
Cross Application Data Provenance and Policy
Enforcement

BRIAN DEMSKY

University of California, Irvine

We present a new technique that can trace data provenance and enforce data access policies across

multiple applications and machines. We have developed Garm, a tool that uses binary rewriting

to implement this technique on arbitrary binaries. Users can use Garm to attach access policies
to data and Garm enforces the policy on all accesses to the data (and any derived data) across

all applications and executions. Garm uses static analysis to generate optimized instrumenta-
tion that traces the provenance of an application’s state and the policies that apply to this state.

Garm monitors the interactions of the application with the underlying operating system to enforce

policies. Conceptually, Garm combines trusted computing support from the underlying operating
system with a stream cipher to ensure that data protected by an access policy cannot be ac-

cessed outside of Garm’s policy enforcement mechanisms. We have evaluated Garm with several

common Linux applications. We found that Garm can successfully trace the provenance of data
across executions of multiple applications and enforce data access policies on the application’s

executions.

Categories and Subject Descriptors: []:

General Terms:

Additional Key Words and Phrases:

1. INTRODUCTION

Most computing systems do not store information about the history (provenance)
of data. Users cannot query about the information sources or the chain of people
and programs that contributed to the creation of data. The lack of information
about data provenance profoundly affects computing. With today’s systems, it can
be very difficult to audit whether a file contains information that was appropriated
from potentially untrusted sources. Data provenance can also serve a useful role in
recovering from known security issues. For example, a recent software bug in the
Debian ssh potentially causes cryptographically weak keys to be generated. In such
situations, data provenance could help determine which keys are affected.

Releasing information on current systems means losing control over it, including
who has access to it and what they do with it. For example, providing personal in-
formation to any entity incurs the risk of accidental release on the Internet. Indeed,
numerous news stories document accidental releases of the personal information of
millions by companies and government agencies. There have been limited efforts
to create systems that enforce policies on how data is used — the entertainment
industries have created digital right management (DRM) systems with the primary
goal of preventing protected media files from being pirated. Current systems im-
pose draconian limitations on how consumers use the media files — they often only
support playing the protected media. Moreover, these systems typically restrict
consumers to a very limited set of applications. The reason for these restrictions is

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–25.

2 ·

that once protected data leaves the small number of trusted applications, there is
no mechanism to continue enforcing the data policies.

This paper presents a tool, Garm, that provides a mechanism to both trace the
provenance of the data applications process and enforce access policies on this data.
We introduce a new approach to security policies that make them straightforward
to use in current computing environments. Unlike previous work, our data ac-
cess policies follow the protected data across execution, application, and machine
boundaries.

Previous work on information flow required developers to specify the locations
where trusted data can be stored and then used policies to ensure that an ap-
plication could not leak protected data to an untrusted location. One problem
with such approaches is that in order to enforce policies that they must impose
a rigid structure on where users can store their data and how they can share it
even for legitimate uses. Such rigid security models are likely to be problematic
in real work environments — they deny users the flexibility they need to perform
legitimate work. For example, such mechanisms make it difficult for employees
to legitimately share protected data between computers through mechanisms like
USB drives. Garm provides a much more flexible security model — applications can
write policy-protected data to any location including untrusted ones without losing
policy enforcement. Garm traces the policies that apply to a program’s output
files through the use of provenance shadow files and uses fine-grained encryption
to prevent outside accesses to the data that circumvent the policy enforcement
mechanism.

Another issue with previous approaches is that they are often not amenable to
composing policies that operate on orthogonal data classification systems. Because
these systems only explicitly trace classifications within a single application, the
choice of location to store data conceptually encodes the classification information
for the data. Supporting multiple orthogonal classification systems would con-
ceptually require creating storage locations for each possible combination of clas-
sifications. Our approach trivially handles composing different policies and data
classification systems.

Garm enables off-the-shelf binaries to process protected data while a dynamic
analysis traces both the provenance of the data inside the application and which
policies apply to the data. The rewriting system is responsible for enforcing the
policies, thereby allowing policy-protected data to be used with existing applications
while still enforcing the policies. The ability to enforce policies across a wide range
of applications provides multiple potential benefits ranging from the security of
personal data to new, more user-friendly and flexible digital rights management.

1.1 Basic Approach

Garm creates provenance records that characterize the set of program executions
and information sources that have contributed or modified the data over its lifespan.
It uses binary rewriting to instrument binaries with code that traces the provenance
of an application’s state during its execution. The binary rewriter uses a static
provenance analysis to generate an optimized dynamic instrumentation. When an
application accesses new data, Garm creates a base provenance record that describes
the source of the data. If Garm had previously monitored the program execution
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

Application
Data

Provenance
Shadows

Composite
Provenance

Base
Provenance

Composite
Provenance

Provenance Records from
current executions

Provenance Records from
previous executions

Fig. 1. Provenance Records

that produced the data, this base provenance will reference the provenance record
from that previous execution. When the monitored program performs operations
that depend on data with the different provenances, Garm labels the bytes produced
by the operation with a composite provenance that lists the set of base provenances
that contribute to the current value. In this fashion, the dynamic analysis computes
shadow composite provenances for all bytes that the application writes.

Figure 1 presents the structure of Garm’s provenance records. When an applica-
tion writes data to a file, Garm generates a shadow file that stores the provenances
of the bytes in the file. Garm also stores a provenance record for each execution
that describes the source for each base provenance and lists the base provenances
that contribute to each composite provenance. If shadow files are transferred with
(or bundled with) files when transferring files between machines, Garm can trace
provenance across machines. Note that if a user does not transfer a shadow file, it
is impossible to access policy-protected data. We assume the presence of a shared
server to store provenance records for executions. If a shared server is undesirable,
copies of all composite provenance records referenced by the shadow file can be
packed at the end of the shadow file.

Garm supports data access policies by allowing users to attach data access poli-
cies to provenances. Before allowing an application to output data, Garm checks
whether the output operation is permitted by the data’s access policies. The access
policies can either (1) allow outputting unprotected data to the location (i.e. audio
device, screen, etc), (2) allow outputting encrypted data along with the policy and
provenance information, or (3) prohibit outputting the data in any form to the lo-
cation. The ability to output encrypted data and policy information enables users
to flexibly share and manipulate data in all the ways they currently do without
losing policy protection. The policy can depend on context (i.e. the date, how
many times the data has been accessed, etc). Garm’s fine-grained encryption based
on stream ciphers enables users to seamlessly share arbitrary files that contain
policy-protected data between applications while ensuring that programs cannot
use policy-protected data in ways that violate the access policy.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·

1.2 Contributions

This paper makes the following contributions:
• Data Protection Framework: It introduces a new data protection frame-

work. This framework encrypts policy-protected data before it is passed to
the operating system and decrypts policy-protected data before an authorized
application reads it. Garm uses the shadow provenance file to record which
policy server holds the keys to access the file. This mechanism allows Garm
protected-data to be secure even when stored in untrusted locations.

• Data Policy Enforcement: It presents a generic mechanism that enforces
data access policies on arbitrary binary applications.

• Data Provenance Analysis: It presents an analysis that can trace the prove-
nance of an application’s state. The analysis combines static and dynamic
analyses together to determine which information sources were used to derive
each value in the execution.

• Cross Application Support: It presents a new runtime mechanism that uses
stream ciphers together with provenance shadow files to prevent data accesses
that circumvent Garm’s policy enforcement. Garm introduces support for trac-
ing provenance information across executions and application boundaries.

The remainder of the paper is structured as follows. Section 2 presents Garm’s
architecture. Section 3 presents an overview of the provenance analysis. Section 4
describes limitations of the approach. Section 5 presents our experience using Garm.
Section 6 presents related work; we conclude in Section 7.

2. SYSTEM OVERVIEW

We next describe Garm’s architecture. Figure 2 presents an overview of Garm.
The system consists of a binary rewriting engine that traces provenances and en-
force policies, a set of policy servers that manage policy keys, provenance records
that describe how a given provenance record was derived from previous provenance
records and new input files, and provenance shadow files that record the provenance
of the data stored in files.

The rewriting system intercepts the system calls that the guest application per-
forms. When the guest application loads data from a file into an address in the
application’s memory, the binary rewriting engine loads the provenance from the
corresponding provenance shadow file into the provenance shadow for that address.
We have designed Garm to store provenance and policy information in a separate
shadow file to allow applications outside of Garm to read non policy-protected data
from the files.

If the provenance indicates that the data is protected by a policy, the system
sends the encrypted policy information to the policy server along with information
about the application and the user’s identity. Garm would use the remote attes-
tation capability that is commonly provided by trusted platforms to enable the
policy server to verify that neither Garm nor the underlying components have been
tampered with [Mitchell 2005]. We intend that policy servers will be hosted by
the individuals who create policies or their agents. The policy server verifies that
neither Garm nor the underlying components have been tampered with by verifying
the remote attestation as describe in Section 2.2. Then the policy server decrypts
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

Policy Server

Binary-rewriting
Engine

Guest
Application

Provenance
Records
Server

Data File
Provenance
Shadow File

Operating System

Trusted Platform Module

Workstation Running Garm

Controlled by
Policy Writer

Network

Fig. 2. System Overview

the policy information to obtain the policy and the policy keys. The policy server
checks the policy against the information from Garm. If no policy violations are
detected, the policy server sends the policy along with the policy key to Garm.
Garm stores the policy and policy key in memory for the duration of the current
execution. Garm relies on operating system or hardware support of memory cur-
taining to ensure that attackers cannot inspect Garm’s memory contents to obtain
these keys. Garm is then responsible for enforcing the policy on the application’s
execution.

When an application makes a write system call, Garm intercepts the system call.
It checks to see if the data access policies apply to any of the data to be written. If
so, it encrypts the data at the byte granularity using the policy keys for the policies
that apply to the byte. Then Garm performs the system call to write the data to
the application file. Garm then updates the corresponding provenance shadow file
with the provenance values for the data that was written.

2.1 Intended Usage

Defending from attacks mounted by technically-sophisticated insiders is known to
be extremely difficult. However, in many cases data is compromised by accidental
disclosure. The primary goal of Garm is to prevent accidental disclosure and make
clear that any disclosures were intentional. In particular, the goal of Garm is to
protect against accidental releases that occur from common events including: (1) a
user copies data to external media and later loses the device, (2) a user accidentally
prints confidential information, (3) a user accidentally pastes confidential informa-

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·

tion into a document that is later publicly released, (4) a user accidentally emails
confidential information to the wrong address, or (5) a computer is lost or stolen.

We wish to protect against accidental disclosures while allowing authorized users
to freely exchange and use protected data. In particular, we want to allow autho-
rized users to freely use the data for legitimate business including: (1) seamlessly
sharing confidential data between authorized parties through email, external me-
dia, and network stores and (2) incorporating confidential data into documents.
In many cases, whether a given action is allowed depends on future events. For
example, we want to allow authorized users to store confidential data on a USB
stick for legitimate purposes, but prevent later unauthorized uses of the data on
that USB stick.

In the real world, programs process data with a wide-range of confidentiality
requirements. For example, an email folder may store emails from a wide range of
people each with different confidentiality requirements including completely public
data. It is therefore important to support different usage policies for data within
the same file and even the same program execution.

A secondary benefit of Garm is that it provides some protection from unsophis-
ticated insiders in office environments. In particular, we assume that such insiders
lack the resources to mount hardware attacks against the TPM and that large scale
analog attacks such as taking repeated photos of the screen would be noticed.

Garm makes the following assumptions:

(1) Garm does not protect against buffer overruns and other attacks that compro-
mise the integrity of trusted components.

(2) We assume data producers will use a white list of applications that the policy
maker allows to use data.

(3) We assume that policy writers control their own policy servers and that they
secure them against attackers.

(4) Garm does not protect against implicit leaks, timing, resource usage, RF emis-
sions, or other side channels that may leak protected data. We expect that the
use of white lists will partially address both hostile programs that are designed
to explicitly use side channels to leak data and legitimate programs that leak
data through implicit dependences.

(5) Garm is targeted largely towards legacy applications. Many legacy applications
can incur large overheads and still be usable. We expect that new applications
can be developed with native support for policy protection and tracking prove-
nance.

(6) We assume the presence of trusted hardware support and a trusted operating
system. We describe in more detail in Section 2.2.

(7) We assume that attackers do not have the resources to compromise trusted
hardware.

2.2 Trusted Computing

Garm assumes that both the underlying operating system and hardware will provide
trusted computing support. Future versions of Microsoft Windows are expected to
include support for trusted computing in the form of the Next-Generation Secure
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

Computing Base system architecture [Peinado et al. 2004; England et al. 2003].
Trusted computing support consists of a trusted platform hardware module along
with BIOS and operating system support.

Many proposed trusted computing systems support remote attestation for DRM.
Remote attestation enables an application to prove both its identity and that it
has not been tampered with to remote systems. Specifically, Garm needs to (1)
prove to the policy servers that the underlying BIOS, boot loader, OS, hardware,
and Garm installation is trusted, (2) provide a secure communications path from
the server to the Garm installation, and (3) guarantee that confidential information
will be destroyed or made inaccessible before the system performs any operations
that may make it untrusted. This exact same problem is faced by any application
(e.g. media players) that wishes to use remote attestation for DRM purposes.

Any number of approaches can provide these guarantees. For completeness, we
describe one approach.

(1) The system begins with a standard trusted boot of the operating system using
the TPM chip as follows. A secured loader hashes the BIOS image, extends
the PCR register with this hash value, and then executes the BIOS. The BIOS
reads the boot loader, hashes the boot loader image, extends the PCR register
with this hash value, and then executes the boot loader. Finally, the bootloader
reads the kernel, hashes the kernel image, extends the PCR register with this
hash value, and then executes the kernel.
Whenever the kernel loads a new driver, it first hashes it, extends the PCR with
the hash value, and then runs the driver. We assume that all trusted drivers
are signed, we explain the reasons later. Note that the kernel maintains a list
of hash values that are used to extend the PCR.

(2) The operating system computes a hash of the Garm binary, extends the PCR
value with this measurement, and then executes Garm.

(3) Next Garm loads. Garm then generates a public/private key pair for this
session. It then calls the operating system to extend the PCR with a hash of
the public key. The operating system’s PCR extension mechanism must record
that Garm initiated the extension.

(4) Garm contacts the policy server and sends the policy.

(5) The policy server responds by sending a randomly generated nonce as a remote
attestation challenge.

(6) The OS loads a private key into the TPM. The TPM chip concatenates the
nonce and the PCR register and signs both with its private key. The client
computer then sends to the policy server: the signed nonce/PCR register, the
public AIK key, the AIK certificate, the OS’s list of hash values, and GARM’s
public key.

(7) The policy key server next verifies the following:
(a) That TPM chip’s public AIK key is valid.
(b) That the signature for the PCR value is valid.
(c) That the hash signatures correspond to PCR value.
(d) That each hash signature represents a trusted component.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·

(e) That the hash of the public key from Garm matches the hash value used
for the PCR.

(f) That the policy is satisfied by the GARM installation.
If all of the checks succeed, the policy server encrypts the policy key with the
public key from the Garm installation and sends the policy key to Garm.

(8) Before either Garm or the operating system starts any operation that may
compromise the system’s trustworthiness, it must first clear all confidential
information including Garm’s private key. This requirement is why we require
trusted drivers to be signed — it allows the OS to dynamically load drivers
while the computer has been trusted with confidential information.
Clearing confidential information involves zeroing Garm’s memory and extend-
ing the PCR register with a special value that indicates that the system is no
longer trustworthy.

Note that once Garm is loaded, the kernel must record any events that may
compromise Garm’s trustworthiness. In particular, if a user runs a debugger on
the Garm image, the kernel must log that event into the PCR value. Moreover,
once Garm has generated a public/private key pair, before the OS performs any
operation that may compromise its trustworthiness it must first zero all of Garm’s
memory. The intuition is that Garm must only possess the private key while it
remains trusted.

Trusted computing also provides hardware support for sealing data for a specific
application. Sealing allows the application to secure data that can only be accessed
when the application proves its identity. Garm could use sealing to secure the
private keys that it uses to sign the provenance shadow files to secure them against
tampering. Trusted computing also supports curtaining an application’s memory to
prevent debuggers from obtaining the encryption keys from an application memory.
Garm would use this feature to protect its private keys.

2.3 Protecting Data

When an application writes policy-protected data to a file, Garm must ensure
that applications outside of the Garm framework cannot access the protected data.
We next describe how Garm uses encryption to ensure that policy-protected data
cannot be accessed outside of the policy enforcement framework.

2.3.1 Cipher Choice. Making encryption transparent to the application and en-
forcing access policies at a fine granularity places two constraints on our choice of
ciphers. In particular, the cipher needs to support fast random access to large files
and the ability to choose which bytes to encrypt at the byte granularity.

Garm uses Dan Bernstein’s Salsa20 stream cipher as it satisfies both require-
ments [Bernstein 2008]. Salsa20 was one of the stream ciphers selected by the
ECRYPT Stream Cipher Project [ecrypt 2008]. Salsa20 operates on 512-bit blocks.
It takes as input a 256-bit key, a 64-bit nonce (unique message identifier), and a
64-bit block identifier. It generates as output a 512-bit cryptographically strong
pseudo-random bit string which is xor’ed with the plaintext to encrypt the text or
xor’ed with the ciphertext to decrypt the data. Salsa is notable in that it supports
decrypting or encrypting a block in a file without requiring processing the previous
blocks. Garm associates a nonce with each file and policy pair.
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

2.3.2 Encryption/Decryption. Garm associates a policy key with each data ac-
cess policy. To write a byte, Garm lists all the policies that apply to that byte.
It then looks up the nonces for each policy. Garm then generates the byte in the
pseudo-random sequence that corresponds to the offset that the byte is written to.
Garm then xors the byte at the given location in the keystreams for each policy
with the byte to be encrypted. Finally, Garm writes the encrypted byte out to the
file. Garm optimizes for the common case that adjacent bytes are protected by the
same policies. Decrypting a byte uses the same algorithm.

One potential problem is that an application can write different bytes that are
protected by the same policy to the same file at the same location. If the attacker
observes both ciphertexts, the attacker has knowledge of message1 ⊕ keystream
and message2⊕keystream where ⊕ is the xor operation. If the attacker xors both
ciphertexts, the attacker obtains message1⊕message2. If either message is known,
the attacker can obtain the other message. Moreover, sophisticated analysis can
often exploit redundancy in the messages to obtain both plaintexts. It is therefore
imperative that a given key and nonce is only used at most once to write to a given
file location. To address this weakness, Garm would conservatively monitor which
locations a given nonce has been used to encrypt. If a location is ever repeated,
Garm would generate a new nonce for the given policy and file. Garm can either
then re-encrypt the data that uses the current nonce, or it can simply assign a
special provenance value for the secondary nonce.

The algorithm as stated xors the keystreams. An alternative strategy is to xor
the keys. This strategy is more efficient with multiple keys, but has the downside
that changing a policy’s nonce requires knowledge of all other policy keys that
encrypt the same data. If these keys are not known, Garm could simply assign a
special provenance value for the new nonce. Garm maintains a nonce shadow file
that contains the nonces for each policy that applies to data in the primary file.

2.4 Authentication of Provenance Data

In some usage scenarios, it can be desirable to detect tampering with the provenance
records or changes in the underlying files that are not reflected in the provenance
data. This can be done by using cryptographic hash functions to compute a hash
for the data file, including this hash in the corresponding shadow provenance file,
computing a hash of the provenance file data, and then using a private key to sign
the hashes. Garm would secure its private key by using the sealing functionality of
the trusted platform module. Other instances of Garm could verify the signatures
by looking up the public keys for the Garm installation that created the file, then
verifying the signature with the public key.

3. PROVENANCE ANALYSIS

Garm uses a staged provenance analysis that uses a static analysis to generate
an optimized dynamic analysis. It performs the instrumentation process on the
binaries when the application is executed. We implemented Garm as an extension
to the Valgrind binary instrumentation framework.

Figure 3 presents example code. Figure 4 presents how traditional binary rewrit-
ers would instrument this code to compute provenance or taint. The traditional
approach is to generate, for each instruction, corresponding instrumentation that
computes the effect of the original instruction on the data’s provenance or taint. For

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·
1 r1=a+b;

2 r2=a*b;

3 d=r1/r2;

4 e=a-b;

5 f=a+c;

6 f=f+b;

Fig. 3. Example Code

1 r1=a+b;

2 prov_r1=merge(prov_a, prov_b);

3 r2=a*b;

4 prov_r2=merge(prov_a, prov_b);

5 d=r1/r2;

6 prov_d=merge(prov_r1, prov_r2);

7 e=a-b;

8 prov_e=merge(prov_a, prov_b);

9 f=a+c;

10 prov_f=merge(prov_a, prov_c);

11 f=f+b;

12 prov_f=merge(prov_f, prov_b);

Fig. 4. Standard Instrumentation
1 r1=a+b;

2 r2=a*b;

3 d=r1/r2;

4 prov_d=merge(prov_a, prov_b);

5 e=a-b;

6 prov_e=prov_d;

7 f=a+c;

8 f=f+b;

9 prov_f=merge(prov_d, prov_c);

Fig. 5. Optimized Instrumentation

the example, the traditional approach would generate the provenance merge opera-
tions in lines 2, 4, 6, and 8 of Figure 4. We next describe how Garm’s optimizations
eliminate many of these instrumentation operations.

We present a technique that statically reasons about abstract provenances to gen-
erate optimized instrumentation. For the example code in Figure 3, our technique
would determine that because the provenance of r1 is the merge of the provenance
of a and b and the provenance of r2 is the merge of the provenance of a and b that
the provenance of d is also the merge of the provenance of a and b. Our technique
then generates the instrumentation code prov d=merge(prov a, prov b) to com-
pute the provenance of d and prov f=merge(prov d,prov c). Our static analysis
determines that the provenance of e is the merge of the provenance of a and b. Our
technique then determines that the provenance of e is equal to the provenance of
d, and therefore it can simply reuse the provenance value for d. Our static analysis
determines that the provenance of f is the merge of the provenance of a, b, and c.
Our technique then determines that the provenance is also equal to the merge of
the provenance of d and c and eliminates a provenance merge operation. If there
is not an exact match, Garm searches for the largest computed provenance that is
a subset of the current provenance and uses that provenance as a starting point
to compute the new provenance. We next present the provenance analysis in more
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

detail.
3.1 State

Garm maintains shadow state of an application’s state. The shadow stores a prove-
nance value that describes a byte’s current provenance. Each provenance value is
an index into a provenance table of provenance descriptors. A provenance descrip-
tor contains: a list of original source descriptors and a list of data policies. We next
describe how Garm shadows the key components of an application’s state:
• Shadow Memory: Garm contains a two-level shadow table: the first level is

indexed by the high 16-bits of a memory address and the second level is indexed
by the low 16-bits. Each entry gives the current provenance of the corresponding
byte. There is a distinguished second level that is used for all unused memory
blocks. When the application writes to an address, the corresponding second
level table is allocated if necessary.

• Registers: Garm maintains the register values in a special memory region
that serves as a register file. There is a shadow register file that contains the
provenance of the current register values. Because several x86 registers can
be accessed at 8-bit, 16-bit, and 32-bit granularities, Garm conceptually traces
a register’s provenance at the byte granularity. However, Garm optimizes for
registers that can only be accessed as a full register by utilizing only a single
provenance for such registers. Due to the details of how x86 registers can be
accessed, 3 provenance shadows suffice for any register. For instance, even
though the register %eax can be accessed in four different ways (%al, %ah,
%ax, and %eax), there is a partition of the bits into 3 groups such that the bits
accessed on any read is a union from these groups.

• Temporaries: Valgrind’s intermediate representation introduces several tem-
porary variables. Garm conceptually traces the provenance of temporary vari-
ables using a single shadow provenance regardless of the temporary variable’s
actual length. Garm’s runtime instrumentation does not explicitly shadow these
temporaries. The temporaries are analyzed by the static analysis, and the dy-
namic instrumentation code simply updates the shadow register file and mem-
ory.

• Files: Garm maintains shadow files for all files that a program accesses. The
shadow files store the provenances of each byte in the original file.

3.2 Optimized Instrumentation

Our approach uses a data flow analysis to compute the abstract provenance of
each temporary at each program point. Garm uses the analysis to generate an
optimized dynamic instrumentation by eliminating redundant provenance compu-
tations. Redundant provenance computations occur when the same value is re-
peatedly combined with an existing value. We represent an abstract provenance
as a tuple consisting of: (1) a set of load instructions and other instructions that
contribute to the provenance, (2) a set of register locations that contribute to the
provenance, (3) a subset of the set of shadow temporary variables that contribute
to the provenance, and (4) the provenance contribution from the instructions. Note
that the exact provenance contribution from the code for an instruction is known
statically. Garm obtains instruction provenance values from the shadow provenance

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·

file for the executable if it is available. Such a provenance shadow file is generated
if Garm monitored the compilation of the application or someone applied a policy
to the application’s binary.

We model the registers’ provenance using the partial function registers that maps
a register to either an abstract provenance or a temporary that holds the abstract
provenance. We record the provenance of the shadow temporaries using the par-
tial function shadowvalues. An undefined provenance for a register indicates that
the register’s provenance is statically unknown. We model the temporary vari-
able’s provenance using the partial function temporaries. The provenance state at
a program point is characterized by the tuple consisting of the provenance of the
register file registers, the provenance of the temporary variables temporaries, and
the provenance of the provenance shadow temporaries shadowvalues.

The analysis begins with an initial tuple with empty partial functions. It then
executes the instructions in the superblock1 on the abstract provenance values. For
example, a move instruction sets the destination temporary variable’s provenance
to the combination of the source temporary variable’s provenance and the move
instruction’s provenance.

As Valgrind’s superblock-based intermediate representation does not allow plac-
ing instructions after a conditional exit, Garm must ensure that the provenances
in the shadow register file are current at every conditional exit instruction. The
instrumented code generates the appropriate provenance values in temporaries and
writes them to the register file. Therefore, the conditional exit instruction replaces
the abstract provenances in the abstracted shadow register file with temporaries
that hold these generated provenances.

As the static analysis is computed on linear sequences of instructions, there is
no need for fixed-point computations or merge operations. The analysis simply
processes the instructions in order in a single pass.
3.3 Dynamic Analysis

We next describe how Garm uses the static analysis results to generate dynamic
instrumentation. The first step is to use the analysis results to compute the set
of operations that must be instrumented. We use a workset-based instrumentation
selection algorithm. This algorithm begins with the instructions in a superblock
that can affect the provenance of the state that persists across superblocks. These
instructions include stores to the memory and the values of registers at the exits.
The algorithm then works backwards from these instructions to compute the set of
load instructions and other instructions that must be instrumented. The result of
the analysis is a set toinstrument of provenance source instructions that must be
instrumented.

3.3.1 Instrumenting Sources. We next describe how the instrumentation algo-
rithm processes instructions that may appear as a source for calculating a prove-
nance. When the instrumentation algorithm visits a load instruction to be in-
strumented, it generates a shadow load instruction that loads the corresponding
provenance from the shadow memory. When the instrumentation algorithm pro-
cesses a register load instruction, it checks to see if the register offset appears in

1A superblock in Valgrind is a linear sequence of instructions with a single entrance and many

possible exits.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

the toinstrument set and has not already been loaded. If the register load meets
both criteria, the instrumentation algorithm generates a shadow register load that
loads the register’s shadow provenance value into a temporary variable.

3.3.2 Computing Provenances. We next describe how Garm uses the results
from the static analysis to generate optimized code that computes dynamic prove-
nances. The algorithm begins with the provenance contribution from the program’s
instructions. It represents this provenance with a 32-bit provenance value. The al-
gorithm then generates instructions to merge the provenance contributions from
the set of load and other instructions. These provenances will already be stored in
temporaries as the corresponding instructions will have already been instrumented.
The algorithm next generates instructions to merge the provenance contributions
from the set of shadow register values. These provenances will also already be stored
in temporaries as the corresponding register load operations will have already been
instrumented. Finally, the algorithm generates instrumentation code that merges
the provenance contributions from the temporaries in the shadow temporary set.

Garm uses the information in the shadow temporary set to further optimize the
instrumentation code. The shadow temporary set stored in the partial function
shadowvalues records the set of shadow temporaries for which Garm has already
computed a provenance and their corresponding abstract provenance. Before Garm
generates a provenance it first checks to see if it has already generated instrumen-
tation for an abstract provenance that is a subset of or equal to the provenance to
be generated. It then uses the results from the existing provenance computation as
a starting point for the new computation. This allows Garm to elide all or part of
the instrumentation to compute the provenance.

3.3.3 Storing Provenances. Finally, Garm instruments instructions that write
values to memory or write values to registers that may be visible outside of the
superblock. Garm instruments memory stores by using the algorithm from Sec-
tion 3.3.2 to generate code that computes the provenance for the source and address
temporaries. Then it generates code that stores this provenance into the shadow
memory.

3.4 Intercepting Data Accesses

Garm intercepts systems calls that open new files, read from a file descriptor, or
write to a file descriptor. It rewrites open system calls to record which file was
opened and if possible to create a corresponding provenance file. Note that because
Linux uses the file abstraction for accessing many hardware devices, this same
mechanism will also create provenance entries for devices that the program accesses.

Garm rewrites read system calls to also read the provenance information from the
corresponding provenance file. If a policy applies to the data and it allows access,
Garm will also decrypt the data. Garm rewrites write system calls to also write the
provenance information to the corresponding provenance file. If a policy applies
to the data and it requires encryption, Garm will also encrypt the data. Because
Linux exposes many hardware devices to applications through the file interface,
these same mechanisms track the provenance of data accessed through the console
or other devices.

While the current implementation does not support tracking provenance across
TCP/IP connections, it is straightforward to extend Garm to intercept TCP/IP

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·

connect system calls, establish a second TCP/IP connection to the another Garm
instance, and communicate provenance data through this connection. This mecha-
nism would allow Garm to protect data sent between arbitrary programs and track
its provenance.

3.4.1 Provenance Representation. We next describe Garm’s representation of
data provenances.

3.4.1.1 Base Provenances. Garm uses base provenances to trace the sources of
incoming data. The first time that any application under Garm accesses data from a
given file, Garm records a base provenance that contains the file name, the current
execution number, and a type that denotes that this is the first time the Garm
system has seen this data. If an application under Garm accesses data that was
modified by a previous application under Garm, Garm records 1) the execution
identifier for that previous execution, 2) the file name, 3) a reference to the 32-bit
provenance identifier from the previous execution, and 4) a list of references to all
access policies that apply to the data. Garm represents base provenances as a 32-
bit index into the base provenance table. Each entry in the base provenance table
gives the complete description of the provenance. Garm maintains the invariant
that two identical base provenances must have the same index.

3.4.1.2 Composite Provenances. The execution of an application performs op-
erations that combine data from multiple sources to produce derived values. These
operations produce data whose provenance is derived from all of the relevant data
sources’ provenances. Garm uses composite provenances to trace the set of source
base provenances that contribute to the provenance of the application’s state. A
composite provenance consists of a list of base provenances. Garm also records
the list of references to the policies that apply to the composite provenance for
efficiency reasons. Garm represents composite provenances as a 32-bit index into
the composite provenance table. Each entry in the composite provenance table lists
the component base provenances and any applicable data policies. Garm maintains
the invariant that two identical composite provenances must have the same index.

Conceptually, an individual byte’s provenance can be viewed as a directed acyclic
graph. The graph is acyclic as each dependence must respect causality — the
inputs to an execution must have been written before the execution read them.
Each composite provenance can reference several base provenances. Each base
provenance can in turn reference a composite provenance from a previous execution.
Garm contains a provenance query tool that allows users to explore the provenance
tree of an application’s output files.

The current implementation of Garm does not support multiple Garm invocations
simultaneously accessing the same file. Future work can eliminate this limitation.

3.4.1.3 Merging Provenances. The primary operation that the instrumented
code performs is merging multiple source composite provenances into a single out-
put composite provenance. We next describe the basic algorithm for merging two
provenances:

1. Identity Check: The merge procedure first checks if the input composite
provenance indices are the same and if so simply returns that composite prove-
nance index.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

2. Merge Cache Lookup: The merge procedure next performs a table lookup on
the two input composite provenance indices to see if the merge result provenance
has been cached. If the result is stored in the cache, the algorithm simply returns
the cached composite provenance index.

3. Base Merge Procedure: Otherwise, the base merge procedure begins by
looking up the two input indices in the composite provenance table. As Garm
stores composite provenances as sorted lists of references to base provenances
and policies, it merges the two composite provenances. The algorithm then
looks up the merged composite provenance in the composite provenance hash
table. If the composite provenance is not found, the algorithm adds the new
composite provenance to the table and generates a new composite provenance
index. Otherwise, it uses the composite provenance index from the hash table
lookup. Finally, it caches the results of the merge operation in the merge cache
— it stores the input composite provenance indices and the output composite
provenance index.

4. LIMITATIONS

We next discuss limitations of Garm and approaches to address them. These lim-
itations may not be applicable to all Garm usage scenarios or deployments. For
example, many limitations are not a concern for scenarios in which Garm is simply
used to prevent an accidental release of medical records through a lost USB memory
key.

4.1 Implicit Flows

Garm only traces explicit flows of information. Information about the contents
of data can also leak through implicit channels including control flow or timing
channels.

Garm does not trace implicit flows due to the extra dynamic overhead and the
imprecision that can be introduced. Such implicit flows can be used to attack the
policy enforcement mechanism of Garm, an attacker can write a program that uses
implicit flows to copy data without copying the policy.

We intend that users mitigate this class of attacks through data access policies
that restrict the applications that can access the data. We expect that policies will
use one of two basic strategies: white listing applications or signing applications.
The first approach uses a white list of secure hashes of applications that are known
to not be malicious. When Garm executes a binary, it would compute the binary’s
hash and then check whether the binary’s hash was white listed. An organization
might use this approach to allow data to be used with a standard suite of ap-
plications. Self-signed executables could be used to allow updates to white-listed
applications [Wurster and van Oorschot 2009].

A second approach utilizes binary signing. The idea is that a trusted authority
would provide certificates to trusted software development companies who would
then sign their binaries with these certificates. If a certificate was compromised,
the Garm installation would be updated with a list of compromised certificates to
invalidate. Individual policies could require that Garm certify that it has obtained
the latest revocations from the certificate revocation server and could list which
certificates are trusted.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·

4.2 Provenance Data

Provenance data can itself leak protected information. Consider the example of
a protected vector image that is rendered on a white bitmap. The rendering of
the protected vector image could easily only touch the image locations that should
be colored black. The provenance shadow information would then reflect what
locations had been colored black and provide information about the original image.

A countermeasure to this class of attack is straightforward — policies can limit
the amount of information that the provenance data encodes. The idea is to com-
pute how much information is represented by the provenance data and then coarsen
the provenance information to meet policy thresholds.

4.3 Compromise of Trusted Computing Infrastructure

Historically, hackers have discovered exploits for most trusted computing systems.
An important design consideration is limiting the damage caused by an exploit. If a
Garm client is compromised, the hacker can obtain policy keys for all data that the
Garm client has access to. Note that as soon as the compromise is discovered, the
policy servers can refuse to send the compromised client any more policy keys. The
policy servers will also have a detailed log that captures the scope of compromise.
Moreover, before sending keys the policy server verifies that the Garm installation
has permission to access the policy-protected data in some fashion. Therefore, the
effect of an exploit is that attackers can only circumvent policies for data for which
they already have some type of access.

4.4 Interpreters

The basic techniques of Garm work on interpreters. However, an interpreter can
takes as input a program that creates an implicit channel to leak protected data.
Therefore, white listing an interpreter can compromise protected data. One ap-
proach to address this issue is to have a white list specify both the interpreter and
the input file that is trusted.

Many applications like Microsoft Word contain embedded interpreters. One ap-
proach to addressing the interpreter issue for these types of applications is to have a
white list specify both an executable and a provenance file for that executable. The
provenance file would then taint the machine code for the interpreter component
of the application. The effect is that any data outputted by the interpreter would
automatically be tainted and therefore hostile script files could not run in a trusted
application to declassify policy-protected data.

5. EXPERIENCE

We next discuss our experience using Garm to trace provenances and enforce data
access policies with several applications. We have developed a prototype imple-
mentation of Garm. Our implementation consists of approximately 8,500 lines of C
code. Our prototype implements a limited set of policies: access once, unencrypted
output to the audio device, unencrypted output to the screen, unencrypted output
to any source, and encrypted only output. It is straightforward to extend Garm
with new classes of policies through minor changes to the source code. Garm pro-
vides the basic mechanism that when combined with a policy language would allow
end users to specify a rich set of customized data usage policies.

Our prototype implements the staged provenance analysis along with the stream
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

cipher. While it is conceptually straightforward, the prototype does not interface
with the operating system to support remote attestation or sealing keys.

We ran Garm on a workstation with a 2.4 GHz Core 2 Duo processor, 1 GB of
RAM, and Debian Linux running kernel version 2.6.30.

5.1 Data Provenance

We first discuss our experience using Garm to trace provenances across the execu-
tions of several command line utilities included with the Debian Linux distribution.
In particular, we used Garm to trace the provenance of data across executions
of gzip, tar, nano, vi, Alpine, and sort. After each execution, we used Garm’s
provenance viewing utility to manually examine the provenance of the output files.

In our first experiment, we used Garm to protect emails in the Alpine email client,
an open source version of the classic Pine client. Alpine stores all emails in an email
folder in the same file. Therefore, precisely tracking the policies of individual emails
in Alpine requires tracking provenances at a sub-file level granularity. We included
text from a policy-protected file into an email in Alpine. We then sent the email
and confirmed that Garm’s policy-protection mechanism resulted in the policy-
protected text being encrypted before being sent to the server. We then modified
the policy-protected email to create a derived email. We next added a non-protected
email to the same folder. We then reloaded Alpine and confirmed that we could
still view the policy-protected emails in the folders. We also confirmed that the
policy-protected parts of the emails were properly encrypted on the disk and that
the non-protected email was visible as plaintext. The current version of Garm does
not contain support for communicating the provenance of data sent across TCP/IP
and therefore the policy-protected text can not currently be read by the recipient.
However, future versions could communicate this data using a secondary connection
and would allow applications to seamlessly share policy-protected data.

In our second experiment, we used Garm with vi and nano, two interactive text
editors. We edited a file during several sessions of both the vi and nano text
editors. Afterward, we viewed the provenances of the characters in the text file using
Garm’s provenance viewing utility and verified their correctness. Garm was able
to successfully trace the provenance of each byte of our text file across the editing
sessions. In particular, Garm correctly identified, for each byte, the session that
byte was entered and listed each subsequent program execution that manipulated
the text.

We used tar to archive several files. We then decompressed the archive. We man-
ually verified the provenances of the output files. Garm was able to precisely trace
provenances of data across both tarring the data into a tar archive and untarring
the data into files.

We used gzip to compress and then decompress the same text file. We then
examined the provenance of the output. We observed that the provenances were
conservative. However, we did observe some imprecision in the provenances in-
troduced in the process — the provenance of a few bytes included extra editing
sessions. This imprecision is an artifact of compression — the compression algo-
rithm may extract redundancy across editing sessions and in the process mix the
provenances.

Finally, we used sort to sort a text file developed over several sessions. We
ACM Journal Name, Vol. V, No. N, Month 20YY.

18 ·

observed mixing of provenances, but in this case the location of a text line depends
on the other lines and the mixing of provenances correctly reflects this dependence.

5.2 Policy Enforcement

Our Garm prototype supports a limited set of policies including access once, allow
viewing text on the terminal, and allow playing through the audio device. We used
Garm’s policy tool to protect text files, source code, and MP3 files.

We used Garm with mpg123, an MP3 player, to play a protected MP3 file. We
created data policies that used many combinations of the basic access policies. For
example, we created MP3 files that could be played once, MP3 files that could
be played but whose song name could not be viewed, and MP3 files whose song
names could be viewed but that could not be played through the audio device. We
found that Garm was able to successfully enforce the policies and that Garm had
sufficient performance to run mpg123 in real-time.

We protected text files with policies that allowed viewing them exactly once. We
then viewed the file with the nano editor and added new text. We then attempted
to view the file a second time and observed that we could view the new text but
not the policy-protected text.

We protected C source files with a policy that does not allow viewing the code on
the screen. We then used gcc to compile the policy-protected C source code into a
binary and verified that the binary was similarly protected. Finally, we instructed
the policy server to release the specific policy from the binary and then verified
that the binary executed correctly.

5.3 Overheads

We next evaluate both the execution time and space overheads of Garm.
5.3.1 Execution Time. We measured the overhead of Garm on several represen-

tative benchmarks applications. We include numbers for Garm for the CSE version
with the CSE optimization and for the base version with the CSE optimization dis-
abled. We include for comparison overheads for the base Valgrind implementation
(memcheck).

Figure 6 presents the measured slowdown (tGarm
tNormal

) for Garm on each benchmark.
In the first benchmark, we measured the time take to decompress a gzipped file. We
measured the overhead of Garm to be a factor of 5.64. In the second benchmark,
we measured the time taken to extract files from a tar archive. We measured
the overhead of Garm to be a factor of 5.34. The overhead of this benchmark is
primarily due to the extra shadow information that Garm must record. The third
benchmark uses mpg123 to decode an MP3 file. We measured the overhead of
Garm to be a factor of 13.14.

Benchmark CSE Base Memcheck

gzip decompression 5.6× 6.3× 2.4×
tar extracting 5.3× 5.3× 1.3×
mpg123 11.4× 13.2× 6.8×

Fig. 6. Slowdowns

To qualitatively evaluate the performance impact of Garm, we monitored sev-
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 19

eral interactive applications including bash, xdvi, pico, nano, ssh, scp, and other
command line utilities with Garm. We found that slowdown was barely noticeable
with these benchmarks and that the overhead of Garm did not significantly affect
interactive performance. We expect that Garm provides capabilities that can ben-
efit many users and that the users of many applications can tolerate the current
overheads of Garm.

The design of Valgrind introduces a number of significant overheads to Garm.
We discuss several of the more significant overheads below.

—Lack of Conditional Support in Valgrind IR:
In Valgrind, methods calls are the only way to add instrumentation code with
conditional branches. The common case for merging two provenances is to com-
pare the provenances with the cmp instruction, find them to be the same, and
therefore simply copy the provenance. If Valgrind provided a more expressive
intermediate representation, the common case for the provenance merge opera-
tion could be implemented with two instructions: a compare instruction and a
conditional branch instruction. However, Valgrind forces us to use a method call
that makes provenance tracking much more expensive.

—Short Blocks:
Our instrumentation optimizations are hindered by the relatively short sequences
of instructions that Valgrind presents to our optimization pass. These short se-
quences limit the gains our optimizations can realize — these short sequences
typically store the results of all their computations into registers. This makes
it impossible for our optimizations to eliminate many provenance computations.
Moreover, it also means that the instrumentation algorithm must assume the
worst case for registers that are used across superblock boundaries. Even though
the code is likely to only access the register at the word granularity, the anal-
ysis must assume that out of context code may access the registers at the byte
granularity.
An intermediate representation that exposed longer code sequences to our anal-
ysis would yield greatly improve code. In particular, the analysis would avoid
most of the provenance merge operations that are performed because of the worse
case assumptions about register usage.

—Superblock Form: Valgrind exposes code to transformation phases as super
blocks that consist of straight line code with a number of conditional exit points.
These superblocks do not allow for code that is conditionally executed if an
exit is taken. Therefore our analysis must ensure that the provenance shadows
are correct at the entrance to every conditional branch instead of conditionally
updating them if the branch is actually taken.

Inspection of the instrumented code reveals that many of the provenance merge
operations serve to merge the provenance of bytes that comprise a word of memory.
We expect that Garm’s overhead can be significantly reduced by tracing provenance
at a coarser granularity. For example, tracing provenances at the word granularity
would eliminate a large number of reads, writes, and provenance merge operations.
It would also decrease Garm’s space overhead to only a one hundred percent in-
crease in memory usage. This would significantly reduce both Garm’s space and
computational overheads.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 ·

5.3.2 Space Overheads. The current implementation of Garm imposes a four
hundred percent increase in the amount of memory space used by a program. While
this is a significant overhead, in practice for programs that originally consumed less
than a gigabyte of memory it represents a small investment in memory with current
memory prices.

While Garm maintains shadow files that are four times the size of the original
files, they contain significant redundancy. We found that gzip can reduce the size
of the shadow files by a factor of 1,000 (for a total overhead after compression of
0.4%). We expect that off-the-shelf compression online algorithms will make both
the time and space overheads of the shadow files insignificant.

Note that for performance critical applications, it is straightforward to use op-
erating system level mechanisms to provide very coarse granularity, but extremely
lightweight provenance tracing and policy enforcement mechanisms. Such mecha-
nisms can be designed to use Garm’s shadow provenance file format, and therefore
allow performance critical applications to access Garm-protected data.

6. RELATED WORK

Understanding how information flows through applications is an active area of re-
search. Most of the research has focused on analyzing a single application to under-
stand whether it leaks secret information or potentially uses untrusted information
in an unsafe manner.

Static information flow attempts to show that applications do not leak confi-
dential information [Denning 1976]. Static information flow analysis requires that
the developer know a priori what information is confidential and what information
sinks are public.

6.1 Taint Analysis

Taint analysis traces whether data in an application is tainted. Depending on the
application, tainting can be used to represent that information is secret and must
not be leaked or that information is from an untrusted source and must be carefully
checked before it is used.

Researchers have developed a large number of taint analyses. Taintcheck uses
binary instrumentation to trace whether bytes in an application are tainted [New-
some and Song 2005]. Conceptually, it maintains a shadow bit for each byte in
the application that indicates whether that byte is tainted. It uses a set of se-
curity policies that describe which sources are tainted and restrict how tainted
values may be used. DYTAN [Clause et al. 2007] and Flayer [Drewry and Or-
mandy 2007] also use binary instrumentation to implement tainting. Haldar et al.
have implemented dynamic tainting for Java to ensure safety of web-based applica-
tions [Haldar et al. 2005]. McCamant and Ernst have developed a dynamic analysis
technique that uses flow networks to quantify an upper bound on the number of
bits that leak [McCamant and Ernst 2008]. The RIFLE [Vachharajani et al. 2004]
project explores architectural extensions to efficiently support dynamic analysis for
information flows.

The Raksha project provides hardware support for simultaneously tracing tainted
bits for a handful of security policies [Dalton et al. 2007]. They use this functionality
to discover attacks on an application. Chandra and Franz have implemented a
dynamic analysis for Java that implements a fine-grained labeling scheme [Chandra
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 21

and Franz 2007] that provides support for application-level policies. Their approach
supports up to 32 hierarchical security levels.

Trishul [Nair et al. 2008] is a virtual machine with support for information flow-
based policy enforcement. Trishul traces tainting information while Garm traces
provenance. Trishul enforces policies on how specific applications access system files
while Garm allows a user to specify policies on how data can be used by arbitrary
binaries.

Garm has significant differences with taint analysis. In particular, taint analyses
are very coarse-grained. They typically allocate only 1 bit per value. Therefore
tainting makes the implicit assumption that the user knows a priori, which sources
of values should be tainted. Because Garm assigns unique provenance records
whenever it loads data from a different source, it records complete provenance
information and does not require that the user identify tainted sources ahead of
time.

Most current taint frameworks do not trace taint information across application
boundaries. Because of this limitation, they are forced to decide at the boundary of
the tainting framework whether to completely trust the recipient with the unpro-
tected data or to block transmission of the data [Hicks and McDaniel 2007]. This
limitation has a profound impact — with such systems a single location cannot be
used to store both protected and unprotected data.

The combination of encryption and provenance shadow files allows Garm to write
policy-protected data to locations that can potentially be accessed by untrusted
entities and guarantee that the policies will continue to be enforced when future
executions of any applications access the data. We note that a few tainting frame-
works can trace taint across application boundaries by performing taint analysis
on a virtual machine [Chow et al. 2004; Yin et al. 2007] — this approach suffers
from the same problem when applications write data to disk or send data across
the network.

In general, taint frameworks support policies that specify how a specific applica-
tion can use data from an outside source. Garm supports an entirely different class
of policies — Garm’s policies describe how data can be used by any application and
not how a specific application can manipulate data. This enables Garm’s policies to
protect data across applications and machine boundaries and specify how arbitrary
applications can use the policy-protected data.

An early workshop paper overviewed the approach [Demsky 2009]. This article
provides the technical details, describes the integration of the approach with a TPM,
describe the analysis and optimization approach, and more extensively evaluates
the work.

6.2 Information Flow-Based Security

The HiStar operating system uses information flow to minimize the amount of code
that must be trusted [Zeldovich et al. 2006]. It allows applications to create taint
categories. All objects and threads in HiStar have a taint level for each category.
For a given taint category, threads cannot read from objects with higher tainting
values than the thread or write to objects with lower tainting values. Special
wrapper programs are used to declassify the output of a program.

HiStar requires software to be rewritten to support information flow while Garm
ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·

can operate on legacy binaries. Execution threads must explicitly request to change
their taint level before reading tainted data. The entire thread remains tainted —
once a thread raises its taint level it cannot write even unclassified data to objects
with lower taint levels. For applications in which this is undesirable, the developer
must spawn a separate process to access the tainted data. For example, a word
processor in HiStar would have to be architected to spawn a separate editing process
for each document with different taint values.

Histar uses a much coarser-grained tainting mechanism for files that Garm. For
example, a tar utility in HiStar would have to taint the tar file with the highest
taint level of the individual files that comprise the tar file. When a file is later
extracted from the tar file, it may no longer be readable by the user or process that
conceptually owns it. Moreover, it would not be possible to write an email client
that stores messages with different taint levels in the same file.

Finally, HiStar does not protect data on a machine or external storage device if
the machine is lost or stolen. HiStar is primarily designed to protect a user from
hostile programs or external attackers while Garm is primarily designed to protect
data from accidental disclosure. Note that HiStar would not protect a user from
accidentally sending confidential data to the wrong person.

DStar labels processes in a distributed system with communication permissions
and the set of privileges the process can be used to omit restrictions on sending
messages [Zeldovich et al. 2008]. The system uses the labels along with a set of
policies to mitigate the consequences of untrusted code.

JiF [Sabelfeld and Myers 2003] is an extension to Java that adds support for
information flow and policy enforcement. The basic idea is to write policies that
partition output files as trusted or untrusted and then only allow the application to
write tainted data to the trusted files. Garm’s cross application provenance (and
provenance-based encryption) allows applications to write policy-protected data to
any file while still tracing the data’s provenance and enforcing the data’s access
policy. This capability is key for enabling information-flow based security in the
modern work environment as the widespread adoption of information-flow based
security may ultimately depend on not burdening users with onerous restrictions
on how they use data.

JPMail [Hicks et al. 2006] is a mail application developed in JiF that was man-
ually coded to support sending policy-protected emails through untrusted servers.
This approach requires the developers of a specific application to implement an
entire policy framework and policy server. Garm basic approach extended to sup-
port TCP/IP could provide this type of policy support for arbitrary client-server
applications without requiring any modification of the applications.

6.3 Data Provenance

Lin et al. introduces a dynamic provenance analysis based on reduced order binary
decision diagrams [Lin et al. 2008]. Their analysis can compute, for each byte in
an application’s execution, the set of all input bytes that byte depends on. The
analysis represents provenances as indices into a table of binary decision diagrams.
The extra precision causes their analysis to incur heavy overheads. Their approach
could potentially benefit from the static analysis in Garm.

Database researchers have studied the problem of tracing and maintaining prove-
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 23

nance in databases [Buneman et al. 2000; 2001]. Garm presents a technique that
can trace provenance on arbitrary binaries at a level of abstraction that captures
sufficient information to easily trace the source while simultaneously not incurring
excessive overheads. Researchers have developed automated provenance gathering
frameworks that operate at the file granularity [Muniswamy-Reddy et al. 2006] —
for each outputted file they record the application that created the file, how it was
invoked, and a list of all files it read. Hasan et al have developed library level tools
to produce verifiable provenance records for files [Hasan et al. 2009]. Our approach
is much more precise — Garm can determine which of multiple inputs (at the byte
granularity) to an application contributed to a given output file.

We note that Garm could be modified to support the secure provenance chains
describe by Hasan. This would require keeping all of the old provenance shadow
files. Garm would then record a hash for each of the input files in the provenance
record and then sign each of its output files. This would create a chain for the
provenance records with the same properties as Hasan.

6.4 Policies

PinUP can enforce policies on how applications use files at the file granularity [Enck
et al. 2008]. The basic approach adds kernel support to allow a machine’s owner to
specify the set of applications that can access files of a given type. For example, such
a policy might allow Word but not other applications to access documents. This
approach can restrict normal business processes including emailing documents and
fails to differentiate between confidential and public documents of the same type.

Researchers have explored policy languages that restrict how data can be used.
Pretschner et al. introduce a usage language that restricts how data consumers use
data [Pretschner et al. 2008]. OSL [Hilty et al. 2007] and ODRL [Iannela 2002] both
restrict how data can be used. Our work provides a framework that can enforce
such policies on arbitrary binaries.

7. CONCLUSION

In current software systems, it is difficult to discover the history of how a file has
reached its current state and it is difficult to control how files are used when sent
to others. Garm uses a staged analysis that combines static and dynamic analysis
to trace the provenance of data across applications. Garm provides a set of tools to
query the provenance of data. This information can be useful for auditing purposes.
For example, an organization might use the data to understand the scale of the
consequences of a software error.

Garm can also use the provenance analysis to label data with access policies.
Garm can then enforce these policies across application boundaries. These ac-
cess policies might ensure that personal health records do not accidentally leave
an insurance company’s office computers while allowing the insurance company’s
employees to use the medical data with the software applications required to do
business.

REFERENCES

Bernstein, D. J. 2008. New Stream Cipher Designs: The eSTREAM Finalists. Springer, Chapter

The Salsa20 Family of Stream Ciphers, 84–97.

Buneman, P., Khanna, S., and Tan, W.-C. 2000. Data provenance: Some basic issues. In

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 ·

Proceedings of the 20th Conference on Foundations of Software Technology and Theoretical

Computer Science.

Buneman, P., Khanna, S., and Tan, W. C. 2001. Why and where: A characterization of data

provenance. In Proceedings of the 8th International Conference on Database Theory.

Chandra, D. and Franz, M. 2007. Fine-grained information flow analysis and enforcement in a

Java virtual machine. In Twenty-Third Annual Computer Security Applications Conference.

Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., and Rosenblum, M. 2004. Under-

standing data lifetime via whole system simulation. In Proceedings of the 13th Conference on

USENIX Security Symposium.

Clause, J., Li, W., and Orso, A. 2007. Dytan: A generic dynamic taint analysis framework. In

Proceedings of the 2007 International Symposium on Software Testing and Analysis.

Dalton, M., Kannan, H., and Kozyrakis, C. 2007. Raksha: A flexible information flow ar-

chitecture for software security. In Proceedings of the 34th Intl. Symposium on Computer
Architecture.

Demsky, B. 2009. Garm: Cross application data provenance and policy enforcement. In USENIX
2009 Workshop on Hot Topics in Security (HotSec).

Denning, D. E. 1976. A lattice model of secure information flow. Communications of the
ACM 19, 5, 236–243.

Drewry, W. and Ormandy, T. 2007. Flayer: Exposing application internals. In Proceedings of

the First USENIX Workshop on Offensive Technologies.

ecrypt 2008. The eSTREAM project. http://www.ecrypt.eu.org/stream/.

Enck, W., McDaniel, P., and Jaeger, T. 2008. Pinup: Pinning user files to known applications.

In Proceedings of the 24th Annual Computer Security Applications Conference.

England, P., Lampson, B., Manferdelli, J., Peinado, M., and Willman, B. 2003. A trusted

open platform. Computer 36, 7, 55–62.

Haldar, V., Chandra, D., and Franz, M. 2005. Dynamic taint propagation for Java. In 21st
Annual Computer Security Applications Conference.

Hasan, R., Sion, R., and Winslett, M. 2009. The case of the fake picasso: Preventing history
forgery with secure provenance. In Proccedings of the 7th Conference on File and Storage

Technologies.

Hicks, B., Ahmadizadeh, K., and McDaniel, P. 2006. Understanding practical application

development in security-typed languages. In Proceedings of the 22st Annual Computer Security

Applications Conference.

Hicks, B. and McDaniel, P. 2007. Channels: Runtime system infrastructure for security-typed

languages. In Proceedings of the 23rd Annual Computer Security Applications Conference.

Hilty, M., Pretschner, A., Basin, D., Schaefer, C., and Walter, T. 2007. A policy language

for distributed usage control. In Proceedings of the 12th European Symposium on Research in
Computer Security.

Iannela, R. 2002. Open digital rights language - version 1.1. http://ordl.net/1.1/ODRL-11.pdf.

Lin, Z., Zhang, X., and Xu, D. 2008. Convicting exploitable software vulnerabilities: An ef-

ficient input provenance based approach. In In Proceedings of the 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks.

McCamant, S. and Ernst, M. D. 2008. Quantitative information flow as network flow capacity.
In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation. Tucson, AZ, USA, 193–205.

Mitchell, C. 2005. Trusted Computing. The Institute of Electrical Engineers.

Muniswamy-Reddy, K.-K., Holland, D. A., Braun, U., and Seltzer, M. 2006. Provenance-

aware storage systems. In Proceedings of the Annual Conference on USENIX ’06 Annual
Technical Conference.

Nair, S. K., Simpson, P. N. D., Crispo, B., and Tanenbaum, A. S. 2008. A virtual machine

based information flow control system for policy enforcement. Electronic Notes in Theoretical
Computer Science 197, 1, 3–16.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 25

Newsome, J. and Song, D. 2005. Dynamic taint analysis for automatic detection, analysis, and

signature generation of exploits on commidity software. In Proceedings of the Network and
Distributed System Security Symposium.

Peinado, M., Chen, Y., England, P., and Manferdelli, J. 2004. NGSCB: A Trusted Open

System. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 86–97.

Pretschner, A., Hilty, M., Basin, D., Schaefer, C., and Walter, T. 2008. Mechanisms for
usage control. In Proceedings of the 2008 ACM Symposium on Information, Computer and

Communications Security. ACM, 240–244.

Sabelfeld, A. and Myers, A. C. 2003. Language-based information-flow security. IEEE Journal

on Selected Areas in Communication, special issue on Formal Methods for Security 21, 1, 5–19.

Vachharajani, N., Bridges, M. J., Chang, J., Rangan, R., Ottoni, G., Blome, J. A., Reis,

G. A., Vachharajani, M., and August, D. I. 2004. RIFLE: An architectural framework for

user-centric information-flow security. In Proceedings of the 37th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture.

Wurster, G. and van Oorschot, P. 2009. Self-signed executables: Restricting replacement of

program binaries by malware. In USENIX 2009 Workshop on Hot Topics in Security (HotSec).

Yin, H., Song, D., Egele, M., Kruegel, C., and Kirda, E. 2007. Panorama: Capturing system-

wide information flow for malware detection and analysis. In Proceedings of the 14th ACM
Conference on Computer and Communications Security.

Zeldovich, N., Boyd-Wickizer, S., Kohler, E., and Mazières, D. 2006. Making information

flow explicit in HiStar. In Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation.

Zeldovich, N., Boyd-Wickizer, S., and Mazières, D. 2008. Securing distributed systems with

information flow control. In Proceedings of the 5th USENIX Symposium on Networked Systems

Design and Implementation.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

