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Abstract—We present a distributed transactional memory system that exploits a new opportunity to automatically hide network latency
by speculatively prefetching and caching objects. The system includes an object caching framework, language extensions to support
our approach, and symbolic prefetches. To our knowledge, this is the first prefetching approach that can prefetch objects whose
addresses have not been computed or predicted.
Our approach makes aggressive use of both prefetching and caching of remote objects to hide network latency while relying on the
transaction commit mechanism to preserve the simple transactional consistency model that we present to the developer. We have
evaluated this approach on three distributed benchmarks, five scientific benchmarks, and several microbenchmarks. We have found
that our approach enables our benchmark applications to effectively utilize multiple machines and benefit from prefetching and caching.
We have observed a speedup of up to 7.26× for distributed applications on our system using prefetching and caching and a speedup
of up to 5.55× for parallel applications on our system.
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1 INTRODUCTION

The growth of networking along with price decreases in
hardware have led to the widespread adoption of distributed
computing. Developing efficient software for distributed sys-
tems while simultaneously managing complexity can be chal-
lenging. For example, the underlying hardware often only
supports communication between devices through network
packets. As a result, developers of distributed applications
must reason about communication patterns, write code to
traverse and marshall possibly complex data structures into
messages, write communication code to route these messages
from producers to consumers, and write code to unmarshall
these messages back into data structures.

Researchers have developed software distributed shared
memories to provide developers with the illusion of a simple
shared memory abstraction on distributed systems. A straight-
forward implementation of a distributed shared memory can
provide developers with a simple memory model to program.
However, accessing remote data in such implementations
requires waiting for network communication and therefore is
expensive. In response to this issue, researchers have devel-
oped distributed shared memory systems that achieve better
performance by relaxing memory consistency guarantees. De-
veloping software for relaxed memory consistency models can
be challenging — the developer must read and understand
complicated memory consistency properties to understand the
possible behaviors of the program.

In recent years, researchers have explored transactional
memory as a simpler concurrency primitive. Transactional
constructs were researched to simplify software development

by enabling developers to control concurrency without having
to reason about potentially complex locking disciplines.

1.1 Basic Technical Approach
In this paper, we present a distributed transactional memory
that presents a simple programming model to the developer.
One of the primary challenges in designing distributed shared
memory systems is hiding the latency of accessing remote
objects. Previous work on distributed transactional memory
primarily focused on providing transactional guarantees and
largely overlooked a promising opportunity for utilizing the
transaction commit mechanism to safely enable optimizations.
Our approach caches remote objects and relies on the transac-
tion commit checks to safely recover from mis-speculations.

Many traditional prefetching approaches have had limited
success hiding the latency of remote object accesses in the
distributed environment because they require the computation
to first compute or accurately predict an object’s address
before prefetching that object. With our approach, a developer
identifies objects that would benefit from prefetching and
writes a prefetch hint that describes the paths through the
heap that reach those objects even though their addresses
are unknown. The runtime system can then often prefetch all
of those objects in a single round-trip communication. This
reduces the cost of remote object accesses. We use object
versioning and unique object identifiers to track committed
changes to objects and rely on the transaction commit checks
to safely recover from mis-speculations.

1.2 Contributions
This paper makes the following contributions:
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– Distributed Transactional Memory: It presents the first
distributed transactional memory with both language and
compiler support. In this model, the developer uses the
atomic keyword to declare that a region of code should
be executed with transactional semantics. In this context,
transactional semantics means that the execution of the
reads and writes in the transactions is consistent with
some sequential ordering of the transactions.

– Object Caching and Prefetching: Caching and prefetch-
ing objects can potentially hide the latency of accessing
remote objects. To address the possibility of accessing
an old object version, our approach leverages transaction
commit checks to ensure that a transaction only accessed
the latest object versions.

– Symbolic Prefetches: Traditionally, prefetching a mem-
ory location requires that the program first computes
or predicts the address of that memory location. Such
prefetch strategies can perform poorly for traversals over
remote, linked data structures, such as a linked list, as
they require the program to incur the round-trip network
latency when accessing each new element in the linked
list. Our approach introduces symbolic prefetches: a sym-
bolic prefetch specifies the object identifier of the first
object to be prefetched followed by a list of field offsets
or array indices that define a set of paths through the
heap. These paths traverse the objects to be prefetched.
The remote machine processes the symbolic expression
and responds with a copy of the initial object and the ob-
jects along the paths specified by the symbolic expression
that are in the remote machine’s object store. The end
result leverages data locality at the machine granularity to
minimize communication rounds and thereby minimize
delays due to network latency.

– Optimized Cache Coherence: Systems with multiple
caches must ensure that data residing in the caches is
consistent. This typically requires using an expensive
cache coherency protocol. We instead use a set of tech-
niques that trade rigorous consistency guarantees for
performance. In this context, optimized coherency is safe
because the commit process will detect and correct the
occasional access to old object versions.

The remainder of this paper is structured as follows. Sec-
tion 2 presents an example. Section 3 presents the program-
ming model and locality analysis. Section 4 presents the
runtime. Section 5 presents the prefetching mechanism. Sec-
tion 6 presents an evaluation on several benchmarks. Section 7
discusses related work and we conclude in Section 8.

2 EXAMPLE

Figure 1 presents a distributed hash table example. The dis-
tributed hash table uses a table with an extra level of indirec-
tion to reduce conflicts on the array. The object initializer in
lines 4 through 6 for the DistributedHashtable creates
the top-level array. The allocation site contains the keyword
shared to indicate that the array object is shared. Shared
objects can be accessed by any thread on any machine. Our
distributed system supports local objects that can only be

1 p u b l i c c l a s s D i s t r i b u t e d H a s h t a b l e {
2 E n t r y L i s t t a b l e [ ] ;
3

4 D i s t r i b u t e d H a s h t a b l e ( i n t c a p a c i t y ) {
5 t a b l e = shared E n t r y L i s t [ c a p a c i t y ] ;
6 }
7

8 O b j e c t g e t ( O b j e c t key ) {
9 i n t i n d e x = hash ( key , t a b l e . l e n g t h ) ;

10 p r e f e t c h ( t a b l e [ i n d e x ] . l i s t .
11 n e x t [ 0 . . 2 ] . key ) ;
12 E n t r y L i s t f l = t a b l e [ i n d e x ] ;
13 i f ( f l == n u l l ) re turn n u l l ;
14 DHashEntry p t r = f l . l i s t ;
15 f o r ( ; p t r != n u l l ; p t r = p t r . n e x t )
16 i f ( p t r . key . e q u a l s ( key ) )
17 re turn p t r . v a l u e ;
18 re turn n u l l ;
19 }
20 . . .
21 }
22

23 c l a s s E n t r y L i s t {
24 DEntry l i s t ;
25 }
26

27 c l a s s DEntry {
28 O b j e c t key ;
29 O b j e c t v a l u e ;
30 DEntry n e x t ;
31 }

Fig. 1. Distributed Hashtable
1 D i s t r i b u t e d H a s h t a b l e d h t = . . . ;
2 atomic {
3 f o r ( i n t i =0 ; i<a . l e n g t h ; i ++)
4 b [ i ]= d h t . g e t ( a [ i ] ) ;
5 }

Fig. 2. Example Transaction

accessed by a single thread. Our system assumes by default
that allocation sites without the shared modifier allocate
local objects. Each object has an authoritative copy that
contains all committed changes and is stored permanently on
the machine that allocated the object using the shared new
allocation statement.

Lines 8 through 19 present the code for the get method,
which looks up keys in the distributed hash table. Line
10 of the get method includes a symbolic prefetch anno-
tation. A symbolic prefetch annotation consists of a start-
ing object identifier followed by a symbolic expression that
specifies a set of paths through the heap from the start-
ing variable. For example, the symbolic prefetch expres-
sion table[index].list.next[0..2].key in line 10
specifies paths starting at the array referenced by table that
traverse the index element of the array, the list field once,
the next field between zero through two times, and finally
the key field. The [] operator applied to an array specifies
a range of indices to traverse. The [] operator applied to a
field specifies how many times to traverse the field.

Figure 2 presents an example of a transaction that calls a
DistributedHashtable instance’s get method on the
elements of the array a. The atomic keyword in line 2
declares that the enclosed block should be executed with trans-
actional semantics. Note that our system statically imposes
the constraint that shared objects may only be accessed inside
transactions.
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2.1 Program Execution

The atomic keyword in line 2 from Figure 2 causes the
runtime system to execute the code block in lines 2 through
5 with transactional semantics. Our system maintains the
invariant that if a variable is both used inside the current
transaction and references a shared object, it points to the
transaction’s working copy during the duration of the transac-
tion. To establish this invariant, the compiler generates code
at the entrance of this atomic block that converts the object
identifier stored in the dht variable into a reference to the
transaction’s working copy of the object. This code first checks
to see if the transaction already contains a copy of the object,
then checks to see if the authoritative copy resides on the local
machine, next checks to see if the local machine has a cached
copy of the object, and finally contacts the remote machine
that holds the authoritative copy of the object to obtain a copy
of the object. If the transaction has not already accessed the
object, the runtime system makes a working copy of the object
for the transaction and points the dht variable to this copy.

When the transaction completes, it calls the runtime to
commit the transaction. The runtime sorts the objects into
groups by the machine that holds the authoritative copy of the
object. It then sends each group to the machine that holds the
authoritative copies of the objects in that group. The current
execution thread next serves as a coordinator in a two-phase
commit protocol to commit the changes.

Each shared object contains a version number. The version
number is incremented every time the committed (or authori-
tative) copy of the object is changed. In the first phase, each
authoritative machine verifies that the transaction has only
accessed the latest versions of the objects and votes to abort
if the transaction accessed an old version of any object. If all
authoritative machines vote to commit, the coordinator sends
a commit command. If any machine votes to abort, the system
must re-execute the transaction.

Our system also supports thread local objects. If a trans-
action modifies a local object, the compiled code makes a
backup to enable restoration of the object in the event that the
transaction aborts.

2.2 Object Prefetching

The example accesses objects that are not likely to be
cached on the local machine. Our approach uses prefetch-
ing to hide the latency of these object accesses. Con-
sider the path table[index].list.next[0..2].key
that is represented by the symbolic prefetch expression in
line 10 of Figure 1. The traditional prefetching approach
would first prefetch table, next table[index], and
so on. This strategy requires six consecutive round-trip
communications. Our approach sends a symbolic prefetch
request for (1) the object identifier stored in table
and (2) the paths defined by the symbolic expression
table[index].list.next[0..2].key. If the remote
machine contains all of the objects, all eight objects including
the three key objects can be prefetched in a single round-trip
communication.

3 PROGRAMMING MODEL

We have developed several language extensions to a core
subset of Java to support distributed transactional memory.
These extensions let the developer declare objects as shared.
They place the constraint on the developer that shared objects
can only be accessed inside of transactions. The developer
can then write transactional code for distributed nodes that
accesses shared objects.

3.1 Java Extensions

Our extensions add the atomic keyword to declare that
a block of code should have transactional semantics. This
keyword can be applied to either (1) a method declaration to
declare that the method should be executed inside a transaction
or (2) a block of code enclosed by a pair of braces. We allow
these constructs to be nested — the implementation simply
ignores any transaction declaration that appears inside of
another transaction declaration. The shared memory extensions
are similar to those present in Titanium [1] although our
implementation prohibits accessing shared objects outside of
transactions.

Our extensions also add the shared keyword to the
language. The shared keyword can be used as a modifier to
the new allocation statement to declare that an object should
be allocated in a shared memory region. Shared objects can
only reference other shared objects. Our approach allows local
objects to reference both shared and local objects. However,
the developer must declare that a field in a local object
references a shared object by using the shared keyword as
a modifier to that field’s declaration.

In general, methods are polymorphic in whether their pa-
rameter objects are shared. In some cases, the developer may
desire a method to have different behavior depending on
whether the parameter objects are shared objects. Our exten-
sions support creating different method versions for shared and
local objects — the developer designates the shared version
with the shared keyword and the local version with the
local keyword.

The extensions modify the start method to take a ma-
chine identifier that specifies which machine to start the thread
on. The implementation contains a join method that waits
for the completion of other threads.

3.2 Inference Algorithm

We use a flow-sensitive, data-flow–based inference algorithm
to infer for each program point whether a variable references
a shared object or a local object. We define A = { either,
shared, local, ⊥} to be the set of abstract object states. We
define V as the set of program variables. The data flow analysis
computes the mapping S ⊆ V × A from program variables
to abstract object states. We use the notation fs to denote a
field f that has been declared as shared with the shared
modifier. Figure 3 presents the lattice for the abstract object
state domain.

Figure 4 presents the transfer functions for the data flow
analysis. The analysis starts by analyzing the main function
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shared local

either

Fig. 3. Lattice for Analysis

st kill gen
x = shared new C 〈x, ∗〉 〈x, shared〉
x = new C 〈x, ∗〉 〈x, local〉
x = y 〈x, ∗〉 〈x,S(y)〉
x = null 〈x, ∗〉 〈x, either〉
x = y.f 〈x, ∗〉 〈x,S(y)〉
x = y.fs 〈x, ∗〉 〈x, shared〉
x = call m(y, ..., z) 〈x, ∗〉 return value of m in the

context S(y), ...S(z)
other statements — —

Fig. 4. Transfer Function for Inference Analysis

in the non-atomic context with a local string array object as
its parameter. The analysis initializes the parameter variables’
abstract state from the method’s calling context. The analysis
proceeds using a standard forward-flow, fixed-point–based
data-flow analysis.

When the analysis processes a call site for a method context
that has not been analyzed, it enqueues that method context
to be analyzed. The analysis then uses the either value for
the abstract state of the return value until the analysis can
determine the return value’s actual abstract state. When the
analysis updates the return value for a method context, it
enqueues all callers of that context for re-analysis.

The inference algorithm uses the abstract object states to
statically check several safety properties: (1) it ensures that
the program does not attempt to store a reference to a local
object in a shared object, (2) that the compiler can statically
determine for each object access whether the object is shared,
local, or null, (3) that the program does not attempt to store
references to shared objects in a local field that has not been
declared shared, (4) that native methods are not called inside of
transactions1, (5) that shared objects are not accessed outside
of transactions, and (6) that shared objects are not passed into
native methods.

It is of course possible to allow accesses to shared objects
outside of transactions by sending messages for each object
access. However, if code performs multiple accesses to shared
objects, transactions are typically beneficial for performance.
Transaction allow the system to speculatively access shared
objects using locally cached objects, and then with a single
communication round trip validate all of those object accesses.
The system can then guarantee coherent accesses to all of the

1. This constraint prohibits I/O calls inside transactions. We make an
exception for a debugging print statement and known side-effect free native
methods such as floating point operations.

objects while incurring only a small fraction of the latency it
takes to actually access those objects.

The compiler uses the analysis results to generate spe-
cialized versions of methods for each calling context. These
specialized versions optimize field and array accesses depend-
ing on whether the object is local or shared and whether
the method is invoked inside a transaction. Note that it is
possible for a variable’s abstract state to be either if the
variable is always null in that context. In this case, the
compiler simply generates code for local accesses to give
the appropriate runtime error behavior. If the compiler cannot
determine whether an operation is performed on a local or
shared object, it generates a compilation error.

We note that there is the potential for the analysis to
generate a large number of implementations for a method
with many parameters. We expect that this would rarely occur.
However, in the event that a large number are generated, a
production compiler could simply generate a generic version
of those methods that dynamically checks whether an object is
shared, dynamically checks the safety properties, and selects
the appropriate implementation at runtime.

4 RUNTIME OVERVIEW OF DISTRIBUTED
TRANSACTIONAL MEMORY

Figure 5 presents an overview of the runtime. The runtime
is object-based — data is accessed and committed at the
granularity of objects. When a shared object is allocated, it
is assigned a globally unique object identifier. The object
identifier is then used to reference and access the object. We
statically partition the object identifiers between nodes so that
each node can assign unique identifiers. The runtime system
determines the location of an object directly from its object
identifier.

Our system implements optimistic concurrency control us-
ing a version-based strategy. Each shared object contains a
version number — the version number is incremented when a
transaction commits a write to the object. The implementation
uses the version numbers to determine whether it is safe
to commit a transaction. If a transaction accesses an old
version of any object, the transaction must be aborted. The
commit protocol has two phases: the first phase verifies that
the transaction operated on the latest versions of all objects
and the second phase commits the changes.

The implementation maintains the following types of object
copies:

– Authoritative Copy: The authoritative copy contains all
updates that have been committed to the object. Each
object has exactly one authoritative copy. The machine
in which the authoritative copy resides is fixed when the
object is allocated. The location of an object’s authorita-
tive copy is encoded in its object identifier.

– Cached Copy: Cached copies are used to hide the
latency of remote object accesses. When a transaction
accesses a cached copy of an object, the runtime makes
a transaction local copy of the object for that transaction.
The cached copy can be stale — if a transaction accesses
a stale object, the transaction will abort.
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Fig. 5. Overview of System Architecture

– Transaction Local Copy: When a transaction accesses
a shared object, a transaction local copy is made for that
transaction. The transaction performs reads and writes
on this local copy. When the transaction commits, any
updates to the local copy are copied to the authoritative
copy. It is possible for the local copy to be stale in which
case the transaction will abort.

4.1 Memory Architecture

We next discuss the shared memory architecture of our system.
The expanded processing node in Figure 5 presents the major
components in our distributed transactional memory system.
Each processing node contains the following state:

– Local Distributed Heap: The shared memory is parti-
tioned across all processing nodes. Each node stores a
disjoint subset of the authoritative copies of distributed
objects in its local distributed heap. The local distributed
heap stores the most recent committed state for each
shared object whose authoritative copy resides on the
local machine. Each local distributed heap contains a
hash table that maps object identifiers to the object’s
location in the local distributed heap.

– Thread Local Heap: In addition to shared objects,
objects can be allocated in thread local heaps. There is
one thread local heap for each application thread. Thread
local objects can be accessed at any time during the
computation by the thread that owns the object.

– Transaction Heap: There is a transaction heap for each
transaction. The transaction heap stores the transaction
local copy of any shared object that it has accessed.
Each transaction heap contains a hash table that maps the
object identifiers that the transaction has accessed to the
location of the transaction local copy in the transaction
heap.

– Object Cache: Each processing node has an object cache
that is used to cache objects and to store prefetched
objects. Each object cache contains a hash table that maps
the object identifiers of the objects in the cache to the
object’s location in the cache.

4.2 Accessing Objects

Our system uses a partitioned global address space (PGAS)
programming model [1]–[3]. Recall that our system contains
two classes of objects: local objects and shared objects.
Accessing a local object outside of a transaction and reading a
local object inside a transaction only require a simple pointer
dereference. Writing to a local object inside a transaction
requires a write barrier that ensures that a backup copy of
the object exists. If the transaction is aborted, the object is
restored from the backup copy.

Shared objects can only be accessed inside of a transaction.
When code inside a transaction attempts to lookup an object
identifier to obtain a pointer to a transaction local copy of the
object, the runtime system attempts to locate the object in the
following places:

1) The system first checks to see if the object is already in
the transaction heap.

2) If the object is located on the local machine, the system
looks up the object in the local distributed heap.

3) If the object is located on a remote machine, the system
next checks the object cache on the local machine.

4) Otherwise, the system sends a request for the object to
the remote machine.

Note that primitive field or primitive array element accesses
do not incur these extra overheads as the code already has
a reference to the transaction local copy of the object. We
expect that for most applications, the majority of accesses to
reference fields or reference array elements will access objects
that the transaction has already read. This code is inlined and
the common case of locating the transaction local copy of
an object involves approximately ten x86 instructions: a bit
mask and a shift operation to compute the hash, an address
computation operation, a memory dereference to lookup the
object identifier, a comparison to verify the identifier, and
a memory dereference to obtain the transaction local copy’s
location.

The compiler generates write barriers that mark shared
objects as dirty when they are written to2. The runtime uses a
shared object’s dirty status to determine whether the commit
must update the authoritative copy of the object.

4.3 Commit Process

We next describe the operation of the transaction commit.
When a transaction has completed execution, it calls the
transaction commit method. The commit method begins by
sorting shared objects in the transaction heap into groups
based on the machine that holds the authoritative copy of
the object. For each machine, the commit method groups the
shared objects based upon whether they have been written to
or simply read from. The commit operates in two phases: the
first phase verifies that the transaction operated only on the
latest versions of objects and the second phase commits the
changes. We next describe how the algorithm processes each
category of shared object:

2. Each object contains a dirty flag, and the write barrier marks the object
as dirty by setting the object’s dirty flag.
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– Clean Objects: For clean objects, the transaction commit
verifies that the transaction read the latest version. The
transaction coordinator sends the object’s version number
to the machine with the authoritative copy. That machine
acquires a read lock on the object and compares versions.
If the versions do not match the machine releases the
object locks and votes to abort the transaction. Otherwise,
the locks are held until the transaction commits.

– Dirty Objects: The transaction commit must copy the
updates made by the transaction from the dirty objects
to the authoritative copies of those objects. The system
transfers a copy of the dirty object along with its ver-
sion number to the machine holding the authoritative
copy. The remote machine then acquires a write lock
on the authoritative copy and compares versions. If the
versions do not match, it votes to abort the transaction.
If the transaction coordinator responds with a commit
command, the changes are copied from the dirty copy
to the authoritative copy and the object lock is released.
If the coordinator responds with an abort command, the
lock is simply released without changing the authoritative
copies.

If all authoritative machines respond that all version num-
bers match, the transaction coordinator will decide to com-
mit the transaction and transmit commit commands to all
participants. If any authoritative machine responds with an
abort request, the transaction coordinator will decide to abort
and transmit abort commands to all participants. If any au-
thoritative machine cannot immediately lock an object, the
coordinator will abort the commit process to avoid deadlock
and retry the commit process.

Code inside a transaction can also modify thread local
objects and local variables. When a transaction begins, it
executes compiler-inserted code that makes a copy of all
live local variables. Whenever a transaction writes to a local
object, the compiler-inserted code first checks if there is a
copy of the object’s state and then makes a copy if necessary.
If the transaction is aborted, the generated code restores the
local variables and uses the local object copies to revert the
thread local objects back to their states at the beginning of the
transaction.

4.4 Sandboxing

During a transaction, the execution can potentially read in-
consistent versions of objects. While such executions will
eventually abort during the commit process, reading incon-
sistent values can cause even correct code to potentially loop,
throw an error, or run out of memory before the transaction
aborts. Therefore, if the execution of a transaction throws
an exception, the runtime system verifies that the transaction
read consistent versions of the objects before propagating the
exception. If an exception occurs, our system checks that the
transaction has only accessed the latest versions of objects. If
the transaction has accessed stale objects, the transaction is
aborted. If the transaction has only accessed the most recent
versions of objects, the exception is propagated. Similarly,
there is the potential for looping due to reading inconsistent

values. To prevent looping, our system periodically validates
the read sets. If the object versions are consistent, the execution
will continue, otherwise the transaction is aborted. Our system
also validates the read set after a transaction’s allocations have
exceeded a threshold. We use an adaptive strategy that lowers
the validation limits if a given transaction has failed a previous
validation.

4.5 Compilation
Inside a transaction, our compiler maintains the invariant that
if a variable both references a shared object and can potentially
be accessed inside the current transaction, the variable points
to a transaction local copy of the shared object. This invariant
makes subsequent reads from primitive fields of shared objects
as inexpensive as reading a field of a local object. The compiler
maintains the invariant that variables that reference shared
objects outside of a transaction store object identifiers. Our
approach uses a simple dataflow analysis to determine whether
a variable that references a shared object is accessed inside a
transaction. The compiler then inserts, as necessary, code to
convert object identifiers into references to transaction local
copies and code to convert references to transaction local
copies back into object identifiers.

4.6 Optimized Cache Coherency
While object caching and prefetching have the potential to
improve performance by hiding the latency of remote reads
for shared objects, they can increase the likelihood that trans-
actions may abort due to reading stale data from the object
cache. The obvious approach, a cache coherency protocol, for
addressing this issue introduces a number of overheads. We
have introduced several new mechanisms that are collectively
designed to provide optimized cache coherence. These mech-
anisms do not guarantee cache coherence, they merely attempt
to minimize the likelihood that cache reads return old object
versions.

We use a combination of two techniques to evict old
versions of cached objects. The first technique is designed
for small scale deployments on a LAN. This technique uses
unreliable UDP broadcast to send a small invalidation message
when a transaction commits. This invalidation message lists
the objects that the transaction modified. The implementa-
tion does not guarantee that the invalidation messages will
arrive and does not wait for the messages to be processed.
The second technique evicts the oldest objects in the cache
whenever the cache needs more space. We expect that larger
scale deployments of our approach would require different
techniques for optimized cache coherence. Techniques for very
large deployments could include profiling to determine at what
points objects of a given type should be evicted.

Our implementation uses information from local transac-
tions to update the object cache. Whenever a local transaction
commits, it updates the local cache with the latest versions of
any remote objects the transaction modified.

If a transaction aborts, the implementation learns informa-
tion about the objects it is likely to access. The implementation
can use this information to minimize the number of remote
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object requests that must be made when retrying the trans-
action. When transactions abort, the remote machines in our
implementation send the latest versions of any stale objects
that the aborted transaction accessed along with their abort
response. These objects are then placed in the object cache
and the transaction is retried.

It is important to note that although our approach only
maintains optimized cache coherence, we preserve the correct
execution semantics by detecting and correcting any stale
object accesses in the transaction commit process.

4.7 Scalability
Our core implementation does not introduce scalability limi-
tations beyond those inherent in the application. The imple-
mentation does not update any global internal structures. If an
application runs on m groups of n machines and the computa-
tion on each group only accesses data in the same group, our
implementation will not send messages between groups and
therefore should scale perfectly as m increases. Our extension
for object invalidation does violate this property, but sends
very little data (8 bytes per modified object) and therefore
even it would likely scale to reasonably large clusters.

4.8 Design Rationale
The round-trip network latency on a gigabit LAN between
commodity workstations is approximately 100 µS. On a mod-
ern 3 GHz processor, this corresponds to waiting 300,000
clock cycles. Therefore, the guiding principle for our design
is to avoid waiting on network responses whenever possible.

The benefits of detecting and resolving conflicts early
is an open question for transactional memory systems for
single machines [4]. In the distributed context, eager conflict
detection is significantly more expensive as it requires waiting
for network communications to multiple systems for the first
write to each object. We therefore detect conflicts when
transactions commit. We do not implement explicit contention
management, instead we simply rely on lazy validation. Other
researchers have found that lazy validation serves as a form
of contention management [4]. For workloads with low con-
tention , the choice of contention management has little effect.
For workloads with high contention, the contention manager
is likely to abort a transaction that might commit in favor
of a transaction that will later be aborted. Our simulations
show that lazy validation has similar performance to the karma
contention manager and significantly better performance than
either the attack or polite contention manager.

One potential concern is the possibility that transactions
may abort repeatedly. Our system implements an optimization
that accelerates aborted transactions — when a transaction
aborts at commit, the system gains knowledge of the objects
that transaction is likely to access. The remote systems there-
fore send fresh copies of any stale objects that caused the
previous transaction attempt to abort. The re-execution of the
transaction is likely to only access cached objects and therefore
should execute relatively quickly.

Our system implements lazy validation of reads. While
eager validation can avoid wasted effort, in the distributed

context it requires waiting on network communication. As
mentioned in Section 4.4, we use sandboxing to avoid the
correctness issues associated with lazy validation.

Lazy validation approaches are known to be less prone
to livelock because transactions only hold object locks for a
brief period of time during the commit process [4]. With the
exception of livelock when acquiring object locks to commit
a transaction, transactions can only be aborted if another
transaction has committed. To ensure with high probability
that livelock does not occur, we use an exponential random-
ized abort-time backoff algorithm when a transaction cannot
acquire all object locks but the versions of all objects in the
readset are current. While our system ensures the absence of
live lock with high probability, starvation of a transaction can
occur if a series of transactions repeatedly commit with it. It is
possible to extend the system to prevent starvation by using an
abort retry threshold that when a transaction reaches it causes
the transaction to switch to a special safe mode. This safe
mode would assign the transaction a sequence number and
the transaction would acquire locks when the objects are first
accessed. If two such transactions both attempt to acquire the
same lock, the one with the earliest sequence number would
win.

5 SYMBOLIC PREFETCHING

Our approach to distributed transactional memory creates a
new opportunity to safely speculatively prefetch and cache
remote objects without concern for memory coherency — the
commit process ensures that transactions only access the latest
object versions. Many traditional address-based prefetching
approaches were primarily designed to hide the latency of
accessing local memory — such prefetching incurs large
latencies when accessing linked data structures because the
computation must wait to compute an object’s address before
prefetching the object. For linked data structures, this requires
waiting for a round-trip communication for each object to be
prefetched.

We introduce a new approach to prefetching objects in the
distributed environment that leverages the computational capa-
bilities of the remote processors. Our approach communicates
symbolic expressions that describe paths through the heap that
traverse the objects to be prefetched. We next describe the
runtime mechanism that enables our implementation to effi-
ciently prefetch complex linked-data structures from remote
machines.

5.1 Runtime Mechanism
Symbolic prefetch expressions have the form:
prefetch expression := base object identifier(.field[i0..i1] |
.arrayexpr)∗ where arrayexpr := array[j0..j1, stride] |
arrayexpr [j0..j1, stride]. The base object identifier component
of the symbolic prefetch gives the object identifier of the first
object in the path. The list of fields and arrays describe a path
through heap from the first object. Each field contains two
indices i0 and i1 that specify to traverse the field between
i0 and i1 times. An n-dimensional array contain n triples
consisting of indices j0 and j1 and a stride; a triple specifies
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that the path traverses the range of indices between j0 through
j1 with the given stride.

We next consider the following example code segment:

1 L i n k e d L i s t s e a r c h ( O b j e c t key ) {
2 f o r ( L i n k e d L i s t p t r =head ; p t r != n u l l&&
3 ! p t r . key . e q u a l s ( key ) )
4 p t r = p t r . n e x t ;
5 re turn p t r ;
6 }

Without prefetching, completely searching a remote linked
list of length n requires n consecutive round-trip mes-
sage exchanges. If we add a prefetch for the expression
ptr.next[1..5, 1].key after line 1, the runtime will have
prefetch requests in flight for the next linked list node and the
subsequent four nodes that follow that node along with their
associated key objects. The example symbolic prefetch enables
the search method to potentially execute ten times faster by
prefetching five LinkedList objects and their correspond-
ing keys in a single round trip. Longer symbolic expressions
can further increase the potential speedup. Note that while
prefetching objects for five loop iterations ahead may not
be sufficient to hide all of the latency of accessing remote
objects, the latency of the single round-trip communication is
now divided over the ten objects that have prefetch requests
in flight. Therefore, accessing each object incurs an effective
latency of only 10% of the actual network latency.

Our symbolic expression implementation contains the fol-
lowing key components:

1) Prefetch Calls: Prefetching begins with a prefetch call
from the application. Our implementation supports issu-
ing several symbolic expression prefetches with a single
prefetch call. The prefetch takes as input the number
of symbolic expression prefetches, the length of each
prefetch, and an array of 16-bit unsigned integers that
stores a sequence of the combination of field offsets and
array indices. The runtime system differentiates between
field offsets and array indices based on the type of the
previous object in the path. The prefetch method places
the prefetch request in the prefetch queue and returns
immediately to the caller. A thread in the local runtime
processes prefetch requests from the queue.

2) Local Processing: In many cases, the local distributed
heap and object cache may already contain many of the
objects in the prefetch request. The runtime system next
processes as much of the prefetch request as possible lo-
cally before sending the request to the remote machines.
The local processing starts by looking up the object
identifier component of the prefetch request in both the
local distributed heap and the object cache. If the object
is found locally, the local runtime system uses the field
offset (or array index) to look up the object identifier of
the next object in the path and remove the first offset
value from the symbolic expression. The runtime repeats
this procedure to process the components of the prefetch
request that are available locally. The runtime then
prunes the local component from the prefetch request
to generate a new prefetch request with the first non-
locally available object as its base.

3) Sorting and Combining: The runtime finally groups
the prefetch requests by the base object identifier’s
authoritative machine. We note that it may become
apparent at runtime that a prefetch request is redundant.
Consider the two prefetch requests a.f.g and b.f.g.h. If
at runtime both the expressions a and b reference the
same object, the set of objects described by the prefetch
request a.f.g is a subset of the set of objects described
by the prefetch request b.f.g.h. When the runtime adds
a new request to a group, if a request is subsumed by a
second request the runtime drops the subsumed request.

4) Transmitting Request: The local machine next sends
the prefetch requests to the remote machines. Each re-
quest contains the machine identifier that should receive
the response.

5) Remote Processing: When the remote machine receives
a prefetch request it begins with the object identifier. It
processes an object identifier by looking up the object
identifier first in its local distributed heap and then
(optionally) if necessary in its object cache. Once it
locates the object, it looks up the next object identifier
by using the field offset or array index from the prefetch
expression. It repeats this process until either it has
served the complete request or it cannot locate a local
copy of the object. It sends copies of the objects to the
machine that originally initiated the prefetch request.
If the remote machine does not have a copy of an object
specified by the symbolic prefetch, it then forwards
any remaining part of the prefetch request to the next
machine with the machine identifier for the machine that
made the original request.3

6) Receiving Response: When the local machine receives
a response message, it adds the copies of the objects
from the response message to its local object cache.

6 EVALUATION

We ran our benchmarks on a cluster of 8 identical 3.06
GHz Intel Xeon servers running Linux version 2.6.25 and
connected with gigabit Ethernet. We have implemented the dis-
tributed transactional memory, symbolic prefetching, and the
language extensions. We present results for three distributed
benchmarks, five scientific benchmarks, and microbench-
marks. For all benchmarks we insert symbolic prefetches
where needed. Our implementation contains over 72,000
lines of C and Java code and is available for download at
http://demsky.eecs.uci.edu/software.php. We
report results for: base, transactional versions without caching
or prefetching; caching, transactional versions with caching
enabled; and prefetch, transactional versions with both caching
and prefetching enabled. For the scientific benchmarks, we
report results for 1J, single-threaded non-transactional Java
implementations compiled into C code. For the distributed
benchmarks, we report results for Java for 1, 2, 4 and 8 threads
that are hand-developed, non-transactional distributed versions
compiled into C code. We report numbers in seconds that are

3. We need to forward because after a machine processes the prefetch
request, it could contain references to still more remote objects.
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averaged over ten executions for 1, 2, 4, and 8 nodes with one
thread running per node.

6.1 Distributed Spam Filter
The distributed spam filter benchmark is a collaborative spam
filter that identifies spam using user feedback. It is based
on the Spamato spam filter project and contains 2,639 lines
of code [5]. In the original version, a collection of spam
filters communicates information to a centralized server. Our
implementation replaces the centralized server with distributed
data structures.

Spam Filter Base Caching Prefetch
1 1.52s — —
2 12.77s 4.16s 2.85s
4 16.88s 5.02s 3.90s
8 21.53s 6.57s 5.29s

Fig. 6. Spam Filter Results

When the spam filter receives an email, it calculates a set
of MD5-hash based signatures for that message. It generates
Ephemeral hash-based signatures for the text parts of a mes-
sage and Whiplash URL-based signatures for the URLs in the
message. It then looks up those signatures in a distributed
hash table that maps a signature to the associated spam
statistics. The spam statistics are generated from collaborative
user feedback. The spam filter uses those statistics to estimate
whether an email is spam. If the user corrects the spam filter’s
categorization of an email, it updates the spam statistics for
all of the signatures in that email.

Our workload emails are automatically generated from a
large corpus that includes spam words. Each email in the
automatically generated set is pre-identified as spam or legiti-
mate based on whether it includes text from the spam corpus.
Figure 6 presents the results for the distributed spam filter
benchmark. Our workload presents each spam filter client with
1,000 emails to simulate real deployments. In each iteration,
the synthetic workload randomly picks an email and presents
it to the spam filter. The workload then corrects the spam filter
using the emails pre-identification. The correction is noisy to
simulate user errors — with a small probability the workload
will tell the spam filter the wrong identification.

Our workload holds the work constant per client machine.
As a result the total amount of work increases as we add more
clients resulting in an increase in execution time as shown in
Figure 6. There are two primary causes of this increase: (1)
the hash table is more likely to contain the hash signature
and therefore lookups access more objects and (2) a larger
percentage of the objects are remote. We show the results for
caching here so readers may quantify the benefits of caching
verses prefetching. We see 4.07× speedup for our 8-threaded
prefetching version relative to the 8-threaded base version and
1.24× speedup for our 8-threaded prefetching version relative
to the caching version. Caching hides 79% of the remote
reads for the 8-threaded version. Prefetching then hides 75%
of the remaining remote reads for the 8-threaded version. We
observe a benefit of up to 307% due to prefetching and caching

relative to our base version. Figure 9 presents the abort rate
for transactions running on multiple clients for this benchmark.
Up to 10% of transactions abort due to conflicts. We do not
have a Java version of this benchmark to compare to.

6.2 Distributed Multiplayer Game

The multiplayer game benchmark is an interactive game where
players play the roles of tree planters and lumberjacks. The
base version contains 1,416 lines of code. Each client connects
to the server hosting the game map. A player can either be
a planter or a lumberjack. The planters are responsible for
planting trees in a block of land while lumberjacks cut trees.
Both the planters and lumberjack choose a location in the
map to either plant a tree or cut one down while taking the
shortest path to the destination. The clients use the A* graph
search algorithm to plan routes. The game is played in rounds
and in each round, the player either plants a tree, cuts a tree,
or moves one step on the map. There is contention in this
benchmark: players change the map by planting or removing
trees. If a player accessed the part of the map updated by
another player, the distributed transactional memory version
aborts the transaction surrounding that move. The reference
Java version only recomputes a player’s move if a change
made by a second player makes the first player’s move illegal.

Figure 7 presents results for the multiplayer gaming bench-
mark. The game is played on a map of size 400×100 for
512 rounds. Like the previous benchmark we held the work
constant per client machine and therefore the total amount of
work increases as we add more clients. For this benchmark,
perfect scaling occurs when the execution time holds constant
as the number of machines increases.

Multiplayer Game Java Base Caching Prefetch
1 46.78s 7.74s — —
2 51.99s 9.59s 9.48s 9.12s
4 71.54s 11.79s 10.95s 10.60s
8 97.22s 16.09s 13.69s 13.39s

Fig. 7. Multiplayer Game Results

Our base version is faster than the Java version because
of the way the A* algorithm accesses the map. In the Java
version, the server sends the map at the beginning of each
round to make the search algorithm code manageable. The
distributed transactional memory version only transfers the
small parts of the map that the A* algorithm actually needs.
We see a 7.26× speedup for our 8-threaded prefetching version
relative to the 8-threaded Java version. Caching hides 71%
of the remote reads for the 8-threaded version. Prefetching
then hides 22% of the remaining remote reads for the 8-
threaded version. We observe a benefit of up to 20% relative
to the base version from prefetching and caching relative to
our base version. Prefetching provides little benefits beyond
caching because caching eliminates most of the remote object
accesses. Figure 9 presents the abort rate for transactions
running on multiple clients. Up to 3% of transactions abort
due to conflicts.
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6.3 Distributed Lookup
The Distributed Lookup benchmark provides an object-based
lookup service. The base version contains 311 lines of code.
In this model the objects are stored in a shared hash map.
Clients perform search on the shared hash map and occa-
sionally update the key-value pairs in the hash table. A client
randomly generates the keys for searching. We perform 1,000
transactions on each client where each transaction performs 10
lookup or update operations with a 4% probability of updating
a key-value pair. The initial capacity of the shared hash table
is 100 keys. The number of entries in the table increase as
remote transactions begin to update the table.

Figure 8 presents results for the LookUp service benchmark.
Note that the number of lookups per client machine is held
constant and the total amount of work performed increases as
we add more machines. Therefore, for this benchmark perfect
scaling occurs when the times stay constant. We see a 1.77×
or 77% speedup for our 8-threaded caching version relative to
the 8-threaded Java version. Caching hides 94% of the remote
reads for the 8-threaded version eliminating nearly all remote
reads. Prefetching then hides 3% of the remaining remote
reads for the 8-threaded version. Because caching eliminates
nearly all of the remote reads, we observe no benefit from
prefetching relative to caching. We observe a benefit of up to
435% due to caching relative to our base version. Figure 9
presents the abort rate for transactions running on multiple
clients. Up to 11% of transactions abort due to conflicts.

LookUpService Java Base Caching Prefetch
1 2.89s 0.52s — —
2 3.75s 6.21s 1.16s 1.27s
4 3.85s 7.09s 1.45s 1.59s
8 4.18s 9.26s 2.36s 2.56s

Fig. 8. LookUpService Results

6.4 Scientific Benchmarks
Our scientific benchmarks are shared memory parallel bench-
marks that have less data contention. Figure 10 presents the
results for all of the scientific benchmarks. Note that caching
provides no benefit for the scientific benchmarks as different
transactions rarely access the same data and the transaction
cache already caches multiple uses by the same transaction.
We note that as these benchmarks were ported from scien-
tific benchmark suites, they use barriers to separate memory
accesses that could potentially cause transactions in different
threads to conflict. The transactional memory mechanism is
still valuable in this context as it allows our system to correctly
speculate that cached copies of objects can be used instead
of incurring the overhead to read remote objects. We note
that even in the absence of contention that transactions do
occasionally abort due to delays in receiving or processing
cache invalidation messages.

2D Convolution The 2D Convolution benchmark computes
the application of a mask to a 2D image. The base version
contains 988 lines of code. The output and input matrices are

shared objects in our experiment with size of 10,000×1,000.
We use a Gaussian convolution mask of size 13×13 for
our experiments. We inserted a manual prefetch for the first
32 input and output image objects before the beginning of
convolution computation. A manual prefetch in the out loop
prefetches batches of 32 objects every 32nd iteration. We find
that our 8-threaded prefetching version provides a speedup
of 5.55× over the single-threaded Java version. Prefetching
hides 99.8% of the remote reads for the 8-threaded version
while caching eliminates only 0.1% of the remote reads. We
observe a benefit of up to 7% due to prefetching relative to our
base version because this benchmark accesses a small number
of remote objects.

Matrix Multiply The matrix multiplication benchmark imple-
ments the standard matrix multiplication algorithm for matrix
A and matrix B to get the product matrix C. Our benchmark
computes fifty 650 × 650 product matrices. The computation
of the product matrix is partitioned over multiple threads. We
insert manual prefetches to obtain the entire matrix B for the
first 8 matrices followed by the first 16 one-dimensional arrays
from the matrices A and C. Inside the main loop, we inserted
manual prefetches that obtain the remaining one-dimensional
arrays from the matrices A and C in batches of 16. We observe
that our 8-threaded prefetching version provides a speedup
of 5.14× over the single-threaded Java version. Prefetching
hides 90% of the remote reads for the 8-threaded version while
caching alone eliminates only 0.05% of the remote reads. We
observe a benefit of up to 44% due to prefetching relative to
our base version.

2DFFT The 2DFFT benchmark is a two-dimensional fast
Fourier transformation. The base version contains 821
lines of code. The algorithm was taken from Digital Signal
Processing by Lyon and Rao. We set the matrix dimensions to
1,500×1,500 and we compute the fast Fourier transformation
for five matrices. The computation performs a set of 1D
fast Fourier transforms in parallel, a serial transpose, and
then a second set of 1D fast Fourier transforms in parallel.
We inserted a prefetch for the first 16 real and imaginary
objects in the complex number array. The loop contains a
second prefetch for a batch of 16 objects every 16th iteration
before the 1D fast Fourier transforms. We observe that our
8-threaded prefetching version provides a speedup of 2.10×
over the single-threaded Java version. The speedup was
limited as the transpose operation is performed serially and
the benchmark requires moving a large amount of data across
the network relative to the amount of computation that is
performed. Prefetching hides 97% of the remote reads for the
8-threaded version while caching alone eliminates only 0.3%
of the remote reads. We observe a benefit of up to 10% due
to prefetching relative to our base version.

Molecular Dynamics Moldyn, a molecular dynamics bench-
mark, was taken from the Java Grande benchmark suite [6].
The base version contains 1,172 lines of code. It is a N-
body simulation of particles interacting under a Lennard-Jones
potential in a cubic spatial volume with periodic boundary
conditions. We used 8,788 particles and 50 iterations. This
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Spam Filter Game SOR LookUp
Thds Base Prefetch Base Prefetch Base Prefetch Base Prefetch

2 4.45% 7.05% 0.19% 0.19% 0.00% 0.00% 0.00% 0.00%
4 7.90% 8.54% 0.19% 0.19% 0.49% 0.49% 2.52% 4.66%
8 9.37% 9.48% 2.46% 0.96% 0.73% 0.73% 7.90% 11.40%

Fig. 9. Abort rate

2D Conv Matrix Multiply 2DFFT Moldyn SOR
Base Cache P Base Cache P Base Cache P Base Cache P Base Cache P

1J 34.20s — — 96.00s — — 16.29s — — 103.10s — — 239.05s — —
1 36.76s — — 96.88s — — 23.63s — — 113.91s — — 678.35 — —
2 21.01s 21.15s 19.71s 58.37s 62.31s 51.65s 16.31s 16.65s 14.44s 69.71s 71.16s 69.04s 347.52s 346.50s 345.35s
4 11.32s 11.39s 10.65s 39.18s 35.85s 28.93s 10.91s 11.25s 9.54s 34.82s 33.05s 32.93s 186.44s 185.60s 185.28s
8 6.52s 6.53s 6.16s 26.81s 23.69s 18.66s 8.49s 8.37s 7.75s 19.99s 19.36s 19.23s 105.93s 104.39s 104.56s

Fig. 10. Scientific Benchmark Results (P = Prefetch)

benchmark contains very limited opportunities for prefetching.
We only prefetch shared elements for particle generation at
the beginning before the molecular dynamics simulation starts.
We observe that our 8-threaded prefetching version provides
a speedup of 5.36× over the single-threaded Java version.
Caching hides 73% of the remote reads for the 8-threaded
version while prefetching hides only 1.3% of the remaining
remote reads.

SOR The SOR benchmark was taken from the Java Grande
benchmark suite [6]. The base version contains 680 lines
of code. It performs 200 iterations of an over-relaxation
algorithm on a 8,000×8,000 grid. We observe that the 8-
threaded prefetching version provides a speedup of 2.29× over
the single-threaded Java version. The one machine distributed
transactional version is slower than the single-threaded Java
version because each node must locally copy many large array
objects to implement transactions. This large overhead means
that although the benchmark scales extremely well, the 8-
threaded version is only a little over two times faster than the
single-threaded Java version, Figure 9 presents the abort rate
for transactions running on multiple nodes. Prefetching and
caching yield no performance benefits because this benchmark
accesses a small number of remote objects. Caching hides
78% of the remote reads for the 8-threaded version while
prefetching does not hide any additional remote reads.
Figure 11 presents the speedups for all scientific benchmarks
relative to single-threaded Java version.

6.5 Microbenchmarks
We present results from a three-dimensional array traver-
sal microbenchmark to measure the performance gains from
prefetching objects for regular access patterns over short
runs. The array microbenchmark sums all of the elements
in a 100x4,000x10 three dimensional array of integers that
is located on a remote machine. Without prefetching the
benchmark takes 43.40 seconds and with prefetching it takes
1.41 seconds. Prefetching improves the performance of the
array microbenchmark by a factor of 30.78×.

The second microbenchmark traverses a remote linked
list with 1,000,000 nodes. Prefetching improves the perfor-
mance of this benchmark by 27.07×. The microbenchmarks
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Fig. 11. Scientific Benchmark Speedups (Higher is Bet-
ter)

were only intended to quantify the possible contributions of
prefetching.

6.6 Commit Intensive Microbenchmarks

Figure 12 presents the result of four microbenchmarks that
evaluate the overhead of committing 10,000 transactions in
the absence of data contention. We executed each of the
benchmarks with 1, 2, 4, and 8 nodes in the system. In
the 1Read benchmark, one node commits 10,000 transactions
and each transaction reads a shared object from each node
in the system. MultiRead implements the same computation,
but every node in the system executes the transactions. The
microbenchmarks 1Write and MultiWrite perform the same
basic computation, but write to the objects instead of reading
from them. As the round trip network latency for our testbed is
on the order of 100 microseconds, the microbenchmark results
show that the overhead to commit transactions that involve a
small number of machines is on the order of a single network
round trip.
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1Read MultiRead 1Write MultiWrite
1 0.65s 0.66s 0.86s 0.86s
2 1.71s 2.46s 1.99s 2.74s
4 1.99s 3.08s 2.29s 3.73s
8 2.50s 4.68s 2.75s 6.22s

Fig. 12. Commit Microbenchmark Results
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6.7 Discussion

The Java versions of the Lookup and Game benchmarks
contain 355 and 1,873 lines of code, respectively. The Java
versions of Lookup and Game contain 10% and 32% more
lines of code, respectively, than the base version. If a developer
wished to take advantage of prefetching and caching in Java,
the developer would need to write complicated code to manage
prefetching and caching of objects. Developers get these
benefits for free in our system.

Figure 13 presents the hit percentage in the cache for the
prefetching versions of the benchmarks. We hit in the cache
more than 80% of the time for most benchmarks showing that
prefetching and caching can hide the latency of most remote
object accesses.

Figures 14 and 15 present the numbers for remote reads
averaged over all machines participating in the running the
transactions per benchmark. The base version shows the
number of remote reads without prefetching or caching, The
cache version shows the number of remote reads with only
caching enabled and prefetch version shows the number of
remote reads with prefetching and caching enabled. We can
use the round trip latency of our system along with the
number of eliminated remote reads to predict the speedups
from caching and prefetching. In general, our results show that
our techniques are able to eliminate most of the latency for
our benchmarks. Several benchmarks perform very few remote
reads, and therefore the absolute performance gains achieved
by eliminating these remote reads remain small. We note that
in some cases, we achieve larger speedups than predicted.
Reading a large object requires waiting for both the network
latency and the transfer time for the object. Prefetching in this

case also hide the transfer time of the objects.
We found that writing manual prefetches is straightforward

and works well for benchmarks that access data in a pre-
dictable order. A developer simply write prefetch annotations
to obtain data in batches without having to reason about the
details of implementing prefetching.

Our system is not without limitations. Benchmarks that
perform relatively little computation compared to the amount
of data exchanged over the network are poor choices for our
system unless they must be distributed for some other reason.
Small problem sizes can yield relatively poor performance as
the communication overheads dominate the performance. We
expect our approach to be primarily useful for long running
computations that need the computational resources of many
machines or applications that are inherently distributed in
nature.

7 RELATED WORK

We survey related work in distributed shared memory systems,
software transaction memory systems, distributed transactional
memory systems, and prefetching optimizations.

7.1 Distributed Shared Memory Systems
The IVY shared memory system allows multiple data struc-
tures copies to exist to decrease the overhead of reading remote
data [7]. The complication with this approach is ensuring that
all the copies are consistent after memory writes. IVY uses a
write-invalidate protocol that invalidates all copies before writ-
ing to a page, and therefore the required round-trip communi-
cations make writes to shared memory potentially expensive.
To address this issue, researchers have developed more sophis-
ticated approaches including TreadMarks [8], Midway [9], and
Munin [10] that achieve higher performance by weakening
the memory consistency guarantees [11], [12]. Developing
software for weaker memory models requires understanding
complicated consistency properties to know which values a
read from a memory location can return.

7.2 Transactional Memory
Knight proposed a hardware transactional memory that sup-
ported a single store operation [13]. Herlihy and Moss ex-
tended this work to support short transactions that write to
multiple memory locations [14]. More recent approaches have
relaxed the constraints on the transaction size [15], [16]. Shavit
and Touitou first proposed a software approach to transactional
memory for transactions whose data set can be statically
determined [17]. Herlihy et al. extend the software approaches
to handle dynamic transactions whose accesses are determined
at runtime [18].

7.3 Distributed Transactional Memory
Researchers have explored distributed transactional memory
as a mechanism to provide stronger consistency properties.
Bodorik et al. developed a hardware-assisted lock-based ap-
proach, in which transactions must hold a lock on a memory
location before accessing that location [19]. Hastings extended
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Thds Spam Filter Lookup Game
Base Cache Prefetch Base Cache Prefetch Base Cache Prefetch

2 88319 17481 1548 48870 682 482 10335 3312 3262
4 101556 20742 3450 53946 1869 1729 11838 3115 2617
8 107130 22533 5634 58391 3473 3359 13310 3860 3025

Fig. 14. Remote Read Results - Distributed Benchmarks

Thds 2DConv MolDyn Matrix Multiply SOR 2DFFT
Base Cache Prefetch Base Cache Prefetch Base Cache Prefetch Base Cache Prefetch Base Cache Prefetch

2 10019 10016 4 1740 467 461 32736 32676 127 1205 202 202 15029 15014 97
4 5019 5016 4 1740 467 461 36936 36906 3030 1278 270 270 7529 7513 94
8 2519 2516 5 1740 467 461 35816 35798 3502 1301 289 289 3780 3765 95

Fig. 15. Remote Read Results - Scientific Benchmarks

the Camelot distributed shared memory system to support
transactions through a lock-based approach [20]. Ahn et
al. developed a lock-based distributed transactional memory
system [21]. LOTEC is a lock-based distributed transactional
memory [22]. All of these implementations incur network
latencies when the application code accesses a remote object
because the machine must first communicate to a remote node
to acquire a lock.

DiSTM is a distributed transactional memory system [23].
Its commit process checks whether any running (remote) trans-
actions conflict with the current transaction and therefore may
incur scaling problems. DiSTM implements three algorithms.
In the TCC algorithm, every transaction must send its read
and write sets to every other machine. Therefore, the total
amount of communications to commit transactions scales as
O(N2), where N is the number of machines. In the serialized
lease algorithm, transactions are serialized and must commit
to a master in that order. In the multiple lease algorithm,
a single master machine must evaluate simultaneous leases
for conflicts. Even for computations that scale perfectly, the
underlying DiSTM algorithms do not. DiSTM appears to have
all machines cache all objects and to propagate all updates
to all machines — for large clusters this would become a
scalability limitation and limit the total memory available to
a computation. Another downside of placing all objects on
all machines is that it is not possible to write programs that
carefully arrange shared objects to avoid consuming network
bandwidth.

Anaconda is a distributed transactional memory system that
uses a distributed commit algorithm [24]. It uses a three phase
commit protocol in which locks are first acquired, the transac-
tion is validated against running transactions on other nodes,
and finally it updates the objects. While both approaches use
caching, Anaconda ensures that all cached copies are coherent
while our implementation avoids the overhead of updating
cached copies and may allow cached objects to become stale.

D2STM is a fault-tolerant distributed transactional memory
implementation [25]. D2STM replicates objects to provide
fault tolerance. D2STM is a non-voting based transactional
memory approach that uses atomic broadcast to ensure that all
nodes see the transaction commit requests in the same order.
A transaction’s read set is encoded as a bloom filter and is
validated against transactions that have committed since the

committing transaction began. There may be some scalability
issues as all nodes process all transaction updates.

Manassiev et al. introduced a version-based distributed
transactional memory that replicates all program state on all
machines [26]. Their approach is likely to have problems
scaling to a large number of machines even if the underlying
computation is highly parallel because all writes must be sent
to all nodes and all nodes must agree to all transaction com-
mits. Sinfonia is a system that allows machines to share data in
a fault-tolerant, scalable, and consistent manner. This service
uses mini-transactions to manage distributed state [27]. Mini-
transactions piggyback all transaction communications on the
commit message. Mini-transactions trade off expressiveness
for reduced communication overhead — for example, a single
mini-transaction cannot read a value and then write that value
to a different location. Our system provides a more general
programming model — transactions can immediately use the
values they read and can perform sequences of operations that
require more than one round of communications. Sinfonia does
not provide support for caching or prefetching, but is able to
commit the restricted mini-transactions using only one round
of communications.

Bocchino et al. have developed Cluster-STM, a word-
based software transaction memory system [28]. Their work
enumerates and explores a range of transactional memory im-
plementation strategies. They mention but did not implement a
distributed transactional memory that uses the read versioning,
late acquire, and write buffering approach that our system
uses. Relative to Cluster-STM, our system uses speculative
caching and prefetching to hide the latency of remote data
accesses. Herlihy and Sun proposed a distributed transaction
memory for metric-space networks [29]. Their design requires
moving objects to the local node before writing to the object.
Because these approaches do not contain mechanisms to cache
or prefetch remote objects, latency may be an issue. Zhang and
Ravindran propose the Relay cache coherence protocol [30].
Their approach defines a cache coherence protocol that moves
objects to support distributed transactional memory.

7.4 Prefetching and Caching

Researchers have developed techniques for prefetching recur-
sive data structures in a single machine. Luk and Mowry pro-
posed to greedily prefetch object fields, to automatically add
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prefetch pointers to objects that point to objects to prefetch,
and to linearize recursive data structures when possible [31].
Greedy prefetches require first knowing the address of the
object. Prefetch pointers do not help with the initial traversal of
a data structure and may be difficult to maintain in a distributed
environment. Linearizing is only applicable if the creation
order is the same as the traversal order. Cahoon and McKinley
proposed a dataflow analysis for software prefetching [32].
Roth et al. propose a hardware-based approach to prefetching
linked data structures that hides the latency of accessing linked
data structures in useful work [33]. However, in distributed
shared memories the latency of accessing remote memory is
likely to be much longer than the time that can be filled with
useful work.

Researchers have explored communication optimizations for
distributed computations. Zhu and Hendren implemented an
approach to combine multiple reads into a single block [34].
Because their approach requires that the address of the mem-
ory locations to be read is known, it at least incurs the
round-trip network latency for accessing each object in a
linked data structure traversal. Rogers et al. propose thread
migration to improve the performance of accessing remote
data structures [35]. An issue with thread migration is that it
is not efficient for code that simultaneously operates on data
that spans multiple machines.

Gupta proposes a naming scheme for objects in data struc-
tures to enable fast traversals of remote data structures [36].
The approach places constraints on data structure updates —
only a single node can be added to a data structure at a time.
Moreover, many changes to data structures require renaming
all of the objects in the data structure and propagating the
names changes to all machines.

Speight uses a dynamic prediction-based prefetching algo-
rithm for software distributed shared memory [37]. Joseph
and Grunwald use Markov predictors to generate prefetches
on a single machine environment [38]. Ferdman and Falsafi
store access sequences and then stream the addresses from
those access sequences [39]. The transaction component of
our work is complementary to dynamic prefetching— our
work relaxes constraints on coherency to enable prefetch
algorithms to function better and could potentially benefit from
dynamic prefetch predictors. The two prefetching approaches
may be complementary — we expect that our approach will
work better for deterministic access patterns and that dynamic
predictors may work better for less deterministic patterns that
are repeated.

Distributed databases have used a wide range of caching
strategies to efficiently implement transactions [40]. We be-
lieve our implementation is the first distributed transactional
memory to use optimized cache coherence without requiring
that all updates be forwarded to all machines.

8 CONCLUSION
We have presented a new distributed transactional memory
system with support for object caching and prefetching. We
have presented a new symbolic expression-based prefetching
algorithm that is the only prefetching algorithm to our knowl-
edge that can prefetch objects before the object’s address is

computed or predicted. We have implemented the language
extensions and the distributed shared memory system in our
compiler. We observe both significant speedups for our bench-
marks. Prefetching is able to hide most of latency of accessing
remote objects for our benchmarks.
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