
Software Transactional Distributed Shared Memory

Alokika Dash
Electrical Engineering and Computer Science

University of California, Irvine
adash@uci.edu

Brian Demsky
Electrical Engineering and Computer Science

University of California, Irvine
bdemsky@uci.edu

Abstract
We have developed a transaction-based approach to distributed
shared memory(DSM) that supports object caching and gener-
ates path expression prefetches. A path expression specifies a path
through the heap that traverses the objects to be prefetched. To our
knowledge, this is the first prefetching approach that can prefetch
objects whose addresses have not been computed or predicted. Our
DSM uses both prefetching and caching of remote objects to hide
network latency while relying on the two-phase transaction commit
mechanism to preserve the simple transactional consistency model
that we present to the developer. We have evaluated this approach
on a matrix multiply benchmark. We have found that our approach
enables to effectively utilize multiple machines in a cluster and also
benefit from prefetching and caching of objects.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Distributed Programming; D.3.2 [PROGRAM-
MING LANGUAGES]: Language Classifications

General Terms Design, Algorithms

Keywords Transactional memory, Distributed shared memory,
Prefetching objects, Path-expression prefetch

1. Introduction
Price decreases in commodity hardware have led to the widespread
adoption of cluster computing. Developing software for these
clusters can be challenging. While previous generations of high-
performance computers commonly provided developers with a
shared memory, modern clusters typically do not provide the de-
veloper with a shared memory. Instead, the underlying hardware
supports communication between processing nodes through mes-
sage passing primitives. As a consequence, the already challeng-
ing task of developing parallel software has become even more
difficult. Developers must now reason about communication pat-
terns, write code to traverse and marshall possibly complex data
structures into messages, write communication code to interface
with MPI or PVM to route these messages from producers to con-
sumers (Gropp et al. 1996; Geist and Sunderam 1991), and write
code to unmarshall these message back into data structures.

In response to this trend, researchers have developed software
distributed shared memories to provide developers with the illu-
sion of a simple shared memory abstraction on message pass-
ing machines (Li 1988). A straightforward implementation of a
distributed shared memory can provide developers with a simple
memory model to program. However, accessing remote objects in

Copyright is held by the author/owner(s).
PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
ACM 978-1-60558-397-6/09/02.

such implementations requires waiting for network communication
and therefore is expensive. In response to this issue, researchers
have developed several distributed shared memory systems (Kele-
her et al. 1994) that achieve better performance through relaxing
memory consistency guarantees. However, developing software for
these relaxed memory consistency models can be challenging —
the developer must often read and understand sometimes compli-
cated memory consistency properties to understand the possible be-
haviors of the program.

In recent years, a general recognition of the importance of pro-
grammer productivity has shifted the focus in computing research
from solely performance to the more holistic focus of high pro-
ductivity computing which encompasses programmer productivity.
Both the Chapel and Fortress high performance computing lan-
guages include language constructs that specify that code should
be executed with transactional semantics. These transactional con-
structs were included to potentially simplify software development
by enabling developers to control concurrency without having to
reason about potentially complex locking disciplines.

2. Approach
Our transaction-based approach to distributed shared memory
presents a simple programming model to the developer. It uses
a set of language extensions to a subset of Java to support trans-
actions. Each shared object is annotated with shared keyword
while each block of code with transactional semantics is annotated
with atomic keyword represented by a pair of braces(e.g. { }).
The shared memory extensions are similar to those present in Tita-
nium (Yelick et al. 1998) though our use of transactions introduces
additional constraints on when the application may access shared
objects. Figure 1 shows an example of a Java source code using
these keywords.

Our compiler generates C code from the Java source code.
Figure 1 shows the C code generated for the run method of the
bar class. Local objects and shared objects are accessed in the
context of a transaction. Whenever a transaction writes to a local
object, the compiled code first checks if there is a copy of the
object’s state and then makes a copy if necessary. These copies
are used to revert the local objects back to their original states if
a transaction aborts.

When an object is newly allocated on a machine, it permanently
resides on that machine. This is called the authoritative copy of the
object and it contains the most recently committed version of the
object. We use the standard two-phase commit protocol (Gray and
Reuter 1993) to commit changes to an object and use object ver-
sion numbers to track committed changes to objects. The version
number is incremented every time the authoritative copy of the ob-
ject is changed. In the first phase of the two-phase commit, each
participant verifies that the transaction has only accessed the latest
versions of the objects and in the second phase it votes to abort if
the transaction accessed an old version of any object. If all partic-
ipants vote to commit, the coordinator sends a commit command.
Thus, a transaction commits if it only accessed the latest versions

public class bar() {
 foo f;
 public bar(foo f) {
 this.f = f;
 }
 public void run() {
 atomic {
 int temp = f.intVariable;
 }
 }
 public void main(String[] args) {
 atomic {
 foo f = shared new foo();
 f.initialize();
 bar b = shared new bar(f);
 }
 bar.start(mid);//Spawns a new thread
 //on each node "mid"
 }
}

void ___bar___run____() {

 /* prefetch */
 int oidarray_[] = {this};
 short fieldarry_[] = {(int)(&(((struct
___bar___ *)0)->___f___))};
 prefetch(1, oidarray_, fieldarry_);
}

Java Source Code

C code for "run" method
with prefetch call

output
binary

compile with
prefetching

runtime

Figure 1. Block diagram of our approach

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 Node Java 1 Node 2 Nodes 4 Nodes 8 Nodes

T
im

e
in

 s
ec

s

Base
Prefetch

Figure 2. Matrix Multiply

of objects. If any machine votes to abort, the system re-executes the
transaction.

One of the primary challenges in designing distributed shared
memory systems is hiding the latency of accessing remote ob-
jects. Previous work on transactional distributed shared memory
primarily focused on providing transactional guarantees and largely
overlooked a promising opportunity for utilizing the transaction
commit mechanism to safely enable optimizations. Our approach
prefetches and caches remote objects and relies on the transaction
commit checks to safely recover from mis-speculations.

Traditional approaches to prefetching have had limited success
hiding the latency of remote object accesses in the distributed
environment because they require the computation to first compute
or accurately predict an object’s address before issuing a prefetch
for that object. Our approach describes prefetches in terms of paths
through the heap enabling it to prefetch objects whose addresses are
not yet known. Path expressions represent a base object followed
by a list of field offsets or array indices. The base object identifier
component of the path expression gives the object identifier of the
first object in the path expression. The sequence of field offsets and
array indices describe a path through heap from the first object.

We have developed an unsound, intraprocedural static analysis
that uses a simple probabilistic model to generate a set of path
expressions that the program may access and the corresponding
estimated probabilities. These probabilities represent how likely
the objects, in a given path expression, will be accessed. It is
acceptable for the analysis to be unsound because prefetches do
not affect the program’s correctness. Our runtime issues a prefetch
call for several path expression prefetches. In Figure 1 we can
see that our static analysis generates a prefetch call for the object
referenced by the f field in the run method. The runtime system
processes a prefetch call is the following manner: It processes as
much of the prefetch request as possible locally before sending the
prefetch request to the remote machines. When the remote machine
receives a prefetch request it begins with the object identifier. It
looks up the object identifier first in its local distributed heap and
then (optionally) if necessary in its object cache. Once it locates the
object, it looks up the next object identifier by using the field offset
or array index from the path expression and sends the prefetch
response to the original machine with copies of the objects. The
remote machine repeats this process until it has served the complete
request using list of fields offsets or array indices from the path
expression.

3. Experience
We use a cluster of 8 identical 3.06 GHz Intel Xeon servers run-
ning Linux version 2.6.25 and connected through a gigabit switch
to evaluate our approach. We have implemented the DSM sys-
tem, path expression prefetching, the language extensions, and the

prefetch analysis. Figure 2 shows the plots for the matrix multiply
benchmark for a matrix of 600x600 elements . This figure shows
the time taken for 1 Node Java which is a single-threaded non-
transactional Java version compiled into C code, and time taken for
1, 2, 4, and 8 nodes that are implemented with transactional seman-
tics in our DSM. All our numbers are averaged over ten executions
with one thread running per node. The Base bars presents results
without caching or prefetching and the Prefetch bars presents
results with both caching and prefetching enabled. The prefetching
versions are generated automatically using our static prefetch anal-
ysis. We observe significant speedup as we increase the number of
nodes. We also observe a speedup of 4.33 times with the 8 node
prefetching version as compared to the standard 1 Node Java im-
plementation and a speedup of 35.5% with prefetching as compared
to the non-prefetching 8 node version.
4. Conclusion
We have presented a new transaction-based distributed shared
memory system with support for object caching. We have pre-
sented a new path expression-based prefetching algorithm that is
the only prefetching algorithm to our knowledge that can prefetch
objects before the object’s address is computed or predicted. We
have implemented the prefetching analysis, the language exten-
sions, and the distributed shared memory system in our compiler.
We have observed speedups as the number of machines increase
and also observe benefits from prefetching objects.

References
G A Geist and V S Sunderam. The PVM system: Supercomputer level

concurrent computation on a heterogeneous network of workstations. In
Proceedings of the Sixth Distributed Memory Computing Conference,
pages 258–261, 1991.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A
high-performance, portable implementation of the MPI message passing
interface standard. Parallel Computing, 22(6):789–828, 1996.

Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel.
TreadMarks: Distributed shared memory on standard workstations and
operating systems. In Proceedings of the USENIX Winter 1994 Technical
Conference, 1994.

K Li. Ivy: A shared virtual memory system for parallel computing. In Pro-
ceedings of the 1998 International Conference on Parallel Processing,
pages 94–101, 1988.

Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Lib-
lit, Arvind Krishnamurthy, Paul Hilfinger, Susan Gra ham, David Gay,
Phil Colella, and Alex Aiken. Titanium: A high-performance Java di-
alect. Concurrency: Practice and Experience, 10(10-13), September-
November 1998.

