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Abstract. We present Bristlecone, a programming language for robust software
systems. Bristlecone applications have two components: a high-level organization
description that specifies how the application’s conceptual operations interact,
and a low-level operational description that specifies the sequence of instructions
that comprise an individual conceptual operation. Bristlecone uses the high-level
organization description to recover the software system from an error to a consis-
tent state and to reason how to safely continue the software system’s execution
after the error.
We have implemented a compiler and runtime for Bristlecone. We have evalu-
ated this implementation on three benchmark applications: a web crawler, a web
server, and a multi-room chat server. We developed both a Bristlecone version
and a Java version of each benchmark application. We used injected failures to
evaluate the robustness of each version of the application. We found that the
Bristlecone versions of the benchmark applications more successfully survived
the injected failures.

1 Introduction

Software faults pose a significant challenge to developing reliable, robust software sys-
tems. The current approach to addressing software faults is to work hard to minimize
the number of software faults through development processes, automated tools, and
testing. While minimizing the number of software faults is a critical component in the
development process for reliable software, it is not sufficient: the faults that inevitably
slip through the development and testing processes will still cause deployed systems to
fail.

The Lucent 5ESS telephone switch, the Ericsson AXD301 ATM switch, and the
IBM MVS operating system are examples of critical systems that use recovery routines
to automatically recover from software failures [1, 2]. The software in these systems
contains a set of manually coded recovery procedures that detect errors and then take
actions to automatically recover from the errors. The reported results indicate that the
recover routines can provide an order of magnitude increase in the reliability of these
systems [3]. This additional reliability comes at a significant additional development
cost — the recovery routines for the Lucent 5ESS telephone switch constitute more
than 50% of the switch’s software [4]. As a result of these high costs, recovery proce-
dures have been primarily relegated to the domain of critical infrastructure software that
can justify the cost. A wide range of other applications including desktop applications
such as web browsers, office applications, games, servers, and control systems could
potentially benefit from lower-cost automated recovery. The goal of Bristlecone is to
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provide a lower-cost approach to software recovery that will enable a larger class of
applications to benefit from this technique.

The key inspiration for this research is the observation that many software errors
propagate through software systems to cause further damage either through data struc-
ture corruption or control-flow–induced coupling between conceptual operations. We
have developed Bristlecone, a programming language for robust software systems, to
address the error propagation problem. The basic idea is to address error propagation
by having developers write software systems as a set of decoupled tasks with each task
encapsulating an individual conceptual operation. The developer also provides speci-
fications that describe how these decoupled tasks interact and optionally what consis-
tency properties should hold for data structures. The runtime checks for data structure
consistency violations and monitors for illegal operations (such as illegal memory ac-
cesses or arithmetic errors) to detect software errors. If the runtime detects an error in
the execution, the runtime rolls back the data structures to their state at the beginning of
the task’s execution, and then uses the task specifications to adapt the execution of the
software system to avoid re-executing the same error and make forward progress.

Alternatively, we can view Bristlecone as a programming language that allows for a
large space of possible execution paths for any given software system with an implicit
ordering of how desirable any given path is. If the most desirable path results in an error,
the runtime rolls back the execution enough to follow a different path thereby avoiding
the error. The result is a robust software system that can continue to successfully provide
service even in the presence of errors.

1.1 Bristlecone Language

Figure 1 gives an overview of the components in the Bristlecone system. We can view
software systems as a composition of thousands of conceptual operations — in practice,
the correct execution of any conceptual operation is likely to be independent of many
of the other conceptual operations. However, many traditional programming languages
force developers to linearize the conceptual operations of a software system. This lin-
earization tightly couples these conceptual operations: if one conceptual operation fails,
it becomes unclear how to safely execute any future conceptual operations.

Bristlecone avoids artificially coupling operations by providing the developer with
the task program construct. The developer uses a task to encompass a single conceptual
operation. Tasks are represented in Figure 1 as rectangles. A set of task specifications
loosely couple the tasks together. Each task contains a task specification that the runtime
uses to determine (1) when to execute the task, (2) what data the task needs, and (3) how
the task changes the role this data plays in the computation. If a task fails, the runtime
uses the task specifications to reason how to adapt the future execution of the software
system so that the execution does not depend on the failed task.

Bristlecone contains the following components (represented by rounded boxes in
the figure):

• Bristlecone Compiler: The Bristlecone compiler compiles the tasks and task spec-
ifications into C code. Our implementation then uses the gcc C compiler to generate
executables. The ellipse labeled Compiled Tasks represents the compiled tasks.
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Fig. 1. Overview of the Bristlecone System

• Runtime: The runtime uses the compiled code and compiled specifications gener-
ated by the compilers (represented by the ellipses in the figure) to execute the soft-
ware system. It uses the consistency checker to detect errors that silently corrupt
data structures. The runtime then uses rollback to recover consistent data structures
if it detects a software error. Finally, it uses the task specifications to determine
when to execute the tasks and how to recover from errors.

1.2 Scope

Bristlecone is not suitable for all software systems. Certain computations, such as some
scientific simulations, are inherently tightly coupled. While Bristlecone may detect er-
rors in such software systems, it is unlikely to enable these systems to recover in any
meaningful way. For other computations, it may be desirable for a software system to
shut down rather than deviate from a specific designed behavior or produce a partial
result.

Bristlecone is designed for software systems that place a premium on continued
execution and that can tolerate some degradation from a specific designed behavior.
For example, we expect that Bristlecone will be useful for financial server software,
e-commerce systems, office applications, web browsers, online game servers, sensor
networks, and control systems for physical phenomena. For applications like finance,
Bristlecone can be used to develop software systems that only process error-free trans-
actions and back out all changes that corrupt data structures, while still ensuring that
cosmetic errors do not cause potentially expensive downtime. Ultimately, the software
developer must decide whether using this approach is reasonable for a given software
system.

This decision could depend on the environment in which a system is deployed. For
example, in systems with redundant backup systems, we expect that developers would
design the primary system to fail-fast and the backup system to be robust in the presence
of errors.
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1.3 Contributions

This paper makes the following contributions:

• Bristlecone Language: It presents a programming language which exposes both
the conceptual operations and the ordering and data dependences between these
conceptual operations to the compiler and runtime system.

• Recovery Strategy: It presents a strategy for repairing the damage caused by a
software error and adapting the software system’s execution in response to the error
to enable it to safely continue execution.

• Experience: It presents our experience using Bristlecone to develop three robust
software systems: a web crawler, a web server, and a multi-room chat server. For
each benchmark, we developed both a Bristlecone version and a Java version. We
designed the Java versions to be resilient: they use threads to tolerate failures. Our
experience indicates that the Bristlecone versions are able to successfully recover
from significantly more of the injected failures.

The remainder of the paper is structured as follows. Section 2 presents an example
that illustrates our approach. Section 3 presents the Bristlecone languages. Section 4
presents the runtime system. Section 5 presents our experience using Bristlecone to
develop several robust software applications. Section 6 discusses related work; we con-
clude in Section 7.

2 Example

We next present a web server example that illustrates the operation of Bristlecone. This
web server has specialized e-commerce functionality and maintains state to track in-
ventory.

As the example web server executes, the conceptual state or role of objects in the
computation evolves. This evolution changes the way that the software system uses
the object and can change the functionality that the object supports. For example, the
Java connectmethod changes the functionality of a Socket object in a computation:
after the connectmethod is invoked, data can be written to or read from that Socket
object.

The Bristlecone language provides flags to track the conceptual state of an object.
The runtime uses the conceptual state of the object as indicated by the object’s flag to
determine which conceptual operations or tasks to invoke on the given object. When a
task exits, it can change the values of the flags of its parameter objects.

2.1 Classes

Figure 2 gives part of the WebRequest class definition. The web server example uses
instances of the WebRequest class to manage connections to the web server. The
WebRequest class definition declares three flags: the initialized flag, which
indicates whether the connection is in the initial state; the file req flag, which in-
dicates that the server has received a file request from this client connection; and the
write log flag, which indicates whether the connection information is available for
logging.
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class WebRequest {
/* This flag indicates that the WebRequest object is in its

initial state. */
flag initialized;

/* This flag indicates that the system has received a request
to send a requested file. */

flag file_req;

/* This flag indicates that the connection should be logged. */
flag write_log;
...

}

Fig. 2. WebRequest Class Declaration

In many cases, the developer may need to invoke a task on multiple objects that are
related in some way. Bristlecone provides a tag construct, which the developer can use
to group objects together. New tag instances are created using tag allocation statements
of the form tag tagname=new tag(tagtype). Such a tag allocation statement
allocates a new tag instance of type tagtype and assigns the variable tagname to
this tag instance. The developer can tag multiple objects with a tag instance to group
them, and then use that tag instance to ensure that the runtime invokes a task on two or
more objects in the group defined by the tag instance. The developer can tag an object
by including the statement add tagname in an object allocation site to tag the newly
allocated object or in a taskexit statement to tag a parameter object. The example
uses the connection tag to group a WebRequest object with the corresponding
Socket object that provides the TCP connection for that web request. Tag instances
can be added to objects when the object is allocated, and they can be added or removed
to or from a task’s parameter objects when the task exits.

2.2 Tasks

Bristlecone software systems consist of a collection of interacting tasks. The key dif-
ference between tasks and methods is that the runtime invokes a task when the heap
contains objects with the specified flag settings to serve as the task’s parameters. Note
that while the runtime controls task invocation, tasks can call methods. The runtime
uses a task’s specification to determine which objects serve as the task’s parameters and
when to invoke the task.

Each task declaration consists of the keyword task, the task’s name, the task’s
parameters, and the body of the task. Figure 3 gives the task declarations for the
web server example. We indicate the omission of the Java-like imperative code in-
side the task declarations with ellipses. The first task declaration declares a task named
startup that takes a StartupObject object as a parameter and points the param-
eter variable start to this object. The declaration also contains a guard that states
that the StartupObject object must have its initialstate flag set before the
runtime can invoke this task. The runtime invokes the task when there exist parame-
ter objects in the heap that satisfy the parameters’ guard expressions. Before exiting,
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the taskexit statement in the startup task resets the initialstate flag in
the StartupObject to false to prevent the runtime from repeatedly invoking the
startup task.

/* This task starts the web server */
task startup(StartupObject start in initialstate) {
...
ServerSocket ss=new ServerSocket(80);
Logger l=new Logger() (initialized:=true);
taskexit(start: initialstate:=false);

}

/* This task accepts incoming connection requests and creates a
Socket object. */

task acceptConnection(ServerSocket ss in pending_socket) {
...
tag t=new tag(connection);
WebRequest w=new WebRequest(...)(initialized:=true, add t);
ss.accept(t);
...

}

/* This task reads a request from a client. */
task readRequest(WebRequest w in initialized with connection t,

Socket s in IO_Pending with connection t) {
...
if (received_complete_request)
taskexit(w: initialized:=false, file_req:=true,
write_log:=true);

}

/* This task sends the request to the client. */
task sendPage(WebRequest w in file_req with connection t,

Socket s with connection t) {
...
taskexit(w: file_req:=false);

}

/* This task logs the request. */
task logRequest(WebRequest s in write_log, Logger l in

initialized) {
...
taskexit(s: write_log:=false);

}

Fig. 3. Flag Specifications for Tasks

Task declarations can contain constraints on tag bindings to ensure that the pa-
rameter objects are related. A tag binding constraint contains the keyword with
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followed by the type of the tag and the tag variable. For example, the task
declaration task readRequest(WebRequest w in initialized with
connection t, Socket s in IO Pending with connection t) en-
sures that the runtime only invokes the readRequest task on a set of parameter
objects in which the first parameter object is bound to an instance of a connection
tag and the second parameter object is bound to the same connection tag instance.
When the task executes, the tag variable t is bound to that connection tag instance.

2.3 Error-Free Execution

Runtime initialization

startup Task

StartupObject {initialstate}

acceptConnection Task

ServerSocket {} +
Incoming Connection
ServerSocket{pending_socket} 

sendPage Task logRequest Task

Logger {initialized}

readRequest Task

WebRequest {initialized} with 
connection tag + Socket {IO_pending} 
with same connection tagWebRequest {file_req, ...} 

with connection tag + Socket{} 
with same connection tag WebRequest {write_log, ...}

Fig. 4. Task Diagram for the Web Server

Figure 4 gives a diagram of the dependences between tasks in the web server
example. The ellipses in the diagram represent tasks and the edges represent the
control and data dependences between the tasks. The rectangle labeled Runtime
initialization represents the initialization performed by the Bristlecone runtime.
From this diagram, we can see that the web server performs the following operations in
an error-free execution (although not necessarily in this order):

1. Startup: When a Bristlecone program is executed, the Bristlecone runtime creates
a StartupObject object and then sets its initialstate flag to true. Setting
this flag causes the runtime to invoke the startup task in our example. Note that
the code never explicitly calls a task. Instead, the runtime keeps track of the status
of the flags of objects in the heap and invokes a task when the heap contains objects
with the specified flag settings to serve as parameters.
When the runtime invokes the startup task, the startup task creates a
ServerSocket object to accept incoming connections to the web server. Next,
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it creates a Logger object to manage logging web page requests and sets its
initialized flag to indicate that the object is ready to provide logging func-
tionality. Finally, it resets the StartupObject object’s initialstate flag to
false to prevent the runtime from repeatedly invoking the startup task.

2. Accepting an Incoming Connection: At some point, the web server will re-
ceive an incoming connection request from a web browser. This causes the run-
time to set the ServerSocket object’s pending socket flag to true, which
in turn causes the runtime to invoke the acceptConnection task with this
ServerSocket object as its parameter. The acceptConnection task creates
a WebRequest object to store the connections state and calls the accept method
on the ServerSocket to create a Socket object to manage communication
with the web browser. Note that the acceptConnection task creates a new
connection tag instance to group the Socket object and WebRequest object
together by binding this tag instance to the WebRequest object and then pass-
ing this tag instance into the accept method to bind the newly created Socket
object.

3. Reading a Request: After a connection is established, the client web browser sends
a web page request to the server. In response to this incoming web page request, the
runtime sets the Socket object’s IO pending flag to true1, which in turn causes
the runtime to invoke the readRequest task. The readRequest task checks
whether the server has received the complete request.2 If it has received the com-
plete request, it sets both the file req flag and the write log flag to true and
resets the initialized flag to false. These flag changes cause the runtime to
eventually invoke both the sendPage and the logRequest tasks and prevents
repeated invocations of the readRequest task on the same object.

4. Sending the Page: The runtime invokes the sendPage task when the
WebRequest object’s request processed flag is set to true. The sendPage
task then reads the requested file and sends the contents of the file to the client
browser. The sendPage task then resets the received request flag to false
to prevent repeated invocations of the sendPage task.

5. Logging the Request: The runtime invokes the logRequest task when both
the WebRequest object’s write log flag is set to true and the Logger ob-
ject’s initialized flag is set to true. The logRequest task writes a log entry
to record which web page was requested. The logRequest task then resets the
write log flag to false to prevent repeated invocations of the logRequest task.

1 The IO pending flag is declared with the external keyword to indicate that the runtime
manages setting and clearing this flag. The current runtime implementation of Bristlecone is
single-threaded and, therefore, uses non-blocking I/O. Future runtime implementations will
support multiple concurrent tasks and (transactional) blocking I/O [5].

2 Note that it is possible for a client browser to split a long request across multiple packets and
therefore it may be necessary to invoke the readRequest task multiple times to receive a
single request.
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2.4 Error Handling

The Bristlecone runtime uses task specifications to automatically recover from errors.
For example, suppose that the logRequest task fails while updating the Logger
object. If the web server were written in a traditional programming language, it could
be difficult to recover from such a failure. While some traditional languages provide
exceptional handling mechanisms, using them effectively is challenging — the devel-
oper must both identify which failures are likely to occur and reason about how to
recover from those failures. Alternatively, the program could simply ignore the failure.
Unfortunately, if the web server were to simply ignore the failure, it could easily leave
the Logger object in an inconsistent state, possibly eventually causing a catastrophic
failure later.

To address this issue Bristlecone tasks have transactional semantics — upon fail-
ure, the Bristlecone runtime aborts the enclosing transaction to return the affected
objects, including the Logger object, to consistent states. The runtime then records
that the logRequest task failed when invoked on the combination of those specific
WebRequest and Logger objects. The runtime uses this record to avoid re-executing
the same specific failure. At this point, the Bristlecone runtime has returned the web
server to a known consistent state and must now determine how to safely continue the
web server’s execution.

The traditional problem with using transactions to recover from deterministic soft-
ware faults is that after aborting a transaction the software system cannot make forward
progress — retrying the same transaction will cause the system to repeat the same fail-
ure. Bristlecone solves this problem by using the flags, tags, and task specifications to
determine which other tasks are safe to execute after the error. Although the software
fault prevents the system from logging this request, since the file req flag is set to
true, the task specification for the sendPage task allows the runtime to invoke the
sendPage task. Therefore, the runtime can still safely serve the web page request.

The end result is that the software system is able to safely continue to execute even
in the presence of software errors. Bristlecone is able to successfully isolate the effects
of the error to a minimal part of the web server’s execution — only a single task is
aborted and the abort is logged. Without Bristlecone, the web server could potentially
leave the Logger object in an inconsistent state, possibly causing the web server to fail
to log future requests. If the web server written in a conventional language was designed
to log request before serving a request, corruption of the log data structure could even
cause the server to stop serving requests.

3 Language Design
The Bristlecone language includes a task specification language that describes how to
orchestrate task execution. Bristlecone introduces object flags to store the conceptual
state of the object. Each task contains a corresponding task specification that describes
which objects the task operates on, when the task should execute, and how the task
affects the conceptual state of objects.

Bristlecone is an object-oriented, type-safe language with syntax similar to Java.
Figure 5 presents the grammar for Bristlecone’s task extensions to Java. We omit the
Java-like imperative component of Bristlecone from the grammar to save space. The
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flagdecl := flag flagname; | external flag flagname;

tagdecl := tagtype tagname;

taskdecl := task name(taskparamlist)

taskparamlist := taskparamlist, taskparam | taskparam

taskparam := type name in flagexp | type name in flagexp with tagexp

flagexp := flagexp and flagexp | flagexp or flagexp |!flagexp | (flagexp) | flagname | true | false
tagexp := tagexp and tagtype tagname | tagtype tagname

statements := ... | taskexit(flagactionlist) | tag tagname = new tag(tagtype) |
new name(params)(flagortagactions) | assert(expression)

flagactionlist := flagactionlist; name : flagortagactions | name : flagortagactions

params := ... | tag tagname

flagortagactions := flagortagactions, flagortagaction | flagortagaction

flagortagaction := flagaction | tagaction

flagaction := flagname := boolliteral

tagaction := add tagname | clear tagname

Fig. 5. Task Grammar

developer includes a flag declaration inside a class declaration to declare that objects of
that class contain the declared flag. Flag declarations use the flag keyword followed
by the flag’s name. The developer may optionally use the external keyword to spec-
ify that the flag is set and reset by the runtime system. External flags are intended to
handle asynchronous events such as communication over the Internet or mouse clicks.
External flags are intended to be declared in library code with the corresponding run-
time component setting and clearing the external flag.

The developer can use tags to enforce relations between the parameters of a task.
The developer can create new tag instances with the new tag statement and a tag type.
Note that there may be many instances of a given type of tag. Each different instance of
that tag is distinct — objects labeled by two different instances of the same tag type are
not grouped together. The developer can bind tags to objects when an object is allocated
or bind or unbind tags to or from parameter objects at the task’s exit.

The developer declares a task using the task keyword followed by the task’s name,
the task’s parameters, and the task’s code. Each task parameter declaration contains the
parameter’s name, the parameter’s type, a flag guard expression that specifies the state
of the parameter’s flags, and an (optional) tag guard expression that specifies the tags
the object has. The task may be executed when all of its parameters are available. A pa-
rameter is available if the heap contains an object of the appropriate type, that object’s
flags satisfy the parameter’s guard expression, and that object contains the tag instances
that the parameter’s guard expression specifies. Bristlecone adds a modified new state-
ment that specifies the initial flag settings and tag bindings for a newly allocated object.
These take effect when the task exits. Bristlecone contains a taskexit statement that
specifies how the task changes the state of the flags or tag bindings of its parameter
objects at that task exit point.

Bristlecone contains an assert statement that can be used to specify correctness
properties that must hold. The goal of assert statements is to provide a mechanism to
detect higher-level errors that do not cause low-level exceptions. The compiled appli-
cation uses the assert statements to detect errors at runtime— if it detects an error, the
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runtime system will invoke the recovery algorithm. These assertion statements can be
used with data structure consistency checking tools [6, 7], JML assertions [8], or design
by contract methodologies [9]. In many cases, the assertions can be generated automat-
ically using dynamic invariant detection tools [10–12].

4 Runtime System
The Bristlecone runtime is responsible for dispatching tasks, detecting errors, and re-
covering from errors.

4.1 Task Execution

Recall that the task specification contains guard expressions for all of the task’s pa-
rameters and that the runtime executes a task when parameter objects are available that
satisfy these guards. We next discuss how our implementation efficiently performs task
dispatch. A naive approach to task dispatch could potentially be very inefficient — a
parameter’s guard expression is quantified over all objects in the heap!

Parameter Sets The runtime maintains a parameter set for each parameter of each
task. A parameter set contains all of the objects that satisfy the corresponding parame-
ter’s guard. For each object type, the runtime precomputes a list of parameter sets that
objects of this type can potentially be a member of. When a task exit changes an ob-
ject’s flag settings or tag bindings, the runtime updates that object’s membership in the
parameter sets by traversing the precomputed list of possible parameter sets for the class
and evaluating whether the object satisfies the guard expression to be a member of the
parameter set.

Bristlecone also uses the parameter sets as root sets for garbage collection. Objects
in Bristlecone are garbage collected if (1) the object is unreachable from any poten-
tial parameter objects and (2) the object cannot be a parameter object of any task as
determined by membership in a parameter set. Note that it is possible to write incor-
rect programs that leave objects in task queues (e.g consider a two parameter task with
tagged parameters, the program might only change one parameter object’s flags leaving
the other parameter object in the queue). We have developed a static analysis that the
developer can use to automatically identify this type of memory leak [13].

Task Queue A task invocation is a tuple that includes both a task and bindings for
that task’s object parameters and tag parameters. An active task invocation is a task
invocation that satisfies all of the task specification’s guards and can therefore safely
be invoked by the runtime. The runtime maintains the task queue of all active task
invocations and executes task invocations from this task queue.

Our implementation maintains a conservative approximation of the task queue —
our implementation’s task queue may contain a number of non-active task invocations
in addition to all of the active task invocations. When an object is added to a parameter
set, the implementation generates all active task invocations that bind that object to the
corresponding parameter and then adds these active task invocations to the task queue.
When an object is removed from a parameter set, our implementation does not remove
task invocations from the task queue. Instead, before the implementation executes a
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task invocation in the queue, the implementation verifies that the task invocation is still
active.

Iterators We next describe how our implementation efficiently generates all active
task invocations. Note that tag bindings restrict how parameter objects can be grouped
together into a task invocation, and therefore, a naive implementation can needlessly ex-
plore many task invocations that do not satisfy tag guards. For example, the sendPage
task in a web server may require both a WebRequest object and a Socket object
tagged with the same connection instance as parameters. An efficient implementa-
tion must prune the search space of possible task invocations to avoid the overhead of
exploring many task invocations that do not satisfy the tag guards.

Our implementation searches the parameter binding space using a sequence of it-
erators. It uses two iterator types: object instance iterators and tag instance iterators.
Object instance iterators iterate over the objects in the corresponding parameter set that
are compatible with all tag variable bindings made by previous iterators. In general, we
expect that relatively few objects will be bound to a given tag instance and relatively few
tag instances will be bound to a given object. Our implementation uses this expectation
to optimize the object iterators: if the parameter has a tag guard with a tag variable that
was bound by a previous tag iterator, the implementation optimizes the object iterator
to only iterate over the objects bound to that tag instance. Tag iterators iterate over tag
instances that are bound to an object. Tag iterators bind the tag variables in tag guards
to tag instances.

As described above, our iterators use the constraints provided by the tag guards to
prune the search space. Note that the order of the iterators can affect the size of the
search space that the implementation explores to generate all active task invocations.
Our implementation precomputes iterator orderings for each parameter of each task.
The implementation uses the following ordering priority:
1. Tag iterators for tags bound to parameter objects that have already been iterated over

have the highest priority. We expect that the set of iterated tag instances will be small
and, therefore, tag bindings will substantially prune subsequent object iterations for
parameters bound to the same tag variable.

2. Object iterators for parameters with tags that are bound by previous tag iterators.
3. Object iterators for parameters with tags that have not yet been iterated over.
4. Remaining object iterators have the lowest priority.

Task Execution Semantics Tasks may fail either as a result of software errors, hard-
ware failures, or user errors. If a task fails, it may leave data structures in inconsistent
states. Further computation using these inconsistent data structures will likely have un-
predictable and potentially catastrophic results. To avoid this problem, tasks in Bristle-
cone have transactional semantics — if a task fails, the Bristlecone runtime aborts the
task’s transaction.

Recall that a potential issue with the use of transactions in traditional programming
languages is that after the system recovers to the previous point, the system may simply
re-execute the same deterministic fault and that fault will cause the system to fail repeat-
edly in the same way. Bristlecone addresses this issue by using the flexibility provided



13

by the task-based language to avoid re-executing the same failure. The Bristlecone run-
time records the combination of task and parameter assignments that caused the failure
and uses this record to avoid re-executing the failed combination task and parameter
assignments. Instead, the runtime executes other tasks to avoid retriggering the same
underlying fault.

4.2 Error Detection

Errors can cause the computation to produce incorrect results and corrupt data struc-
tures, potentially eventually causing the software system to perform unacceptably.
Bristlecone uses runtime checks to detect errors, enabling the software system to adapt
its execution. The Bristlecone runtime uses error detection routines to trigger recovery
actions.

Bristlecone uses checks to detect many software errors. For example, the Bristle-
cone compiler generates array bounds checks. These checks verify that the software
system does not read or write past the end of arrays. The Bristlecone compiler also gen-
erates the necessary type checks for array operations and cast operations. These checks
ensure that the dynamic types of objects do not violate type safety.

The runtime uses hardware page protection to perform null pointer checks. This
is implemented by catching the segmentation fault signal from the operating system.
These checks ensure that the software system does not attempt to dereference a null
pointer or write values to the fields of a null pointer. The runtime also uses hardware
exceptions to detect arithmetic errors including division by zero. Native library routines
also signal errors to the runtime. For example, if a software systems attempts to send
data over a closed network connection, the runtime will signal an error. Software errors
can also cause a program to loop. Looping can prevent the software system from pro-
viding services. It is straightforward to support developer-provided task time-outs that
the runtime can use to detect looping tasks.

Bristlecone includes a runtime assertion mechanism to ensure that the execution is
consistent with respect to specified properties. The developer can simply write impera-
tive code to check properties or can use the assertion mechanism to call external con-
sistency checking code. This mechanism is intended to be used to ensure data structure
consistency or to use techniques such as design by contract to detect higher-level er-
rors. The mechanism can be used in conjunction with JML assertions [8], data structure
consistency specifications languages [6, 7], or other runtime checkable specifications.

4.3 Error Recovery

Bristlecone was designed to support reasoning about failures using the high-level task
abstraction. In Bristlecone, a task either successfully completes execution or does not
execute at all. The Bristlecone runtime uses a straightforward checkpointing-based
transaction approach to implement this failure abstraction. Because a task can only ac-
cess the part of the heap that is reachable from the task’s parameter, it suffices to create
a snapshot of all objects reachable from the task’s parameters.

While the current prototype implementation uses a naive checkpointing-based ap-
proach, it is conceptually straightforward for future Bristlecone implementations to
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leverage the large body of work on efficiently implementing software or hardware trans-
actional memory. A second issue with the current implementation is transactionalizing
I/O. One solution is to use a transactional I/O API that delays the effects of I/O opera-
tions until a task commits.

If Bristlecone detects an error, it simply fails the entire task and uses this stored
checkpoint to rollback the state affected by the failed task. This recovery strategy greatly
simplifies reasoning about the state of the software system after a failure. Restoring state
from the previous checkpoint ensures that a failure does not leave partially updated data
structures in inconsistent states.

Many software errors are deterministic. If Bristlecone re-executes a failed task on
the same parameters in the same state, it is likely that the task will fail again due to
the same error. Bristlecone addresses this issue by maintaining a record of failures. For
each failure, this record contains the combination of the failed task and the parameter
assignments that failed. Bristlecone uses this record to avoid re-executing the same fail-
ures by checking reference equality of the task’s parameters. The Bristlecone runtime
then uses the object flags to determine which tasks can be executed even though part
of the computation has failed. To better handle non-deterministic failures, the approach
can be extended to automatically retry failed task executions a few times. We note that
after a failure, a failed object can remain in task queue and never be garbage collected.
We expect that in practice, software systems will be mostly correct and therefore a fail-
ure will be a rare occurrence and only small amounts of memory will be leaked due to
failures.

4.4 Debugging and Error Logging

While it is desirable for deployed Bristlecone software systems to make every effort
to avoid failures, during the development phase this behavior can mask failures and
therefore complicate the debugging process. To facilitate debugging, Bristlecone can be
configured to fail-fast. The fail-fast mode ensures that developers will notice software
errors during the development process. Moreover, it would be straightforward to have
the runtime record the state of the objects that caused the task failure by using the stored
checkpoints. This information could help with debugging many software errors.

Furthermore, both developers and system administrators often want to be aware of
failures in deployed systems so that the underlying software faults, if any, can be fixed.
Bristlecone contains a logging mechanism that records both the task that failed and the
type of error. This log ensures that developers and system administrators are aware of
failures in Bristlecone software systems and gives the developers a starting point for
diagnosing the cause of the failure. In some cases, developers may wish to create a
custom framework to communicate failure data. It would be possible to provide an API
that applications could use to query the runtime system about failures.

5 Experience

We next discuss our experiences using Bristlecone to develop three robust software
systems: a web crawler, a web server, and a multi-room chat server.
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5.1 Methodology

We have implemented the Bristlecone compiler. Our implementation consists of ap-
proximately 22,400 lines of Java code and C code for the Bristlecone compiler and
runtime system. The Bristlecone compiler generates C code that runs on both Linux
and Mac OS X. The Bristlecone runtime uses precise stop-and-copy garbage collec-
tion. The source code for our compiler and runtime is available at http://demsky.
eecs.uci.edu/bristlecone/. We ran the benchmarks on a MacBook with a 2
GHz Intel Core Duo processor, 1 GB of RAM, and Mac OS X version 10.4.8.

For each benchmark, we developed two versions: a Bristlecone version and a Java
version. We designed the Java versions to tolerate faults by isolating components of the
computation using threads. Without the use of threads to provide fault tolerance, the
Java versions would have halted with the first failure.

Our evaluation was designed to evaluate how robust each version of the benchmark
applications was to the large class of faults that cause the faulty thread or task to per-
form an illegal operation. This fault class includes faults that cause null pointer deref-
erences, out of bound array index errors, failed assertions, failed data structure consis-
tency checks, library usage errors, and arithmetic exceptions. Our evaluation simulated
the effects of this fault class by randomly injecting halting failures.

We used the Bristlecone compiler to automatically insert failure injection code after
each instruction. We used the Java frontend of our compiler framework to compile
and instrument the Java versions. The failure injection code takes three parameters at
runtime: the number of instructions to execute before considering injecting a failure, the
probability that a failure will be injected, and the total number of failures to inject. For
each benchmark, we selected the number of failures and then set the failure probability
to ensure that the normal execution of the benchmark would reach the set number of
failures.

5.2 Web Crawler

The web crawler takes an initial Uniform Resource Locator (URL) as input, visits the
web page referenced by the URL, extracts the hyperlinks from the page, and then re-
peats this process to visit all of the URLs transitively reachable from the initial URL.

The Bristlecone version contains four tasks. The Startup task creates a Query
object to store the initial URL that was specified on the command line and creates
a QueryList object to store the list of URLs that the web crawler has extracted.
The requestQuery task takes a newly created Query object as input, contacts the
web server specified by the Query object, and then requests the URL specified by
the Query object. The readResponse task reads the data that is currently available
on the connection and then checks if the task has received the complete web page. The
processPage task extracts URLs from the web page, checks the QueryList object
to see if the crawler has seen this URL before, and then creates a Query object if the
URL has not been seen before.

The Java version uses a pool of three threads to crawl web pages. Each thread de-
queues a URL from a global list of pages to visit, downloads the corresponding web
page, extracts URLs from the web page, and then stores any URLs it has not seen be-
fore into the global list of pages to visit.
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We evaluated the robustness of the web crawler by developing both a workload and
a failure injection strategy. Our workload consisted of a set of 100 web pages that each
contain 3 hyperlinks to other web pages in the set. We used randomized failure injection
to inject failures into the executions of the web crawlers. We injected 3 failures into each
execution with each instruction having a 1 in 426,000 chance of failing.

We performed 100 trials of the experiment on each of the two versions. For each
trial, we measured how many web pages the crawler downloaded. Figure 6 presents
the results of the web crawler experiments. Without the injected failures, both versions
download 100 web pages. With the injected failures, on average the Bristlecone version
downloaded 91 out of 100 web pages and the Java version downloaded 6 out of 100
web pages. While most of the injected failures in the Bristlecone version only affect
crawling a single web page, failures that are injected into either the startup task or the
processing of the initial web page can affect crawling many web pages. Such failures
prevent the Bristlecone version from discovering the URLs of any further pages and
significantly lowered the Bristlecone version’s average number of crawled pages.

Java Bristlecone
Web Pages Crawled (out of 100) 6 91

Fig. 6. Summary of Web Crawler Benchmark Results

5.3 Web Server

The web server benchmark contains features that are intended to model an e-commerce
server. The web server maintains an inventory of merchandise and supports requests to
perform commercial transactions on this inventory, including adding new items, selling
items, and printing the inventory.

The Bristlecone version contains six tasks. The StartUp task creates a
ServerSocket object to accept incoming connections, creates a Logger object
to log the connections, and creates an Inventory object to keep track of the cur-
rent inventory of merchandise. The AcceptConnection task processes incom-
ing connections and creates a WebSocket objects to manage each connection. The
ProcessRequest task reads the data that is currently available from the incoming
connection and then checks if the task has received the complete request. When the
complete request is available, the ProcessRequest task parses the request to deter-
mine whether the request is an e-commerce transaction or a simple file request.

The Transaction task processes e-commerce transaction requests. It first in-
spects the request to determine whether the request is to add new items to the inventory,
to make a purchase, or to display inventory and then performs the requested operation.
For example, after receiving a purchase request the task looks up the price of the item
in the Inventory object, verifies that the item is available, and if so, decrements the
inventory count for the item and adds the price of the item to the sales figure.

The SendFile task processes file requests. It opens the requested file, reads the
file’s contents, and writes the file’s contents to the socket. The LogRequest task logs
all of the requests to the log file.
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The Java version of the web server uses a thread to monitor for incoming connec-
tions. When a new connection arrives, the server spawns a separate connection thread
for that incoming connection. The server uses a global object to store the inventory val-
ues. We used this design to isolate failures in connection threads to that specific request
as much as possible. Note that failures can potentially corrupt the shared state. Note that
unlike the Bristlecone version of the web server, a failure in a connection thread will
prevent the server from performing any further operations for that connection including
logging the request.

We evaluated the robustness of both versions of the web server by developing both
a workload and a failure injection strategy. Our workload simulated web traffic to the
server. Our workload consisted of a sequence of 4,400 transaction requests. Our failure
injection strategy utilized the failure injection code described in the previous section.

We used failure injection to randomly inject 50 failures into the execution with a
probability of injecting a failure after a given instruction of 1 in 2,100,000. We per-
formed 200 trials on each of the two versions. For each trial we recorded whether the
final inventory request was served, whether the final inventory was consistent, how
many requests each version failed to serve, and how many request each version failed
to log.

Figure 7 summarizes the results of the fault injection experiments with the web
server. The Java version failed to serve the inventory request in 4.5% of the trials while
the Bristlecone version failed to serve the inventory request in 1.5% representing a
three-fold reduction in the number of failures to serve inventory requests. More im-
portantly, while the Java version served correct inventory responses only 68.6% of the
time, the Bristlecone version served the correct inventory response 100% of the time.
The Java version failed to serve 3.8% of the web requests and Bristlecone version failed
to serve 2.2% of the web requests, representing a 42% reduction in the failure rate. The
Java version failed to log 3.9% of the web requests and Bristlecone version failed to log
2.6% of the web requests, representing a 33% reduction in the failure rate.

Java Bristlecone
Failures to serve Inventory Responses 4.5% 1.5%
Correct Inventory Responses 68.6% 100%
Failures to Serve Request 3.8% 2.2%
Failures to Log Request 3.9% 2.6%

Fig. 7. Summary of Web Server Benchmark Results

5.4 Chat Server

The multi-room chat server benchmark accepts incoming connections, asks the user
to create a new room or select an existing room, and then allows users to chat with
other users in the same chat room. The Bristlecone version contains six tasks. The
StartUp task creates a ServerSocket object to accept incoming connections and
a RoomObject to manage the chat rooms. The AcceptConnection task processes
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incoming chat connections. It creates a ChatSocket object to manage this connection
and then sends a message to ask the user to select a chat room.

The ReadRequest task reads the user’s chat room selection. It reads the currently
available data from the incoming connection and checks if the chat server has received
the complete chat room selection. When the complete room request has been received,
the ProcessRoom task processes the request. If the requested room does not exist, it
creates the requested chat room. It then adds the user to the requested chat room. The
chat server stores the mapping of chat room names to the set of chat room participants
and for each room, maintains a list of participants in the corresponding room.

The Message task processes incoming chat messages and stores these message
in a Message object. The SendMessage task then reads these Message objects,
parses the messages, and then sends the messages to all of the participants in the
chat room. Note that a problematic message or other error condition that causes the
SendMessage task to fail will not prevent the server from processing future mes-
sages from the same connection.

The Java version of the chat server uses a thread to monitor for incoming connec-
tions. When a new connection arrives, the server spawns a separate connection thread
for that incoming connection. The server uses a global object to store the set of chat
rooms. Unless a failure corrupts the room list, this design isolates failures in connection
threads to the specific connection. Note that unlike the Bristlecone version of the chat
server, a single failure in a connection thread will prevent the server from relaying any
further messages from that connection.

We evaluated the robustness of both versions by developing both a workload and a
failure injection strategy. Our workload simulated multiple users chatting on the server.
Our workload sent a total of 800 messages. Our failure injection strategy utilized the
failure injection code described in the previous section.

We used failure injection to randomly inject 10 failures into the execution with a
probability of injecting a failure after a given instruction of 1 in 270,000. We performed
100 trials on each of the two versions. For each trial we recorded how many messages
were successfully transmitted.

In the presence of the injected failures, the Java version failed to deliver 39.9%
of the messages and the Bristlecone version failed to deliver 19.3% of the messages,
representing a factor of two reduction in the failure rate.

5.5 Experiences Writing Bristlecone Applications

We have developed Bristlecone and Java versions of three different benchmark appli-
cations. In general, we found writing Bristlecone applications to be straightforward.
Typically, writing the Bristlecone version of an application simply requires reorganiz-
ing the application’s code.

The Bristlecone versions of the benchmarks were approximately the same size as
the Java versions. The Bristlecone version of the web crawler contained 20% fewer
lines of code than the Java version, the Bristlecone version of the web server contained
2% more lines of code than the Java version, and the Bristlecone version of the chat
server contained 5% more lines of code. The Bristlecone version of the web crawler
was shorter because it did not require an auxiliary data structure to store queries.
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One potential concern with Bristlecone is that developers may make mistakes writ-
ing the high-level task specifications that Bristlecone requires. In our experience, we
have found that task declarations were in general simpler than the lower-level impera-
tive code and therefore easy to write correctly. However, we have developed an analy-
sis that can analyze the task specification to extract state transition diagrams for each
class [13]. Developers can use these state transition diagrams to quickly visually verify
that their task specifications have the desired behaviors.

5.6 Performance

Although Bristlecone uses standard compilation techniques for the body of methods
and tasks, it incurs extra overheads supporting transactions and task invocation. Our
current runtime implements transactions using a combination of checkpointing and
single-threaded execution. We have measured the current implementation’s checkpoint-
ing and task invocation overhead to be 4.7 microseconds per task invocation on a 3 GHz
Pentium-D machine for a microbenchmark. Researchers have developed efficient hard-
ware or software transactional memory implementations [14–21] that could be used to
lower the transaction overhead. Static task scheduling could also be used to statically
schedule a sequence of task invocations to further reduce the task invocation overhead.

5.7 Discussion

Our experience indicates that software systems developed using Bristlecone can recover
from many otherwise fatal failures. The Bristlecone versions of all three benchmarks
were able to recover from many more injected failures and provided a higher of quality
of service than the hand-designed Java versions.

Note that these results only hold for software faults that can be automatically de-
tected. These results can be generalized to include faults that cause the application
to silently perform an incorrect action, if the developer provides Bristlecone with a
runtime-checkable correctness specification the detects the error. Examples of such
specifications include runtime assertions or data structure consistency specifications.

6 Related Work
We survey related work in testing, static analysis, exception mechanisms, fault toler-
ance, programming languages, and software architectures.

6.1 Approaches to Reliable Software

The standard approach to dealing with software failures is to work hard to find and elim-
inate software faults. Approaches such as extensive testing [22], static analysis [23–25],
software model checking [26], error correction codes [27], and software isolation mech-
anisms [28] are all designed, in part, to eliminate as many potential errors as possible.
We expect that Bristlecone will complement these other techniques: Bristlecone will
enable software systems to recover from software errors that the other techniques miss.

Many programming languages, including Java, provide an exception handling
mechanism [29]. Writing exception handlers requires developers to reason about what
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parts of the computation are effected by the failure and how to recover the computa-
tion from a failure — note that the failed operation may leave critical data structures in
inconsistent, partially updated states.

Fault tolerance researchers have developed many methods to address software fail-
ures. Recovery blocks allow a developer to provide multiple implementations of an al-
gorithm and an acceptance test for these implementations [30]. This technique requires
the developer to expend the effort to develop multiple implementations and acceptance
tests. Furthermore, the recovery block technique may fail if the algorithms share a com-
mon defect or if there is an error in the acceptance test.

Backward recovery uses a combination of checkpointing and acceptance tests (or
error detection) to prevent a software system from entering an incorrect state [31–34].
Unfortunately, it can be difficult to handle deterministic failures using backward recov-
ery as the same software error will likely cause the software system to repeatedly fail.
Forward recovery uses multiple copies of a computation to recover from transient er-
rors [35]. Forward recovery is designed to handle intermittent failures — it cannot help
deterministic errors that affect all copies of the computation.

Databases utilize transactions to ensure that the database is never left in a half-
updated state by a partially completed sequences of operations [3].

In N-version programming, the developer constructs a software system out of mul-
tiple, independent implementations and a decision algorithm to decide which result
to use in the event of a disagreement [36]. However, N-version programming may be
prohibitively expensive — it requires developers to perform the difficult task of imple-
menting multiple versions that are independent enough to not share failure modes but
similar enough to be comparable.

The Recovery-Oriented Computing project has explored integrating an undo oper-
ation into software systems [37] and constructing systems out of a set of individually
rebootable components [38]. Failure oblivious computing is designed to address mem-
ory errors in C programs [39]. It detects erroneous memory operations and discards
illegal write operations and manufactures values for invalid read operations. DieHard
handles similar memory errors by using replication and randomization of the memory
layout [40]. Randomization probabilistically ensures that illegal memory operations can
only damage data structures in one of the replicants.

Specification-based data structure repair automatically generates repair algorithms
from declarative specifications [7] and imperative consistency checking code [41]. This
technique enables software systems to recover from data structure consistency errors.

Researchers have used meta-languages to decompose numerical computations into
parallelizable tasks [42]. This technique is applicable to parallelizable numerical com-
putations that compute many subproblems and then combine the subproblem results to
compute an overall result. If one of the subcomputations executes slowly, this approach
can ignore the subcomputation. Bristlecone is designed to handle a broader class of
software systems including servers, control systems, and office applications. Bristle-
cone can provide stronger correctness guarantees.

6.2 Related Languages
A key component of Bristlecone is decoupling unrelated conceptual operations and
tracking data dependences between these operations. Bristlecone’s approach contains
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common elements with many parallel programming paradigms [43]. Dataflow compu-
tation was one of the earlier computational models that keeps track of data dependences
between operations so that the operations can be parallelized [44]. Note that dataflow
languages are not designed to handle failures — a failure in a data flow program will
likely cause an operation to fail to place a value in a queue, which would likely cause the
application to fail catastrophically because operations that operate on multiple queues
would pair the wrong values for the rest of the computation. Bristlecone ensures that
failures cannot cause the wrong parameter objects to be paired together or prevent a
task from operating on parameter objects that were not affected by the error.

Tuple-space languages, such as Linda [45], decouple computations to enable paral-
lelization. The threads of execution communicate through a set of primitives that manip-
ulate a global tuple space. While these systems were not designed to address software
errors as errors in these systems can permanently halt the execution of threads, Bristle-
cone implements a similar technique to decouple the execution of its tasks.

The orchestration language Orc [46] specifies how work flows between tasks. Orc
is designed to decouple operations and expose parallelism. Note that if an operation
fails, any work (and any corresponding data) flowing through the task may be lost.
Since the goal of Orc is not failure recovery, it was not designed to contain mechanisms
to recover data from failed tasks. Therefore, errors can cause critical information to
disappear, eventually causing the software system to fail. Bristlecone uses flags to keep
track of the conceptual states (or roles) that objects are in, enabling software systems to
recover data from software errors and to continue to execute successfully.

Actors communicate through messages [47, 48]. Actors were originally designed
as a concurrent programming paradigm. Failures may cause actors to drop messages
and corrupt or lose their state. Bristlecone’s objects persist across task failures and can
still be used by other tasks. Moreover, state corruption in actors can cause actors to
permanently crash. Since Bristlecone’s tasks are stateless, a previous failure of a task
does not affect future invocations of that task on different inputs.

Argus is a distributed programming language that organizes processes under
guardians and isolates a process failure to the guardian under which it executes [49].
Inconsistencies could potentially cause the enclosing guardian to shut down. Argus
supports failure recover through an exception handling mechanism. This approach is
complementary to Bristlecone: a developer can write exception handlers for anticipated
failures and Bristlecone can be used to recover from unexpected failures.

Oz is a concurrent, functional language that organizes computations as a set of
tasks [50, 51]. Tasks are created and destroyed by the program. A task becomes re-
ducible (executable) once the constraint store satisfied the task’s guard. Task reducibil-
ity is monotonic — once a task is reducible it is always reducible. Task activation in
Bristlecone is not monotonic — the developer can temporarily disable a task when
other tasks have placed objects into states that are incompatible with the task or when
the effect of a task is no longer desirable. Non-monotonicity makes it straightforward
for a Bristlecone application to use multiple implementations of the same functionality
for redundancy. Moreover, since task creation is controlled by the program in Oz, it is
more difficult to reason statically about tasks.



22

Concurrent Prolog is logic-based language that uses unification to prove a goal [52,
53]. The proof corresponds to the execution of the program. Concurrent Prolog’s
guarded notation is similar to Bristlecone’s flag expressions, but Concurrent Prolog’s
evaluation strategy starts from an end goal and reasons backwards. Concurrent Prolog
programs may be able to recover from some failures by finding a different execution
that reaches the same end goal. The downside is that if a failure prevents the program
from completely achieving its end goal, the program will be unable to make partial
progress. Bristlecone works forward and therefore can make progress even if a failure
prevents the system from completely achieving its goal.

Erlang has been used to implement robust systems using a set of supervisors and a
hierarchy of increasingly simple implementations of the same functionality [54]. The
supervisors monitor the computation for errors. If an error is detected, the system falls
back to a simpler implementation in the hierarchy. Ericsson has taken this approach
in their telephone switches. Bristlecone is complementary to the supervisor approach
— while the supervisor approach gives the developer complete control of the recovery
process, the downside of this approach is that it requires the developer to manually de-
velop multiple implementations of the same functionality. Bristlecone requires minimal
development effort and could potentially make recovery cost effective for a larger set
of applications. Furthermore, while a shared but minor fault could cause the entire Er-
lang implementation hierarchy to fail, in many cases Bristlecone may be able to execute
around the fault and still provide nearly complete functionality.

Several research projects use type state-based approaches to automatically check
that an API is used correctly [55, 56]. Puntigam proposes tokens as a synchronization
mechanism for object-oriented languages [57]. Bristlecone flags are similar to these
mechanisms with one significant difference — Bristlecone uses flags to determine the
execution of a program while these mechanisms only check (or synchronize) the actions
of traditional imperative programs.

6.3 Related Software Architectures
The staged event-driven architecture (SEDA) pushes events through stages [58]. Note
that this architecture was been designed for high-performance computation and not fault
tolerance. An error in a stage can prevent relaying the event and cause information to be
lost. Stages also have local state, therefore, corruption of this state will cause that stage
to shutdown until reboot. It appears difficult to specify that an application should either
execute one sequence of operations or a second sequence, but not both.

7 Conclusion
We have successfully developed several robust software systems using Bristlecone.
Bristlecone software systems consist of a set of interacting tasks with each task im-
plementing one of the conceptual operations in the software system. The developer
specifies how these tasks interact using task specifications. Bristlecone uses transaction
to recover data structures from task failures. Bristlecone then uses task specifications to
reason about how to continue execution in the presence of a failed task. The key results
in this paper include the Bristlecone language, the Bristlecone compiler and runtime,
and our experience using the Bristlecone language. Our experience indicates that the
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task-based approach used in Bristlecone can effectively enable software systems to re-
cover from otherwise fatal errors. Bristlecone promises to increase the robustness of
software systems and to decrease the cost of developing many classes of robust soft-
ware systems.
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