove}) ∪
{〈y, x, e〉 | e ∈ E(x)× {f} × E(y)} (41)

R′
s := Rs (42)
F ′

u := Fu ∪ {〈y, x〉} (43)
F ′

d := Fd ∪ {〈x, f, y〉} (44)

• Object Allocation Statement: A new object statement of
the form x=new points the variable x at a newly allocated
object. The analysis clears definitely reachable informa-
tion for x from R, marks x as a newly allocated object
in Rs, marks objects that pointed to the old x as pointing
to an unknown object in Fu, and marks the object x as
referencing no other objects in Fd.

R′ := R− 〈x, ∗, ∗〉 − 〈∗, x, ∗〉 (45)
R′

s := (Rs − 〈x, ∗〉) ∪ {〈x, new〉} (46)
F ′

u := Fu − 〈x, ∗〉 − 〈∗, x〉 ∪
{〈z, unknown〉 | 〈z, 〈x〉〉 ∈ Fu} (47)

F ′
d := Fd − 〈x, ∗, ∗〉 − 〈∗, ∗, x〉 (48)

• Method Calls: A method call of the form
x=method(...) points x to the return value of the
callee. The analysis clears the old information for x,
marks the results for x as incomplete in Ds, and clears
information about reference to x and references from x in
Fu and Fd, respectively.

R′ := R− 〈x, ∗, ∗〉 − 〈∗, x, ∗〉 (49)
R′

s := (Rs − 〈x, ∗〉) ∪ {〈x, unknown〉} (50)
F ′

u := Fu − 〈x, ∗〉 − 〈∗, x〉 ∪
{〈z, unknown〉 | 〈z, 〈x〉〉 ∈ Fu} (51)

F ′
d := Fd − 〈x, ∗, ∗〉 − 〈∗, ∗, x〉 (52)

• Join Points: The analysis uses the following formula to
merge definite reachability information at control flow
join points.

R′ := {〈x, y, e〉 | ∃i.〈x, y, e〉 ∈ Ri,

∃e1 ∈ E1, ..., en ∈ En.

〈x, y, e1〉 ∈ R1, ..., 〈x, y, en〉 ∈ Rn} (53)
R′

s := {〈x, new〉 | 〈x, new〉 ∈ Rs1, ...,

〈x, new〉 ∈ Rsn} ∪ {〈x, unknown〉 |
∀〈x, v〉 ∈ Ri,∃i′.〈x, new〉 /∈ Ri′} (54)

F ′
u :=

⋃
0≤i<n

Fui
(55)

F ′
d :=

⋃
0≤i<n

Fdi (56)

14 2009/11/23



We define the helper function downstream(x, y) to in-
dicate whether the reachability graph already captures that
the object referenced by x is reachable from the object ref-
erenced by y.

downstream(x, y) = ∃e.〈x, y, e〉 ∈ R (57)

We define the helper function new(x) to indicate whether
the definite reachability analysis contains information about
the object reachable from x.

new(x) = 〈x, new〉 ∈ Rs (58)

We next describe how definite reachability information
can be used to generate more precise updates for store oper-
ations for several scenarios:
• Downstream Stores: If there is a store x.f=y where

downstream(y, x), the reachability graph already reflects
that y can be reached from x. Instead, it suffices to set
∀nx ∈ E(x), ny ∈ E(y), β′(〈nx, f, ny〉) = β(〈y, ny〉)
and β′(e) = β(e) otherwise.

• References to New Objects: If there is a store x.f=y
where new(y) and ∀〈y, f′, z〉 ∈ Fd.downstream(z, x),
it is not necessary to propagate changes across y’s f′

field nor propagate information from f′ backwards as the
reachability graph already reflects that x can reach y.f′.
• References from New Objects: If there is a store x.f=y

where new(x), 〈x, unknown〉 /∈ Fu, and ∀〈x, z〉 ∈
Fu,downstream(y, z), the reachability graph already re-
flects that all objects that point to the object referenced
by x can reach the object referenced by y. Instead it suf-
fices to set ∀nx ∈ E(x), ny ∈ E(y), β(〈nx, f, ny〉 =
β(〈y, ny〉) and β′(e) = β(e) otherwise.

7. Evaluation
We have implemented disjointness analysis in our com-
piler. We have analyzed several applications written in Bam-
boo (Zhou and Demsky 2009). Bamboo extends Java with
a set of task extensions designed for parallel programming.
Bamboo can execute tasks in parallel if it can determine that
the two tasks operate on disjoint parts of the heap. Bamboo
uses a similar task invocation model to the Bristlecone lan-
guage (Demsky and Dash 2008) — the runtime task invokes
tasks when there exists objects in the heap in the appropriate
states to serve as parameter objects. Bamboo task invocation
locks on the parameter objects — therefore, showing that the
flagged objects reach disjoint parts of the heap is sufficient
to execute tasks in parallel.

Bamboo programs are a natural choice for benchmarks
as the parameter objects are typically intended to be dis-
joint and therefore provide a ready source of programs with
flagged allocation sites. Note the Bamboo’s task semantics
mean that parameter objects even without explicit references
are live, and therefore the first strong update condition does
not apply to those heap reference nodes.

We ran the analysis on 17 benchmarks on a 2.33 Xeon
with 4 GB of RAM. The benchmarks were all ported to
Bamboo. The source code for the analysis and the bench-
marks can be downloaded from http://demsky.eecs.
uci.edu/bamboo/.

7.1 Benchmarks
We evaluated the analysis on the following benchmarks:

• jHTTPp2: jHTTPp2 is an open source HTTP Proxy
server. The jHTTPp2 benchmark was taken from http:
//jhttp2.sourceforge.net/.

• JGFMonteCarlo: The JGFMonteCarlo benchmark is an
implementation of a Monte Carlo simulation. It first com-
putes the mean fluctuation from a series of historical data
and then generates multiple sample time series with the
same mean fluctuation. It was taken from the Java Grande
benchmark suite (Smith et al. 2001).

• JGFMolDyn: The JGFMolDyn benchmark models parti-
cles interacting under a Lennard-Jones potential in a cubic
spatial volume with periodic boundary conditions. It was
taken from the Java Grande benchmark suite (Smith et al.
2001).
• JGFSeries: The JGFSeries benchmark computes Fourier

coefficients. It was taken from the Series benchmark from
the Java Grande benchmark suite (Smith et al. 2001).
• FluidAnimate: This application uses an extension of the

Smoothed Particle Hydrodynamics (SPH) method to sim-
ulate an incompressible fluid for interactive animation
purposes. The FluidAnimate benchmark was taken from
the Parsec benchmark suite (Bienia et al. 2008).
• Filterbank: FilterBank is a multi-channel filter bank for

performing multi-rate signal processing. FilterBank per-
forms a down-sample, followed by an up-sample, in each
channel. Finally, the benchmark combines the results for
all channels. It was taken from the StreamIt benchmark
suite (Gordon et al. October, 2002).
• Multiplayer Game: The games consists of a world with

both humans and monsters. The goal of the humans is to
escape through exits while the monsters try to capture the
humans. The game is structured into a map component
that maintains the world and AI components that use
search algorithms to plan moves for both the monsters and
the humans.
• Fractal: Fractal computes a Mandelbrot set.
• Chat: Chat is a multi-room chat server.
• MapReduce: MapReduce implements a simplified

version of the MapReduce parallel programming
model (Dean and Ghemawat 2004).
• Bank: Bank implements a simple banking application.
• Web Portal: The web portal collects information from

various online data sources and assembles it into a web
page.

15 2009/11/23



Benchmark Sharing Time Lines
jHTTPp2 0 2.05s 2,548
JGFMonteCarlo 0 1.02s 3,522
JGFMoldyn 2 4.38s 1,874
JGFSeries 0 0.30s 1,366
FuildAnimate 2 233s 3,544
FilterBank 0 0.40s 1,293
MultiGame 10 19.80s 2,968
Fractal 1 0.44s 1,702
Chat 3 1.93s 1,482
MapReduce 2 5.19s 2,239
Bank 0 1.72s 1,782
WebPortal 0 1.27s 1,936
PERT 0 0.91s 1,907
Spider 0 2.49s 1,565
TileSearch 0 2.35s 2,022
TicTacToe 0 0.93s 1,489
WebServer 0 2.34s 1,813

Table 2. Benchmark Results

• PERT: The Program Evaluation and Review Technique
(PERT) estimator implements a PERT model, which is
widely used in project managing.

• Spider: The web spider takes an initial URL as input and
crawls the web starting at the initial URL.

• TileSearch: TileSearch solves tile puzzle problems. The
problem is to discover a tile arrangement that produces a
maximal score for arranging square tiles with values on
each face such that adjacent faces have equal value and
the contiguous arrangement scores the summation of faces
left open.

• TicTacToe: TicTacToe is an online tic-tac-toe game
server.

• WebServer: Webserver implements a webserver.

7.2 Disjointness Results
Table 2 presents the analysis results and execution times for
our benchmark suite. The analysis identified a total of 20
possible aliases between flagged object classes over six of
the benchmarks. The other eleven benchmarks were reported
to have disjoint regions reachable from flagged objects. We
verified that the analysis results were correct by manual in-
spection of the code. We observed imprecise sharing results
only for the MapReduce benchmark. We discuss the bench-
marks in more detail in Section 7.3.

We note that the number of aliases between flagged ob-
jects is relatively small as Bamboo applications were written
to allow parallelization and therefore ensure that the param-
eter objects are disjoint. The alias reports for flagged objects
were generated at the exit of each task invocation.

Table 2 presents the analysis times and lengths for the
benchmark suite. Most of the benchmarks took only a few
seconds to analyze. The benchmarks ranged from 1,293 to
3,544 lines of code.

7.3 Discussion
We next discuss the sharing that the disjointness analysis
discovered.

• JGFMolDyn: JGFMoldyn parallelizes the computation
into several pieces. The pieces share some global state
they must all access, and this sharing is detected by the
analysis.

• FluidAnimate: FluidAnimate partitions a grid of cells.
Each partition keeps references to the neighboring edge
cells. The analysis reports this sharing.

• Multiplayer Game: The analysis correctly detects that
human and monster objects share a global map object in
order to compute moves.

• Fractal: The computation is divided into sub-problems
that are then gathered into a final image object where
sharing is detected.

• Chat: Chat shares socket objects in several places. Mes-
sages contain a reference to the originating socket to avoid
echoing the message back to the sender. Chat room ob-
jects also share socket objects in order to link users in the
same room together.
• MapReduce: MapReduce necessarily shares heap refer-

ences between the master and the map workers and re-
duce workers and this sharing is reported. However, our
analysis reports false sharing between reduce workers be-
cause our imprecise modeling of arrays cannot discover
that each reduce worker is given a disjoint element of the
master’s intermediate output array.

8. Related Work
Like disjointness analysis, both alias analysis (Banning
1979; Cooper and Kennedy 1989; Diwan et al. 1998; Ruf
1997) and pointer analysis (Shapiro and Horwitz 1997;
Landi et al. 1993; Weihl 1980; Burke et al. 1995) analyze
source code to discover heap referencing properties of the
data structures that applications build. However, disjointness
analysis extracts a different property — disjointness analysis
attempts to determine whether the parts of the heap reach-
able from distinct objects taken from a selected set are dis-
joint. Our analysis can determine that distinct objects from
the same static representation or name reach disjoint parts
of the heap. We extract a similar properties to the condi-
tional must not aliasing analysis by Naik and Aiken (Naik
and Aiken 2007), however our analysis can maintain dis-
jointness properties in the presence of mutation.

Connection analysis discovers which heap-directed
pointers may reach a common data structure (Ghiya and
Hendren 1996a). There are a finite number of pointers in
a program which implies that connection analysis can only
maintain a finite number of disjoint relations. For example,
connection analysis cannot determine that all of the Graph
objects in our paper’s example are mutually disjoint.

16 2009/11/23



Alias analyses vary in whether they are flow-
sensitive (Choi et al. 1993) or context-sensitive (Wilson
and Lam 1995; Emami et al. 1994; Steensgaard 1996).
These design choices incur increased analysis complexity to
gain increased precision. Our analysis is flow-sensitive and
context-sensitive in an effort to produce a sound result with
enough precision to maintain disjointness properties for real
programs. We mitigate the algorithm’s complexity by re-
ducing the targets of reachability to only objects of interest,
with the expectation that more precision will dramatically
increase how effectively programs are parallelized.

Ruf (Ruf 1995) suggests that for alias analysis the benefit
of context-sensitivity is rare over context-insensitive analy-
ses. Lhotak (Lhoták and Hendren 2006) suggests that con-
text sensitivity for pointer analysis can be helpful in some
contexts. We expect that context sensitivity is more impor-
tant for disjointness analysis. Without context sensitivity,
simply passing two flagged parameter objects into a method
that points the field of one these objects to any object would
violate the disjointness property.

The literature also proposes a variety of methods for mod-
eling structure references. Some use a k-limited approach of
keeping k distinct objects in a recursive structure or from
an allocation site before summarizing (Landi et al. 1993;
Choi et al. 1993). Other strategies are to use symbolic ac-
cess paths (Deutsch 1994) or regular expressions (Hummel
et al. 1994). We create k distinct heap regions for objects
generated from allocation sites and then summarize, but our
reachability states maintain precision for objects within sum-
marized heap regions. By combining the reachability infor-
mation of the summarized heap region and its incoming and
outgoing references we can still know the disjointness prop-
erties of different classes of objects within the summary re-
gion.

Escape analysis (Blanchet 1999; Whaley and Rinard
1999) tracks when heap elements have escaped their static
scope. The computations derive different program informa-
tion, but often use similar analysis techniques.

Ownership type systems have been developed to restrict
aliasing of heap data structures (Aldrich et al. 2002; Boyap-
ati et al. 2002; Clarke 2003; Clarke and Drossopoulou 2002;
Clarke et al. 1998; Heine and Lam 2003). We only make
similar observations when pruning method effects that are
being mapped into the calling context.

Shape analysis (Chase et al. 1990; Ghiya and Hendren
1996b; Sagiv et al. 2002; McPeak and Necula 2005) discov-
ers and verifies shape heap properties of data structures. Our
analysis differs in an important way: shape analysis can ver-
ify that some object is the root of a valid tree, while our
analysis can verify that trees are disjoint by inspecting their
roots, but not that they are in fact trees.

9. Conclusion
If a compiler can determine that two blocks of code operate
on disjoint data structures, it can safely parallelize them.
Traditional pointer analysis has difficulty reasoning about
disjointness properties for objects that are represented by the
same node. We present a new analysis, disjointness analysis,
for extracting disjointness properties from single-threaded
code. The analysis uses the abstraction of reachability sets
to maintain reachability information even between multiple
objects from the same allocation site.

We have implemented the analysis in our compiler frame-
work and analyzed 17 benchmark programs written in Bam-
boo, a set of task-based extensions to Java. The analysis
identified all sharing between key data structures in our
benchmark programs.

References
Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias

Annotations for Program Understanding. In Proceedings of the
17th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, 2002.

John P. Banning. An efficient way to find the side effects of
procedure calls and the aliases of variables. In Proceedings
of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1979.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The parsec benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th International Confer-
ence on Parallel Architectures and Compilation Techniques, Oc-
tober 2008.

Bruno Blanchet. Escape analysis for object-oriented languages:
application to Java. In Proceedings of the 14th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 1999.

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Owner-
ship Types for Safe Programming: Preventing Data Races and
Deadlocks. In Proceedings of the 17th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications, 2002.

Michael G. Burke, Paul R. Carini, Jong-Deok Choi, and Michael
Hind. Flow-insensitive interprocedural alias analysis in the
presence of pointers. In Proceedings of the 7th International
Workshop on Languages and Compilers for Parallel Computing.
Springer-Verlag, 1995.

David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis
of pointers and structures. In Proceedings of the ACM SIGPLAN
1990 Conference on Programming Language Design and Imple-
mentation, 1990.

Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-
sensitive interprocedural computation of pointer-induced aliases
and side effects. In Proceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
1993.

David G. Clarke, John M. Potter, and James Noble. Ownership
Types for Flexible Alias Protection. ACM SIGPLAN Notices, 33

17 2009/11/23



(10):48–64, 1998.

David Gerard Clarke. Object Ownership and Containment. PhD
thesis, University of New South Wales, Australia, 2003.

David Gerard Clarke and Sophia Drossopoulou. Ownership, En-
capsulation and the Disjointness of Type and Effect. In Proceed-
ings of the 17th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2002.

K. D. Cooper and K. Kennedy. Fast interprocedual alias analysis.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1989.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proceedings of the 6th Operating
Systems Design and Implementation, 2004.

Brian Demsky and Alokika Dash. Bristlecone: A language for
robust software systems. In Proceedings of the 2008 European
Conference on Object-Oriented Programming, 2008.

Alain Deutsch. Interprocedural may-alias analysis for pointers: be-
yond k-limiting. In Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and Implemen-
tation, 1994.

Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-
based alias analysis. In Proceedings of the ACM SIGPLAN 1998
conference on Programming Language Design and Implementa-
tion, 1998.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-
sensitive interprocedural points-to analysis in the presence of
function pointers. In Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and Implemen-
tation, 1994.

Rakesh Ghiya and Laurie J. Hendren. Connection analysis: a
practical interprocedural heap analysis for C. International
Journal on Parallel Programming, 24(6):547–578, 1996a. ISSN
0885-7458.

Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic
graph? A shape analysis for heap-directed pointers in C. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1996b.

Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin,
Ali S. Meli, Christopher Leger, Andrew A. Lamb, Jeremy Wong,
Henry Hoffman, David Z. Maze, and Saman Amarasinghe. A
Stream Compiler for Communication-Exposed Architectures. In
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, San Jose, CA, October,
2002.

David L. Heine and Monica S. Lam. A practical flow-sensitive and
context-sensitive C and C++ memory leak detector. In Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, 2003.

Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. A
general data dependence test for dynamic, pointer-based data
structures. In Proceedings of the ACM SIGPLAN 1994 Confer-
ence on Programming Language Design and Implementation,
1994.

William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural
modification side effect analysis with pointer aliasing. In Pro-

ceedings of the ACM SIGPLAN 1993 Conference on Program-
ming Language Design and Implementation, 1993.

Ondr̈ej Lhoták and Laurie Hendren. Context-sensitive points-to
analysis: Is it worth it? In Proceedings of the 15h International
Conference on Compiler Construction, March 2006.

S. McPeak and G. C. Necula. Data structure specifications via local
equality axioms. In Computer-Aided Verification, 2005.

Mayur Naik and Alex Aiken. Conditional must not aliasing for
static race detection. In Proceedings of the 34th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2007.

Erik Ruf. Context-insensitive alias analysis reconsidered. In Pro-
ceedings of the ACM SIGPLAN 1995 Conference on Program-
ming Language Design and Implementation, 1995.

Erik Ruf. Partitioning dataflow analyses using types. In Proceed-
ings of the 24th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, 1997.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric
shape analysis via 3-valued logic. ACM Transactions on Pro-
gramming Languages and Systems, 2002.

Marc Shapiro and Susan Horwitz. Fast and accurate flow-
insensitive points-to analysis. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1997.

L. A. Smith, J. M. Bull, and J. Obdrzalek. A parallel Java Grande
benchmark suite. In Proceedings of SC2001, 2001.

Bjarne Steensgaard. Points-to analysis in almost linear time. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1996.

William E. Weihl. Interprocedural data flow analysis in the pres-
ence of pointers, procedure variables, and label variables. In
Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1980.

John Whaley and Martin Rinard. Compositional pointer and es-
cape analysis for Java programs. In Proceedings of the 14th
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 1999.

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Design
and Implementation, 1995.

Jin Zhou and Brian Demsky. Bamboo: A data-centric, object-
oriented approach to multi-core software. Concurrent submis-
sion to OOPSLA, available from http://demsky.eecs.uci.

edu/bamboo.pdf, 2009.

18 2009/11/23


