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Abstract
We present Dynamic Out-of-Order Java (DOJ), a dynamic paral-
lelization approach. In DOJ, a developer annotates code blocks as
tasks to decouple these blocks from the parent execution thread.
The DOJ compiler then analyzes the code to generate heap exam-
iners that ensure the parallel execution preserves the behavior of
the original sequential program. Heap examiners dynamically ex-
tract heap dependences between code blocks and determine when
it is safe to execute a code block.

Previous work on Out-of-Order Java used static analysis to
allow code blocks to possibly execute out of order, similar to
instructions in a super scalar processor. DOJ elides much of the
complex static analysis in Out-of-Order Java.

We have implemented DOJ and evaluated it on twelve bench-
marks. We achieved an average compilation speedup of 31.15×
over OoOJava and an average execution speedup of 12.73× over
sequential versions of the benchmarks.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis

General Terms Algorithms, Performance

Keywords Parallel Programming, Dynamic Analysis, Object-
Oriented Analysis, Heap Analysis, Parallelization

1. Introduction
With the wide-scale deployment of multi-core processors and the
impending arrival of many-core processors, software developers
must write parallel software to realize the benefits of continued
improvements in microprocessors. Developing parallel software
using today’s development tools can be challenging. Experience
has shown that applications written in today’s thread and lock-
based model are prone to both data races and deadlocks.

Hardware has long benefited from extracting unstructured paral-
lelism from sequential instruction streams through out-of-order ex-
ecution [28]. Processors dynamically extract dependences between
sequential instructions and then execute the instructions in paral-
lel while preserving dependences. This paper leverages the same
proven techniques at a coarser granularity to parallelize software.

Task-based dataflow programming models such as StarSs[11],
OoOJava[17], and Sequoia[12] have recently emerged as a new
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parallel programming approach. These approaches implement the
well-known out-of-order execution approach from hardware in
software using tasks as the basic work unit. The approach can
be viewed as a hybrid that executes a task-based von Neumann
program using a dataflow execution model. In this model, tasks are
dispatched by a sequential thread and begin executing when their
dependences are resolved. When a task finishes execution, it re-
tires. If a thread attempts to access data produced by one of its child
tasks, the thread must stall until the child retires. Previous work on
task-based dataflow programming models either required the de-
veloper to explicitly state dependences between tasks (StarSs) or
used heavyweight static heap analysis (OoOJava).

The goal of this paper is to make the programming model from
OoOJava practical by addressing the two primary technical chal-
lenges for deploying OoOJava in the real world. Scaling the reacha-
bility analysis used by OoOJava to large programs remains an open
research problem. A major advantage of the DOJ approach is that
it can achieve nearly the same runtime performance while relying
only on standard pointer analysis. This enables DOJ to leverage re-
cent work on pointer analysis (flow-sensitive pointer analysis has
been scaled to over a million lines of code [13]). A second limi-
tation of the static analysis approach taken in OoOJava is that it
is hard for the developer to know when the analysis will extract
sufficiently strong reachability properties to enable parallelization.
The hybrid approach taken in this paper depends less on the preci-
sion of the static heap analysis; in DOJ, heap analysis imprecision
typically results only in less optimized runtime checks.

In this paper we introduce a new approach to dynamically ex-
tract heap dependences between tasks. Our approach uses a static
effects analysis to conservatively determine the possible heap ef-
fects of a task. While the results of the static effects analysis are not
precise enough by themselves to parallelize many applications, they
are sufficiently precise to build efficient, dynamic analyses that can
precisely compute heap effects. A major advantage of this new ap-
proach is that the dynamic analyses can identify conflicts between
tasks more precisely than a fully static analysis.

1.1 Basic Approach
DOJ respects all of the program dependences of the original se-
quential program. It does this by first categorizing dependences
as either control dependences or data dependences. DOJ respects
control dependences trivially by requiring all tasks to have exactly
one exit. DOJ further divides data dependences into two categories:
variable dependences and heap dependences. Variable dependences
occur when one task writes to a variable and another task reads
from that variable. DOJ uses the same value forwarding approach
as OoOJava to eliminate write-after-write and write-after-read haz-
ards on variables to enable parallelization. Heap dependences occur
when one task writes to an object field and another task accesses
that same field.

DOJ abstracts heap reads and writes using static heap effects ex-
pressed in terms of heap roots. We call heap effects that may intro-



duce a heap dependence between two tasks potentially conflicting
effects. A heap root is a variable that is live into a task and through
which deeper heap references are obtained.

Heap roots occur in two contexts: a heap root is either a variable
that is accessed by a task, or a variable that references the first
object along a heap path accessed by a code following the exit of
a task. In the latter case, we refer to the statement that accesses
the variable as a potential stall site because the execution of that
statement may have to stall until a previous task completes. DOJ
uses static effects analysis to characterize the heap effects of a code
block in order to produce a heap path and allocation site sensitive
abstraction called an effects finite state machine (EFSM).

DOJ uses EFSMs to build heap examiners for each heap root.
Heap examiners only traverse the fields that are necessary to com-
pute the target objects for all potentially conflicting effects; this
information is sufficient to dynamically detect the absence of heap
dependences between tasks and enable parallelization. A heap root
may potentially reference a very large data structure; traversing
such data structures can incur large overheads. DOJ addresses this
with lightweight but less precise dynamic checks based only on
static heap effects to extract dependences between tasks. The less
precise approach executes concurrently with heap examiners and
limits the worst case overhead of traversing large data structures by
ensuring that tasks never run significantly slower than the sequen-
tial code. Once a task is dispatched, the task is guaranteed to have
no conflicts and runs to completion without any extra overhead.

DOJ has four primary advantages over the static approach taken
by OoOJava: (1) its dynamic analysis is, in general, more precise
than the previous static analysis, (2) its dynamic analysis is sensi-
tive to the actual fields traversed by tasks and not just reachability
through any path, (3) the dynamic analysis can more easily scale to
large code bases, and (4) DOJ can determine that non-conflicting
updates to the same data structure can run in parallel.

1.2 Contributions
This paper makes the following contributions:
• Heap Examiners: It presents heap examiners, a statically-

directed dynamic analysis for predicting the heap effects of a
code block before it runs. Heap examiners improve the preci-
sion of the static effects analysis to enable DOJ to effectively
parallelize our benchmarks.
• Optimizations: It presents a set of pruning optimizations that

reduce the overhead of heap examiners.
• Hierarchical Approach to Heap Dependences: It presents a

hierarchy of approaches for detecting heap dependences. The
hierarchy includes both (1) a precise approach to determine heap
dependences to extract parallelism and (2) a fast and imprecise
approach to limit the worst case dynamic overheads.
• An Implementation and Evaluation: We have implemented

DOJ and evaluated its performance on twelve benchmarks.

2. Example
Figure 1 presents an example DOJ program. The loop in Line 9
of the example creates one hundred Foo data structures and inserts
them into a set. The loop in Line 16 iterates over Foo data structures
in the set, calls the computemethod on each Foo data structure, and
then sums the return values from the calls to compute.

DOJ extends the sequential Java programming model in the
same way as OoOJava — it adds the task annotation to the se-
quential Java programming model, which tells the compiler that
the code block enclosed in the task should be decoupled from the
parent thread’s execution and be executed when its dependences are
resolved. Tasks may be nested and may contain arbitrary code, with
the exception that tasks have a single exit. We call a task nested

within another task—possibly in another context—a child/parent
task relation. If the parent thread performs an operation that may
conflict with or use data from one of its child tasks, it must stall un-
til that task retires. It is important to note that task annotations never
affect the semantics of the program — DOJ guarantees that the ex-
ecution always preserves the sequential semantics of the unanno-
tated program.

Calls to the computemethod in Line 20 from the same iteration
of the outer loop in Line 15 operate on disjoint data and therefore
can execute in parallel. However, calls from different iterations of
the outer loop may have data conflicts. We added the task decla-
ration in Line 19 to allow calls to the compute method to execute
(possibly out-of-order) when their data dependences are resolved.
Tasks have names for pedagogical convenience; task names have
no semantic meaning. The summation in Line 23 has both a depen-
dence on the computemethod from the same loop iteration as well
as the sum variable’s value from the previous loop iteration. We
added the task declaration in Line 22 to allow the loop to execute
past the summation to dispatch additional par task instances.

We note that programming models like Cilk [22] have an ex-
plicit reduction construct for code like Line 23. Reductions should
be commutative operations and may commit out of order, which
breaks sequential semantics but may expose additional parallelism.
DOJ trades this parallelism opportunity to make a strong guarantee:
task annotations never change the sequential semantics, which lets
developers reason in a single-threaded model.

We also note that the iteration over a set in Line 16 defeats most
static approaches to automatic parallelization. Automatic static par-
allelization of this loop is difficult because it requires extracting

1 public class Foo {
2 Bar cntr;
3 Bar inc;
4 public Foo(Bar cntr, Bar inc) {
5 this.cntr=cntr; this.inc=inc;
6 }
7 public static void main(String x[]) {
8 HashSet set=new HashSet();
9 for(int i=0; i<100; i++) {

10 Bar cntr=new Bar(i); //Allocation site 1
11 Bar inc=new Bar(1); //Allocation site 2
12 set.add(new Foo(cntr, inc)); //Allocation site 3
13 }
14 int sum=0;
15 for(int j=0; j<10; j++) {
16 for(Iterator it=set.iterator(); it.hasNext(); ) {
17 Foo f=(Foo) it.next();
18 int val;
19 ta sk par { //Parallelizable task
20 val=f.compute();
21 }
22 ta sk seq { //Sequential task
23 sum+=val;
24 }
25 }
26 }
27 System.out.println("Total:"+sum);
28 }
29 public int compute() {
30 return cntr.value+=inc.value;
31 }
32 }
33

34 public class Bar {
35 public Bar(int value) {
36 this.value=value;
37 }
38 public int value;
39 }

Figure 1. DOJ Example



complex properties about the behavior of the set implementation.
The approach for identifying task dependences in DOJ generalizes
to any control structure: counted loops, data-dependent loops, re-
cursive tasks, etc.

2.1 Data Dependences
Recall that DOJ splits data dependences into two categories: vari-
able dependences and heap dependences. A variable dependence
occurs when one task writes to a variable and another task reads
from that variable. The tasks in the example contain several vari-
able dependences. The par task in Line 19 has a read dependence
on the parent thread for the reference stored in the variable f and
writes a value to the variable val. A seq task instance from Line 22
has a read dependence on the value written to the variable val by
the par task instance from the same loop iteration. A seq task in-
stance has a read dependence on the value written to the variable
sum by the previous instance of the seq task. The parent thread
has a dependence in Line 27 on the value of the sum variable writ-
ten by the last instance of the seq task. DOJ’s variable dependence
analysis automatically discovers these variable dependences.

Heap dependences occur when one task instance writes to the
field of an object and another task instance accesses the same object
field. There are heap dependences between instances of the par
task in the example. Each instance of the par task reads and updates
the value field of a Bar object and then obtains a reference to this
Bar object by following the cntr field of the Foo object referenced
by the variable f. Most static heap analyses would determine that
instances of the par task update the value field of objects allocated
at allocation site 1, and therefore may conflict with each other and
cannot be safely parallelized.

2.2 Abstracting Heap Effects

[nil]

<<par, f>, nil, tmp1=this.cntr, 3, read, cntr>,

<<par, f>, nil, tmp2=this.inc, 3, read, inc>

[tmp1=this.cntr]

<<par, f>, tmp1=this.cntr, tmp2=tmp1.value, 1, read, value>,

<<par, f>, tmp1=this.cntr, tmp1.value=tmp2, 1, write, value>

f

cntr

inc

[tmp2=this.inc]

<<par, f>, tmp2=this.inc, tmp3=tmp2.value, 2, read, value>

Figure 2. Initial EFSM for Task par

DOJ uses effects finite state machines (EFSMs) to abstract the
heap effects of tasks and code blocks between tasks. EFSMs are
both heap path and allocation site sensitive — for each heap effect,
the EFSM captures the heap path that the application code uses
to reach the affected object and the allocation site of the affected
object. Heap path sensitivity implies EFSMs are execution path
sensitive as well; intuitively an EFSM abstracts the code of task
with respect to heap accesses.

EFSMs are compiled into heap examiners — heap examiners
perform the heap traversal abstracted by the EFSM to compute the
set of affected objects for each static heap effect.

The initial state in an EFSM corresponds to the task entrance or
stall site, and the other states correspond to dereference statements
in the code an EFSM abstracts. States are annotated with effects
tuples that abstract the heap effects the task performs on objects
abstracted by the state. An edge abstracts the action of dereferenc-
ing an object to obtain references to further objects — the edge
begins at the statement that obtained a reference to the object to
be dereferenced and ends at the dereference statement that reads
the reference from that object’s fields. The edge is labeled with the
field or variable that was read to obtain the new object reference.
Edges therefore capture the heap paths that tasks can potentially
traverse through the heap.

Figure 2 presents the initial EFSM for the par task. The edge
labeled f directed into the initial state indicates that the initial
object reference is obtained by reading the variable f. The anno-
tation [nil] indicates that this state abstracts object references
at the task entrance. The effect annotation on the initial state,
〈〈par, f〉, nil, tmp1 = this.cntr, 3, read, cntr〉, indicates that
object references abstracted by this state that were allocated at al-
location site 3 may flow to the statement tmp1=this.cntr, and
that statement may then read the cntr field of those objects. The
outgoing edge labeled cntr shows that this effect takes an ob-
ject reference obtained at the task entrance, reads its cntr field,
and makes the object referenced by the cntr field available at
the exit of the dereference statement tmp1=this.cntr. This edge
abstracts the effect of the cntr dereference that appears in the
compute method that is called by the par task. The two effects on
the edge’s destination state abstract the read and write of the value
field in Line 30.

The presence of a dashed line between two states indicates a
potential conflict between those states. For example, the dashed line
on the state [tmp1=this.cntr] indicates that effects represented
by that state can conflict with themselves.

2.3 Optimizing EFSMs
DOJ compiles EFSMs into heap examiners that dynamically com-
pute the heap effects of a task by performing the traversal abstracted
by the EFSM. Therefore, edges in an EFSM have a runtime cost —
the heap examiner must traverse these edges to compute the set of
objects that a task may affect. In many cases, the compiler can stati-
cally determine that some of the heap effects in an EFSM can never
introduce runtime heap dependences between tasks. Our compiler
uses a set of rules to prune irrelevant heap effects from EFSMs. The
compiler uses the type of effect (read or write), the allocation site
of the affected object, and the affected field to compute whether a
given heap effect can conflict (i.e., introduce heap dependences be-
tween tasks) with any other heap effect. If a heap effect can never
conflict, we can safely prune that heap effect from the EFSM. If
an edge in an EFSM does not lead to any conflicting heap effects,
there is no reason to traverse that edge and it can be safely pruned
from the EFSM, as described in Section 4.4.3. We describe in Sec-
tion 4.4.4 how our compiler can merge redundant EFSM states to
further optimize the heap examiners.

Figure 3 presents the result of pruning the EFSM in Figure 2.
The examiner corresponding to this effects graph no longer inspects
the Bar object referenced by the inc field because the compiler has
determined that the Bar object is only read, so the inc reference
does not lead to a potentially conflicting heap effect.

2.4 Runtime Checks
DOJ compiles the optimized EFSMs into C code that computes
the set of affected objects for each potentially conflicting heap



[nil]

<<par, f>, nil, tmp1=this.cntr, 3, read, cntr>

[tmp1=this.cntr]

<<par, f>, tmp1=this.cntr, tmp2=tmp1.value, 1, read, value>,

<<par, f>, tmp1=this.cntr, tmp1.value=tmp2, 1, write, value>

f

cntr

Figure 3. Pruned EFSM

effect. For the example, the heap examiner for the current par
task instance would first find the Foo object referenced by variable
f, then follow that object’s cntr field to a Bar object. This Bar
object is compared to the Bar objects of all previous instances
of the par task that have not retired. If the Bar object for the
current par task is unique in this collection, the current task can
be executed immediately in parallel with all other outstanding par
task instances.

DOJ combines the precise dynamic check that traverses the
heap with a lightweight, coarse-grained conflict detection approach
that detects whether two task instances can conflict based only the
static task effects. Both approaches execute concurrently and either
approach can detect the absence of heap conflicts.

3. Variable Dependence Analysis
DOJ handles variable dependences using the same approach as
OoOJava. In this section, we briefly outline this approach for com-
pleteness. A detailed explanation can be found in the OoOJava pa-
per [17]. The basic approach forwards variable values to eliminate
variable anti-dependences to enable multiple instances of the same
task to execute in parallel.

Recall that a task has a variable dependence on an earlier task
if it reads a variable that was last written to by the earlier task. The
variable dependence analysis extracts the variable dependences be-
tween tasks. Variable dependence analysis abstracts the source of
a variable’s current value with a variable source tuple. A variable
source tuple contains three parts: (1) the name of the task that pro-
duced the value, (2) which instance of that task—relative to the
most recent dynamic instance—produced the value and (3) the vari-
able to which the task wrote the value. Variable source tuples stat-
ically characterize how the program’s execution propagates values
in variables between tasks. An intra-procedural, data-flow analysis
computes the variable source tuples for every live variable at every
program point. Variable source tuples provide the necessary infor-
mation to route the values of variables between tasks.

We next describe how the compiler uses the results of the vari-
able dependence analysis to generate code. We divide code genera-
tion for accessing a variable x within task tcurr into three categories
based on the analysis results at the relevant program point:

Immediate Access: When all of the source tuples are from the
current task instance tcurr, its ancestors, or their siblings, the variable
currently stores the actual value. Therefore, the compiler simply
generates normal code to access the variable x immediately.

Optimized Stall: When all of the source tuples are from a single
instance of a child tchild, then the compiler knows which dynamic
task instance will provide the value for variable x. In this case the

generated code will stall the current task until tchild retires and copy
the value of x. If the same task can be determined to be the source
of other variables, the compiler generates code to also read those
values. This optimization avoids extra dynamic checks for future
accesses to those variables.

Dynamic Tracking: Otherwise, the variable dependence anal-
ysis cannot track the source statically. In this case, the compiler
identifies the program points at which the statically known variable
sources became unknown. The compiler inserts code at these points
to dynamically track which task generates the variable’s value.

4. Heap Examiners
Heap dependences pose a challenge for automatically parallelizing
code that manipulates data structures. DOJ reasons about a heap
access in terms of (1) the heap root used to reach the accessed heap
object and (2) the path taken through the heap from the heap root
to the affected object. Two tasks can have a heap dependence only
when both of the following two conditions are true: (1) one task
writes to a field f of an object allocated at site a and a second task
either reads or writes to the field f of an object allocated at site
a and (2) there must exist a potentially conflicting object. A po-
tentially conflicting object is reachable from both tasks by starting
from a heap root and following only heap references allowed by
statements in the task. We call such a pair of accesses potentially
conflicting accesses.

4.1 Overview of Approach
Heap examiners inspect the heap prior to executing a task to com-
pute the task’s heap dependences. A heap examiner walks the same
heap that the task would walk to identify potentially conflicting ob-
jects. One challenge is that a task may mutate the heap and then
walk across newly created references. The heap examiner cannot
mutate the heap, therefore the compiler analysis must convert the
task’s traversal of the heap into a traversal of the heap as it existed
at the beginning of the task.

DOJ calculates heap dependences of a task by checking the set
of affected objects against objects that may be accessed by any
previously dispatched tasks that have not yet retired. A task may
be dispatched as soon as the affected objects identified by its heap
examiner will no longer be accessed by any previous task.

To construct a heap examiner, it is possible to simply use a
points-to graph to compute all paths to the affected objects, but this
approach would result in an overly conservative set of affected ob-
jects and unnecessarily incur extra runtime overheads for travers-
ing irrelevant paths. Moreover, consider a relatively common pat-
tern in which multiple tasks update disjoint, localized sections of a
data structure (e.g., BarnesHut). Computing affected objects with-
out considering access paths would result in heap examiners that
cannot determine that the tasks’ updates are disjoint.

DOJ uses static effects to build EFSMs that in turn are compiled
into heap examiners. Section 4.2 presents the static heap effects
analysis, Section 4.3 presents a method for checking conflicts stati-
cally, and Section 4.4 describes how our implementation translates
static heap effects into EFSMs that conservatively approximate a
task’s heap effects dynamically.

4.2 Heap Effects Analysis
While the effects analysis is similar in some aspects to the effects
analysis used in OoOJava, the effects analysis for DOJ must extract
much more fine-grained information that captures the heap path
used to obtain an object reference in order to build an EFSM from
a program’s heap accesses.



4.2.1 Analysis Domains
DOJ represents an effect as a 6-tuple 〈h, stfrom, stcurr, aaff, o, f 〉 ∈
U ⊆ H × S T × S T × A × O × F, where h is the heap root used to
access the affected object, stfrom is the field or array dereference
statement that provided a reference to the affected object, stcurr

is the program statement that produced the effect, aaff ∈ A is the
allocation site of the affected object, o ∈ O = {read, write} is the
operation, and f ∈ F is the affected field.

Recall that the analysis uses two types of heap roots. The first
type of heap root abstracts the objects referenced by a task’s input
variables (variables live into the task that are accessed by the task).
The second type abstracts objects referenced by live variables in
sections of a task following the exit of a child task. Formally, a
heap root h is given by the tuple 〈st, v〉 ∈ H ⊆ S T ×V , where st is
either a stall site or a task entrance, V is the set of variables in the
program, and v is the stall site variable or input variable.

The analysis assumes the presence of a pointer analysis. Our
implementation uses a flow-sensitive, field-sensitive pointer anal-
ysis. We believe that field-sensitivity is important for most Java
applications. However, flow-insensitive pointer analysis should be
sufficient for the general techniques from DOJ. We assume the
pointer analysis abstracts objects with a set of heap nodes n ∈ N
and heap references with a set of edges (points-to set) e ∈ E ⊆
V ×N ∪N × F ×N. We define helper functions E(x) = {〈x, n〉 ∈ E}
and E(x, f) = {〈n, f, n′〉 ∈ E | 〈x, n〉 ∈ E}. We assume that the
pointer analysis provides a function A that maps heap nodes to
allocation sites. Though we assume a heap node abstracts objects
allocated at only one site, modifications to support pointer analyses
in which heap nodes abstract objects allocated at multiple sites are
straightforward. The analysis computes at each program point the
mapping R ⊆ E×H×S T from an edge to both (1) the heap root and
(2) the last dereference statement in the sequence of dereferences
that were used to reach the edge’s target. At each program point,
the analysis also computes a set of variables L for which the appli-
cation may have to stall before accessing the object they reference.
The set L only includes variables if they reference data structures
with conflicts.

The mapping R and set L both form lattices. The partial order
(v) is defined by the subset relation (⊆); join(t) is set union (∪);
bottom(⊥) is the empty set(∅); and top(>) is the maximally full set.
The lattices have finite heights because their domains are finite.

The analysis generates a set of effects U for the program. Note
that there is only one set of effects for the entire program.

4.2.2 Transfer Functions
For pedagogical purposes, we decompose the effects analysis into
two passes. The first pass computes the mapping R from edges in
the points-to graph to the heap roots used to access the edges’ target
objects. The second pass then uses the mapping R to compute the
application’s set of effects U. Our actual implementation integrates
both analyses into the pointer analysis implementation. Figure 4
presents the transfer functions for computing the mapping R from
edges to heap roots. The analysis introduces new heap roots into
points-to graphs at two classes of statements: (1) task enter state-
ments and (2) statements of a parent task that may have to stall to
avoid heap conflicts with a child task. These statements create new
heap roots for the corresponding variable’s edges. Heap roots are
then subsequently propagated to newly created references because
we are interested in determining which heap root was used to ac-
cess an affected object.

The heap roots analysis uses a simple supporting analysis to
pre-compute which variable accesses may require stalls. This sup-
porting analysis is relevant for sections of code following the exit
of a task. The goal of this analysis is to compute the set of variables
L for which accesses to the objects referenced by these variables

st R′ = (Ra − KILL) ∪ GEN

x = ... KILL = {∀〈e, h, stfrom〉 ∈ R | e ∈ E(x)}
x = new Ra = R

GEN = ∅

L′ = L\{x}

x = y Ra = R

GEN = {〈〈x, n〉, h, stfrom〉 | ∀〈y, n〉 ∈ E,

〈〈y, n〉, h, stfrom〉 ∈ R}

L′ = {v ∈ V | (v ∈ L ∧ v , x) ∨ (y ∈ L ∧ v = x)}
x = y.f Ra = R ∪ {〈〈y, n〉, 〈st, y〉, nil〉 | ∀〈y, n〉 ∈ E, y ∈ L}

GEN = {〈〈x, n′〉, h, stfrom〉 | ∀〈n, f, n′〉 ∈ E(y, f),

(〈〈n, f, n′〉, h, stfrom〉 ∈ Ra}

∪ {〈〈x, n′〉, h, stx=y.f〉 | ∀〈n, f, n′〉 ∈ E(y, f),

〈〈y, n〉, h, stfrom〉 ∈ Ra)}

L′ = L\{x, y}

x.f = y Ra = R ∪ {〈〈x, n〉, 〈st, x〉, nil〉 | ∀〈x, n〉 ∈ E, x ∈ L}

∪ {〈〈y, n〉, 〈st, y〉, nil〉 | ∀〈y, n〉 ∈ E, y ∈ L}

KILL = ∅

GEN = {〈〈n, f, n′〉, h, stfrom〉 | ∀〈x, n〉 ∈ E,∀〈y, n′〉 ∈ E,

〈〈y, n′〉, h, stfrom〉 ∈ Ra}

L′ = L\{x, y}

enter(tcurr) Ra = R

KILL = {〈e, 〈st, v〉, stfrom〉 | st is a stall site}

GEN = {〈〈v, n〉, 〈tcurr, v〉, nil〉 | v is an input variable for

tcurr ∧ 〈v, n〉 ∈ E}

L′ = ∅

exit(tcurr) Ra = R

KILL = {〈e, 〈st, v〉, stfrom〉 | st is a stall site ∨ v is an input

variable for the current instance of tcurr}

GEN = ∅

L′ = V

Figure 4. Transfer Functions for Computing Heap Roots

st U′ = U ∪GEN

x=y.f GEN = {〈h, stfrom, stx=y.f ,A(n), read, f〉 | ∀〈y, n〉 ∈ E,

〈〈y, n〉, h, stfrom〉 ∈ Ra}

x.f=y GEN = {〈h, stfrom, stx.f=y,A(n), write, f〉 | ∀〈x, n〉 ∈ E,

〈〈x, n〉, h, stfrom〉 ∈ Ra}

Figure 5. Transfer Functions for Generating Effects

may require a stall to wait for heap dependences on child tasks to
resolve. Figure 4 presents the transfer functions for computing the
setL. At the exit of a child task, the setL contains all live variables
that reference objects. At the entrance of a task, the set L is empty
because all data structures can be accessed without needing to stall
for child tasks. The transfer functions for L remove a variable at a
statement that reads the variable and therefore serves as a potential
stall site for the data structure referenced by the variable.

Figure 5 presents the transfer functions for computing heap ef-
fects. Load statements and store statements are the only statements
that operate on object fields in the heap and therefore are relevant
for collecting effects. These transfer functions record for each field
access: the heap root that was used to reach the object, the alloca-



tion site of the object, the operation, and the field that the statement
accessed. The analysis simply accumulates effects into a global set
U. Note that the effects analysis treats array operations as normal
field accesses on a special array field.

4.2.3 Interprocedural Extension
Our implementation contains an interprocedural extension to the
heap roots and effects analyses. The analysis propagates the heap
root annotations from the caller to the callee. The analysis merges
heap root annotations from all callers to a method and analyzes a
single context. When mapping analysis results from a callee back
to the caller context, the analysis uses a call graph to identify and
remove heap root annotations that are impossible in the given caller
context. This process preserves analysis precision by preventing
the erroneous propagation of heap roots from one caller to another,
while avoiding the cost of analyzing multiple caller contexts.

4.3 Static Conflict Detection
DOJ considers a task to have a heap dependence on an earlier task
when both of the following two conditions are true: (1) the two
tasks are siblings or a parent stall site/child task pair and (2) the
effects of the two tasks conflict. Note that we attribute all of a child
task’s effects to its parent, which confines the possible dependence
relations to those identified in (1). This simplifies static conflict
detection and dynamic dependence tracking.

Consider a task t0 with the effect 〈h0, st
from
0 , stcurr

0 , a
aff
0 , o0, f0〉

and a task t1 with the effect 〈h1, st
from
1 , stcurr

1 , a
aff
1 , o1, f1〉. DOJ con-

servatively assumes all such effects conflict with the following ex-
ceptions:
1. If aaff

0 , aaff
1 , then there is no conflict because the objects must

be different if they were allocated at different sites.
2. If o0 = o1 = read, then there is no conflict because reads do not

conflict.
3. If f0 , f1, then there is no conflict because the two effects access

different fields.

4.4 Dynamic Conflict Detection
Imprecision in static effects analyses often makes them insufficient
to parallelize programs. This imprecision arises because their ab-
stractions collapse many objects into a single static heap node. Con-
sider two instances of the same task that update disjoint objects.
The updated objects are likely to be represented by the same static
heap node and therefore the static analysis results do not contain
enough information to determine that the two task instances do not
conflict. In addition to directly using the static analysis results to
detect possible conflicts, DOJ uses the results of the effects analy-
sis to generate heap examiners. Heap examiners traverse the heap
reachable from a task’s heap roots to compute at runtime the set of
concrete objects that are the target of statically identified effects.
The runtime is able to resolve conflicts with better precision than
static analysis by computing the concrete targets of the effects.

4.4.1 Generating the Effects Finite State Machine
DOJ generates a heap examiner for each heap root in the program.
This process begins by generating an EFSM. The EFSM captures
all of the effects of the task on the part of the heap reachable from
the given heap root. The compiler begins to generate an EFSM for
a heap root by first collecting all of the effects for the given heap
root. We formalize the EFSM as a collection of states φ ∈ Φ, and
a collection of transitions between the states 〈φfrom, f , φto〉 ∈ T ⊆
Φ × F × Φ. The effects mapM ⊆ Φ × U maps states in the EFSM
to the set of effects associated with that state.

The compiler initially generates a state in the EFSM for each
program statement that appears in an effect in the heap root’s effect

set and a special initial state, nil. We formalize the initial mapping
of program statements to states with the function S : S T → Φ.

For each effect 〈h, x = y.f, stcurr, aaff, o, f 〉, if the field f ref-
erences an object, the compiler adds the transition 〈S(x = y.f), f ,
S(stcurr)〉 to the EFSM. Note that if the field f stores a prim-
itive, the compiler does not add a transition to the EFSM. In
either case, the compiler then adds the effects mapping pair
〈S(x = y.f), 〈h, x = y.f, stcurr, aaff, o, f 〉〉 to the mapM.

4.4.2 Computing Static Conflicts
The compiler next computes the set of potentially conflicting ef-
fects C for each EFSM. The computation begins by identifying
all potentially concurrently executing EFSMs (including other in-
stances of itself). Potentially concurrently executing EFSMs are
those that share a parent task; the parent task of a stall site EFSM is
the task in which the stall site appears. An exception is that two stall
site EFSMs with the same parent can never execute simultaneously
and therefore can never conflict.

For each effect e in the EFSM, the analysis looks for a po-
tentially conflicting effect in a potentially concurrently executing
EFSM. If such an effect is found, the effect e is added the EFSM’s
set of conflicting effects C.

4.4.3 Pruning the EFSM
The EFSM will be used to generate a heap examiner that computes
at runtime the exact concrete objects that a given effect could apply
to. An EFSM may contain effects that the analysis determines
can never cause a conflict. In this case, the heap examiner does
not need to compute which objects such an effect could apply to.
Pruning such effects from the EFSM is beneficial as it optimizes
the corresponding examiner by removing extraneous work.

DOJ applies the following rules to prune EFSMs until no rule
applies:
1. Irrelevant Transitions: If there is no path from a given tran-

sition to some state with a potentially conflicting effect, then
the code block will never conflict on an object that is reached
through this transition. The compiler prunes such transitions.

2. Irrelevant Effects: If an effect has no conflicts and no corre-
sponding transition, the effect is irrelevant and therefore the com-
piler prunes it.

4.4.4 Merging States in the EFSM
The algorithm as described can generate EFSMs with multiple
transitions that each read the same field of an object in the same
state. While it is possible that such transitions can improve the
precision of heap examiners, we expect that they typically serve
only to add additional runtime overhead. The compiler therefore
includes a merging phase that merges extraneous states with the
goal of reducing runtime overhead.

When the analysis identifies pairs of transitions that originate
from the same state and read the same field of objects from the same
allocation state, it merges the destination states of those transitions.

4.4.5 Compiling EFSMs
DOJ compiles the pruned EFSMs into heap examiners. We begin
our presentation with the basic compilation approach and will later
discuss optimizations. Examiners are structured as a graph traver-
sal with a tovisit queue that stores objects to be visited and a
discovered set that stores which objects have been discovered.
The body of the loop is a switch statement on the state of the ob-
ject, with a case for each state in the pruned EFSM. Each case con-
tains a nested switch statement on the allocation site of the object,
with a case for each allocation site in the given state of the EFSM.
The case for an allocation site examines each field for which the
state has an outgoing edge for the given allocation site.



1 void parExaminer(Object f) {
2 Pair pinit=new Pair(f, INITSTATE);
3 tovisit.push(pinit);
4 discovered.add(pinit);
5 while(!tovisit.isEmpty()) {
6 Pair p=tovisit.pop();
7 switch(p->state) {
8 case INITSTATE:
9 switch(p->obj->allocSite) {

10 case 3:
11 Object cntr=p->obj->cntr;
12 Pair pcntr=new Pair(cntr, CNTRSTATE);
13 if (cntr!=NULL &&
14 !discovered.contains(pcntr)) {
15 discovered.add(pcntr);
16 tovisit.push(pcntr);
17 }
18 break;
19 }
20 break;
21 case CNTRSTATE:
22 switch(p->obj->allocSite) {
23 case 1:
24 addWriteEffect(p->obj);
25 break;
26 }
27 break;
28 }
29 }
30 }

Figure 6. Examiner for the Heap Root f

Figure 6 presents a heap examiner for the pruned effects graph
from Figure 3. The case statement in Line 10 examines the cntr
field of objects in the initial state from allocation site 3. The case
statement in Line 23 processes the write effect for objects from
allocation site 1.
Tree Structure Optimization While the heap examiner compila-
tion strategy must support data structures with arbitrary possibly-
cyclic structures, many data structures contain components with
tree-like structures. DOJ optimizes traversals of these tree-like
components. We note that all cycles in an EFSM must contain
at least one state with two or more incoming edges. The traversal
loop only contains case statements for heap nodes that are either
(1) referenced directly by the heap root variable or (2) have two
or more incoming edges. From each such heap node, the compiler
inlines the traversal code for the part of the EFSM that is transi-
tively reachable from that node through nodes with at most one
incoming reference. One side effect of this optimization is that an
object can potentially be traversed more than once, for example
when every element of an array references a single object, however
such duplication is safe and the traversal is guaranteed to terminate.

Figure 7 presents the tree-optimized EFSM for the example. The
traversal of objects allocated at site 1 has been inlined into the case
statement for objects allocated at site 3.
Heap Examiner Conflicts Heap conflicts can cause naı̈ve heap ex-
amining strategies to traverse the wrong set of objects. Figure 8
illustrates the potential issue. Consider three tasks given in execu-
tion order: the first with the heap root f, the second with the heap
root g, and the third with the heap root h. The heap examiner for
the second task could potentially read the wrong reference from
the x field of the Baz object if it started before the first task fin-
ished. Reading the wrong reference could cause the heap examiner
to wrongly conclude that the second and third task do not have a
conflict even if they access the same instance of class Foz.

If a heap examiner traverses a reference for which it has a
potential read conflict on the specific object, the examiner must

1 void parExaminer(Object f) {
2 Pair pinit=new Pair(f, INITSTATE);
3 tovisit.push(pinit);
4 discovered.add(pinit);
5 while(!tovisit.isEmpty()) {
6 Pair p=tovisit.pop();
7 switch(p->state) {
8 case INITSTATE:
9 switch(p->obj->allocSite) {

10 case 3:
11 Object cntr=o->cntr;
12 if (cntr!=NULL && cntr->allocSite==1)
13 addWriteEffect(o);
14 break;
15 }
16 break;
17 }
18 }
19 }

Figure 7. Tree Optimization of the Examiner for the Heap Root f

Baz(Site 1)
<<t1, f>, 1, write, x>

 f

Baz(Site 1)
<<t2, g>, 1, read, x>

 g

Foz(Site 2)
<<t2, g>, 2, write, f>

 x

Foz(Site 2)
<<t3, h>, 2, read, f>

 h

Figure 8. Heap Examiner Conflicts

stall until the conflicting task instance retires. When necessary, the
compiler generates code to implement a heap examiner stall.

A heap examiner can also conflict with its own task instance if
that instance begins executing before its heap examiner terminates
(this can occur if the static check clears the task instance to exe-
cute). Specifically, if a task instance (1) reads from a reference field
and uses the reference to perform potentially conflicting accesses
(so the heap examiner will traverse the field) and (2) later over-
writes the reference field, then the task instance can conflict with its
own heap examiner. Our compiler statically identifies such derefer-
ences in the EFSM and then generates a check after the dereference
to verify that the task instance has not started executing. If the task
has already started, the heap examiner stops traversing the heap and
stalls to wait for the task to retire.
Weakly-Connected Components Extension The traversal of heap
roots can be parallelized by separating the pruned EFSMs into
weakly-connected components. This enables two optimizations:
turning off individual heap examiners in favor of static resolution
and parallelizing the heap examiners.

5. Runtime System
DOJ is architected as a set of worker threads that each contain
a local work queue and implement a work stealing scheduling
strategy. The DOJ compiler converts the entire program into tasks,
with a wrapper task for the program’s main method. DOJ supports
hierarchical composition of tasks — tasks can dispatch other tasks.
We refer to a worker thread that is currently executing a task that
dispatches child tasks as a parent thread.

DOJ uses two approaches in parallel to determine whether a task
may perform heap accesses that conflict with previously dispatched
but not retired tasks. The first approach performs a dynamic object
traversal to precisely determine conflicts, but can potentially take
a long time. There is a companion heap examiner thread that im-



plements this approach for each parent thread. The heap examiner
thread examines the actual heap to determine whether the current
task conflicts with previous dispatched, but not retired tasks. The
heap examiner thread uses a heap scoreboard to detect potential
conflicts between tasks. The second approach is based on static
analysis results and is imprecise, but extremely fast. Each parent
thread implements this approach with a static effects queue that
uses static heap effects as determined by the compiler to detect con-
flicts between tasks. A task no longer has a conflict when its static
effects queue reports all previously dispatched tasks with potential
conflicts have retired. If either approach shows the absence of a
potential conflict, DOJ dispatches the task. Intuitively, the combi-
nation of these two approaches works well because when the heap
examiner resolves conflicts quickly the system can expose the par-
allelism, while static effects queues limit the worst case overheads
for dynamically checking very large data structures.

5.1 Task Records
Each task instance has a task record. Each task record has a
NumUnresolvedDependences count of the task’s unresolved de-
pendences — when this count reaches zero all of the task’s de-
pendences have resolved and the task can be safely executed.
This count is updated by an atomic subtract instruction — up-
dates to the count never need to obtain a lock. There is a structure
in the task record for each heap root. This structure contains a
QueueDependences count that tracks how many static queues the
task record must clear to show the absence of a conflict for the
given heap root. The structure also contains the ObjDependences
count that tracks how many objects must clear the heap score-
board to show the absence of a conflict for this heap root. The
ObjectList contains a list of heap scoreboard bins that con-
tain objects for this heap root that must be removed when the
task retires. If the heap scoreboard clears the heap root, it ze-
ros the QueueDependences count. Whichever approach zeros the
QueueDependences count first for a heap root decrements the
task’s NumUnresolvedDependences count. Locks are never ac-
quired to update these counters as the compiler generates atomic
instructions to perform the updates.

If the static effects queue determines the absence of a conflict,
it is possible for a task to retire before the task’s heap examiners
finish. When the task retires, its DoneExecuting flag is set. When
this flag is set, the heap examiner stops and clears the traversal flag
to indicate that it has halted. The task retire procedure then removes
the traversed objects for the task from the heap scoreboard. If the
heap examiner has not started, the task retire procedure uses an
atomic operation on the traversal status flag to prevent the heap
examiners for the given task record from traversing its heap roots.

5.2 Heap Scoreboards
DOJ uses a heap scoreboard to track at the object granularity
the potentially conflicting heap effects between tasks. Figure 9
illustrates the heap scoreboard data structure. The heap scoreboard
is implemented as an array of access queues. The array is indexed
by the hash of the affected object’s object identifier.1

Each access queue keeps track of potential conflicts between
tasks that access objects whose object identifiers hash to that queue.
Access queues are implemented as a singly linked list. The heap
effects of newly dispatched tasks are enqueued at the tail. Once a
heap effect for a task t reaches the head of an access queue, the
given effect does not conflict with any task that was dispatched
before task t. We say that such effects are resolved. When a task
retires, its heap effects are removed from the access queues.

1 We use object identifiers instead of object pointers to support garbage
collection without having to rebuild the heap scoreboard.

0      1      2      ...      n-2      n-1      

write: <taskid 2, oid 1, mask 1>

head

read: <taskid 0, oid 1, mask 3>, <taskid 1, oid 1, mask 2>

tail

next

Figure 9. Heap Scoreboard

Access queues contain two types of nodes: read nodes and write
nodes. Read nodes track read effects — read effects do not conflict
with each other. Therefore all consecutive read effects resolve when
as a group they are at the head of the access queue. Write nodes
track write effects — write effects conflict with each other and read
effects. Therefore a write effect can resolve only when it reaches the
head of its access queue. Each node stores both the task and a mask
bitmap of the task heap roots for which that item tracks conflicts. It
is important to note that a heap examiner inserts only objects with
potentially conflicting effects into the heap scoreboard.

While only one heap examiner thread inserts objects into a given
heap scoreboard, multiple threads can remove objects or resolve
heap roots. The heap scoreboard uses atomic exchange operations
on the head fields on the bins to lock a bin.

We typically size heap scoreboards to have a hundred thousand
or more bins. False conflicts can occur if two objects hash to the
same bin and in theory reduce the available parallelism. In practice,
our heap scoreboards contain enough bins to prevent such conflicts
from limiting parallelism in most applications.

We note that a task can retire before it clears either the heap
scoreboard or static effects queues. Both data structures have been
designed to allow entries to retire before they reach the head.

5.3 Static Effects Queue
DOJ uses a static effects queue to quickly track potentially conflict-
ing accesses between tasks. DOJ generates a conflict graph from
the results of the static analysis described in Section 4.2. A conflict
graph has a node for each heap root of each task; there is an edge
between two nodes if the corresponding code blocks may have a
conflicting access through the corresponding heap roots. DOJ com-
piles the conflict graph into static effects queues that dynamically
track the conflicts. The mapping problem can be viewed as a graph
covering problem—to enforce the data dependence constraints, all
edges in a conflict graph must be covered. The algorithm uses a
greedy algorithm to try to minimize the number of queues used to
cover the edges in the conflict graph.

A static effects queue has two types of queue items: a sequential
item and a parallel item. A sequential item holds one task and that
task must wait until the previous queue item retires and must retire
before the next queue item begins. A parallel item holds multiple
tasks that can execute in parallel. Each item stores both the task and
a bitmap of the heap roots for which the item tracks conflicts.

6. Evaluation
We have implemented DOJ and evaluated it on a 1.9 GHz 24-core
AMD Magny-Cour Opteron with 16 GB of memory. Our compiler
generates C code which is then compiled by GCC 4.1.2. We en-
abled the highest optimization level in GCC and classic optimiza-
tions in our compiler. Our implementation and benchmarks are
available on the web.

We selected a diverse set of benchmarks to provide an inter-
esting cross-section of application behaviors and a variety of al-



Compilation Times Speedup
Benchmark Lines Sequential OoOJava DOJ OoOJava DOJ
Voronoi 4,007 3.41s >1hr† 13.26s N/A† 10.27×
BarnesHut 3,771 2.98s N/A† 3.67s N/A† 11.26×
RayTracer 3,683 1.99s 52.69s 4.18s 18.52× 18.07×
Tracking 5,419 4.31s 851.45s 6.83s 19.83× 20.05×
Crypt 2,765 1.91s 4.57s 2.63s 18.88× 19.47×
MonteCarlo 6,281 1.85s 14.45s 2.90s 22.08× 21.16×
KMeans 3,868 2.05s 13.53s 3.29s 12.60× 11.46×
MolDyn 2,565 2.04s 20.42s 4.09s 14.10× 13.91×
Power 2,565 1.94s 15.47s 2.58s 19.99× 5.58×
Labyrinth (a) 4,923 2.35s 171.52s 5.09s 11.31× 0.70×
Labyrinth (b) 4,923 2.35s 171.52s 5.09s 10.43× 9.99×
SOR 3,028 1.78s 4.65s 3.25s 9.88× 12.90×
MergeSort 2,610 1.67s 3.02s 2.14s 12.50× 10.65×

Figure 10. Compilation Times (Smaller is Better) and
Speedups(Higher is Better)‡

gorithmic structures and ported them to DOJ. We included all of
the large benchmarks from the Java Grande Benchmark suite [27],
namely RayTracer, MolDyn, MonteCarlo, SOR, and Crypt. We se-
lected Power and Voronoi from the JOlden benchmark suite [5],
MergeSort from DPJ suite [4], Tracking from SD-VBS [30], and
BarnesHut from Lonestar [19]. We selected both KMeans and
Labyrinth from the STAMP benchmark suite [6] to explore bench-
marks with irregular parallelism. STAMP categorizes benchmarks
by metrics — KMeans and Labyrinth were categorized at opposite
points on all metrics. We compiled and executed three versions of
the benchmarks: sequential is the original sequential version, DOJ
is the DOJ version, and OoOJava is the OoOJava version.

6.1 Compilation Times
A major advantage of DOJ over previous work on OoOJava is
compilation time. We compiled each benchmark on a 2.27GHz 8-
core Intel Nehalem Xeon with 12GB of memory. Figure 10 presents
the time taken to compile each benchmark into C code. DOJ took
on average 4.49 seconds to compile the benchmarks and at most
13.26 seconds. This is on average 31.15× faster than OoOJava and
at most 124.69× faster than OoOJava.

6.2 Performance
We next present performance data derived from execution times
averaged over 10 runs. For each experiment we computed the
standard error as a percentage of the benchmark’s average total
execution time. The average standard error across our benchmark
suite was 1.8%, with a 6.1% maximum error.

Figures 10 and 11 present speedups of the benchmark imple-
mentations generated by OoOJava and DOJ over the original se-
quential versions (without tasks) compiled with the same compiler.
DOJ dedicates one or more cores to execute heap examiners while
the other cores execute tasks, placing an upper bound of 23× on
the observed speedups ignoring improvements due to cache effects.
OoOJava does not dedicate any cores to a runtime component, so
the upper bound for OoOJava speedups is 24×. With that in mind,
the speedups observed for DOJ implementations are almost as good
as—and in some cases better than—the OoOJava implementations.

Figure 12 presents the speedup curves as a function of the
number of cores for the DOJ versions. We have omitted results
for benchmarks that use a divide and conquer structure as they
do naturally run on arbitrary numbers of cores. We observe that
most benchmarks scale well to the number of cores in our test
system. Note that these benchmarks use a flat task structure —

restructuring the benchmarks to use hierarchically structured tasks
would of course enable them to scale to much larger core counts.

Voronoi has a divide-and-conquer algorithm with a sequential
merge that limits parallelism. OoOJava’s compilation of Voronoi
did not terminate within an hour. However, DOJ generated a paral-
lel Voronoi implementation that achieved a significant speedup.

OoOJava cannot generate a meaningful parallel implementation
of BarnesHut because all bodies are reachable from each other
and limitations of the approach prevent it from determining that
updates to bodies are localized. In contrast, DOJ can generate
heap examiners from static effects that allow many non-conflicting
updates to proceed in parallel on the single oct-tree that models the
computation, which achieved a significant speedup.

DOJ achieved nearly identical performance to OoOJava for the
RayTracer, Tracking, and Crypt benchmarks.

MonteCarlo has a highly parallel workload of independent sim-
ulations and a sequential task that aggregates the results. The se-
quential task’s heap examiner checks that both the parallel task of
the same iteration and the sequential task from the previous itera-
tion have retired.

Parallelism in KMeans is limited by a non-trivial serial compu-
tation following each parallel iteration of the clustering algorithm.
The serial computation is executed in a separate task which, by
virtue of having three heap roots leading to possible effects, re-
quires three heap examiners. In this case, the conflicts are between
consecutive instances of the sequential task and with heap accesses
made by the parent thread following the last iteration. The heap ex-
aminer efficiency is sufficient to extract the parallelism in KMeans.

Parallelism in MolDyn is similar to KMeans; however, the par-
allel task instances in MolDyn read from many particle objects that
conflict with the particle updates in the sequential task. In this case
the dynamic analysis visits many objects yet still is able to extract
much parallelism.

We parallelized Power by partitioning each sub-tree of the
power simulation into a task. Power is a challenging benchmark
for DOJ because it performs a lightweight computation that mod-
ifies a very large number of objects. The heap examiners gener-
ated by DOJ traverses 49,140 objects per parallel phase, 26,040 of
which are updated and therefore potentially conflicting. Even with
such a large set of potentially conflicting updates and a relatively
lightweight computation, DOJ still achieved a significant speedup.

Labyrinth is an interesting case of a speculative algorithm that
can be successfully parallelized with a deterministic system. Our
first experiment resulted in an execution time worse than the se-
quential version, shown as Labyrinth (a) in Figure 10. Each par-
allel task is assigned a copy of the three-dimensional array that
represents the maze and calculates routes that may conflict with
other routes proposed in parallel. The grid dimensions were orig-
inally specified in the order 512×512×7. A set of scratch grids is
recycled among parallel tasks and in order to check that compo-
nents of the scratch grid are not shared with another parallel task,
a heap examiner must traverse all of the 262,144 (512×512) one
dimension component array objects. In the worst case DOJ is de-
signed to run only marginally slower than a sequential execution,
because static effect queues will resolve conflicts ahead of heap ex-
aminers and allow execution of all tasks in the original sequential
order. The slowdown from Labyrinth is not caused by DOJ but from
Labyrinth’s speculative approach to parallelism that discards con-
flicting routes. We verified this hypothesis by reducing the parallel

†OoOJava is overly conservative for BarnesHut and cannot generate a
meaningful parallel implementation. For Voronoi, OoOJava did not com-
plete its heap analysis within the hour we allocated.
‡All speedups are reported relative to sequential, statically compiled Java
code with no tasks.
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Figure 12. DOJ Speedups Scaling (Higher is Better)‡

batch size to one, which results in an execution that takes approx-
imately the same time as the sequential version because no solu-
tions are discarded. When we transformed the input to an equiva-
lent problem with reordered dimensions, namely 7×512×512, the
heap examiners must still visit 3,584 objects but are able to resolve
conflicts quickly enough to achieve a significant speedup, reported
as Labyrinth (b). While it is straightforward to handle multidimen-
sional arrays as a special case, Labyrinth provided an interesting
example of the limits of DOJ.

The speedup for SOR is limited because the benchmark is mem-
ory bandwidth-limited. Tasks access a large amount of data relative
to the computation requiring significant memory bandwidth. We
confirmed this by measuring the average execution of the paral-
lel tasks for a 23-worker implementation and a 2-worker imple-
mentation of SOR. The body of parallel tasks for this benchmark
performs no synchronization or system calls, so differences in ex-

ecution time can only be attributed to the memory system. For 23-
workers the average execution of the parallel task is 329,189 pro-
cessor cycles and for 2 workers, 222,429 processor cycles.

DOJ achieved a better speedup for SOR than OoOJava because
of differences in the runtime components. The generated heap ex-
aminers in the DOJ version perform traversals with no depth, and
so perform a simple dynamic check similar to the check in OoO-
Java. However, OoOJava’s runtime conflict queues must support a
wider variety of ordering constraints than DOJ. As a result, DOJ
can be more heavily optimized and for SOR outperforms OoOJava.

MergeSort from DPJ has a sequential merge phase that limits
parallelism at all levels of recursion. However, DOJ still achieved a
significant speedup.



6.3 Implementation Overheads
We measured task dispatch overhead for a microbenchmark that
issues 500,000 lightweight tasks. The average time over ten exe-
cutions to dispatch a task was 1886 processor cycles on the AMD
Magny-Cour Opteron. For comparison, we conducted this experi-
ment on an 8-core Intel Nehalem Xeon and measured the average
of ten executions to be 982 processor cycles.

To quantify the overhead of our compiler, we compared the gen-
erated code against the OpenJDK JVM 14.0-b16 and GCC 4.1.2.
The sequential version of Crypt compiled with our compiler ran
4.6% faster than on the JVM. We also developed a C++ ver-
sion compiled with GCC and found our compiler’s version ran
25% slower than the C++ version. Our compiler implements array
bounds checking; with array bounds checking disabled, the binary
from our compiler runs only 5.4% slower than the C++ binary. We
used the optimization flag -O3 for the C++ version as well as for
the underlying C code generated by our compiler. This is in close
agreement with more extensive experiments on six benchmarks that
we performed in earlier publications. Those experiments measured
an average overhead for our compiler with array bounds checks
disabled of 4.9% relative to GCC.

6.4 Parallelization Discussion
Our parallelization efforts typically began by profiling a bench-
mark and selecting computationally expensive blocks to enclose
in tasks. We found task annotations easy to use—an inexperienced
undergraduate ported the first version of Labyrinth. On average we
changed only 20 lines of each benchmark.

Several of the benchmarks had a top-level loop to distribute
work, making the placement of tasks easy. For other benchmarks
our typical process for inserting tasks started with identifying a
sequence of computationally intensive code that we expected (1)
would be often repeated and (2) had no dependences between
instances; we wrapped such a block in a task. Next we looked for
statements dependent on the output of the parallel task along the
execution path back to the definition of the parallel task. Many
loops in our benchmarks worth parallelizing had parallel work at
the beginning of the loop body followed by a sequence of iteration-
interdependent statements in the rest of the body. Our goal was
to enclose in a task any statements that would stall the parent
thread from issuing new parallel task instances. Benchmarks like
RayTracer and Monte had partially parallel loops that were easily
partitioned into one parallel task and one sequential task.

7. Related Work
Several approaches to parallelism rely on correct developer anno-
tations including OpenMP [7], Cilk [22], and JCilk [9]. Annotation
errors in such systems can cause data races. A major advantage of
DOJ is that annotation errors never cause correctness concerns.

Functional languages [20] provide strong correctness guaran-
tees for parallel programs by prohibiting state mutation. Macro-
dataflow languages [8, 14, 33] leverage the dataflow approach on
larger granularity code segments. DOJ can be viewed as a system
for executing sequential code using a dataflow execution model.

Speculative programming models [2, 10, 31, 32] offer a similar
programming model as DOJ but can incur significant overheads
to support rollback—possibly even repeated rollbacks—in the case
of mis-speculation. DOJ avoids the rollback overhead by verifying
that a task can safely run to completion before starting the task.

OoOJava [16, 17] uses the same programming model as DOJ.
OoOJava uses sophisticated static disjoint reachability analysis [18,
21] to parallelize programs. DOJ borrows variable dependence
analysis from OoOJava and significantly extends OoOJava’s effects
analysis to extract sufficient information to implement heap exam-

iners. DOJ removes the need for a static reachability analysis and
therefore can scale to larger code bases. DOJ’s dynamic strategy
relies less on the precision of static analysis and can determine the
absence of conflicts even when paths exist between the conflicting
objects. Moreover, DOJ can determine that tasks affect only a lo-
calized part of a data structure, while OoOJava assumes that a task
can affect any reachable part of the data structure.

Synchronization Via Scheduling [3] uses a similar task-based
model to DOJ but cannot analyze heap structures. They introduce
a new language CDML that is similar to C++ but includes task-
related constructs. They use Bloom filters to detect variable con-
flicts. DOJ takes a significantly more sophisticated approach to
variable conflicts — our approach eliminates antidependences that
would otherwise limit parallelism.

Hybrid analysis [25] shares inspiration with DOJ; both use static
analysis to classify code of interest as possibly or always paralleliz-
able, and for statically possible cases a customized dynamic anal-
ysis further refines the decision. However, whereas hybrid analysis
targets Fortan arrays, calculating when code segments might access
common array elements, DOJ instead targets Java-like languages
which commonly layer object-oriented abstractions and where par-
allelism is often determined by object sharing patterns. Addition-
ally, hybrid analysis computes a slice to calculate statically un-
known addresses, and runs the slice to decide parallel safety. In the
object-oriented domain a slice may contain heap modifications, so a
slicing strategy will almost certainly require rollback mechanisms.
DOJ avoids speculation with read-only heap examiners, which are
sound approximations of code segments.

Other approaches require extensive developer annotations to
avoid unchecked access to data structures [4, 24] or additional code
to create serialization sets [1]. DOJ requires minimal annotations,
which will likely improve developer productivity.

StarSs dynamically schedules function invocation when a func-
tion’s operands are available [11]. StarSs does not analyze heap
dependences and therefore restricts functions to pass-by-value and
forbids passing data structures that contain pointers.

DOJ differs from inspector-executor approaches [23, 26] in that
it supports complex object-oriented data structures, uses the results
of static analysis to avoid inspecting most memory accesses, and
does not require a runtime preprocessing phase. Van der Spek,
Holm and Wijshoff describe an approach to transform pointer-
traversing loops into array-traversing loops in order to apply well
known array parallelization techniques [29]; the array version of a
function may only be invoked when it has been previously changed
and the root of its data dependencies have not changed. DOJ always
attempts to execute tasks out of order and may succeed in cases
where this inspector-executor approach cannot.

Decoupled software pipelining (DSWP) [15] maps memory op-
erations in a loop that may conflict to the same thread of a software
pipeline. While this approach simplifies the necessary heap anal-
ysis, it limits parallelism — at most one core can write to a stati-
cally identified heap region. In contrast, DOJ can execute instances
of write instructions across many cores. DOJ also uses a sophisti-
cated heap dependence analysis that can determine that some write
statements of a loop are conflict-free where DSWP cannot. DSWP
extracts very fine-grained parallelism compared to DOJ; the tech-
niques are likely synergistic.

8. Conclusion
For parallel programming to become mainstream, parallel pro-
gramming must become easier. We presented a new approach to
parallel programming that uses lightweight annotations to suggest
parallelization of a sequential program. DOJ generates dynamic
heap dependence analyses that automatically extract heap depen-
dences and can guarantee that the parallel execution has the same



behavior as the sequential execution. We successfully parallelized
twelve applications and achieved significant speedups. Moreover,
we found that parallelizing applications with DOJ was straightfor-
ward and required only minor modifications to our benchmarks.
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