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Abstract— We present Bristlecone, a programming language
for robust software systems. Bristlecone applications have two
components: a high-level organization specification that describes
how the application’s conceptual operations interact, and a low-
level operational specification that describes the sequence of
instructions that comprise an individual conceptual operation.
Bristlecone uses the high-level organization specification to re-
cover the software system from an error to a consistent state and
to reason how to safely continue the software system’s execution
after the error.

We have implemented a compiler and runtime for Bristlecone.
We have evaluated this implementation on three benchmark
applications: a web crawler, a web server, and a multi-room
chat server. We developed both a Bristlecone version and a Java
version of each benchmark application. We used injected failures
to evaluate the robustness of each version of the application. We
found that the Bristlecone versions of the benchmark applications
more successfully survived the injected failures.

The Bristlecone compiler contains a static analysis that op-
erates on the organization specification to generate a set of
diagrams that graphically present the task interactions in the
application. We have used the analysis to help understand the
high-level structure of three Bristlecone applications: a game
server, a web server, and a chat server.

Index Terms— Software Robustness

I. INTRODUCTION

Software faults pose a significant challenge to developing
reliable, robust software systems. The current approach to
addressing software faults is to work hard to minimize the
number of software faults through development processes,
automated tools, and testing. While minimizing the number
of software faults is a critical component in the development
process for reliable software, it is not sufficient: the faults that
inevitably slip through the development and testing processes
will still cause deployed systems to fail.

The Lucent SESS telephone switch, the Ericsson AXD301
ATM switch, and the IBM MVS operating system are ex-
amples of critical systems that use recovery routines to au-
tomatically recover from software failures [24], [33]. The
software in these systems contains a set of manually coded
recovery procedures that detect errors and then take actions
to automatically recover from the errors. The reported results
indicate that the recover routines can provide an order of
magnitude increase in the reliability of these systems [22].
This additional reliability comes at a significant additional
development cost — the recovery routines for the Lucent SESS
telephone switch constitute more than 50% of the switch’s
software [7]. As a result of these high costs, recovery proce-
dures have been primarily relegated to the domain of critical

infrastructure software that can justify the cost. A wide range
of other applications including desktop applications such as
web browsers, office applications, games, servers, and control
systems could potentially benefit from lower-cost automated
recovery. The goal of Bristlecone is to provide a lower-cost
approach to software recovery that will enable a larger class
of applications to benefit from this technique.

A. Bristlecone Language

The key inspiration for this research is the observation that
many software errors propagate through software systems to
cause further damage either through data structure corruption
or control-flow—induced coupling between conceptual oper-
ations (i.e. high-level application operations). We can view
software systems as a composition of many conceptual opera-
tions — in practice, the correct execution of any operation is
likely to be independent of most other operations. However,
many traditional programming languages force developers to
linearize the conceptual operations in a software system. This
linearization tightly couples these conceptual operations: if one
conceptual operation fails, it becomes unclear how to safely
execute any future conceptual operations.

We have developed Bristlecone, a programming language
for robust software systems, to address the error propagation
problem. Bristlecone extends a core Java-like, object-oriented
language' with a set of task-based extensions. The basic idea is
to construct software systems as a set of decoupled tasks with
each task encapsulating one of the conceptual operations that
comprise the application. A set of specifications describe how
these decoupled tasks interact. The runtime uses these task
specifications to determine when to invoke tasks. The runtime
checks for data structure consistency violations and monitors
for illegal operations (such as illegal memory accesses or
arithmetic errors) to detect software errors. When the runtime
detects an error in the execution, the runtime rolls back the data
structures to their state at the beginning of the task’s execution,
and then uses the task specifications to adapt the execution of
the software system to avoid re-executing the same error and
make forward progress.

Figure 1 gives an overview of the components in the
Bristlecone system. Bristlecone applications are comprised of
a set of tasks. Tasks are represented in Figure 1 as rectangles.
A set of task specifications describe how the runtime should
orchestrate the execution of the individual tasks that comprise

IBristlecone excludes several Java features such as threading, globals
variables, and reflection.



an application. Moreover, if a task fails, the runtime uses the
task specifications to reason how to adapt the future execution
of the software system so that the execution does not depend
on the failed task.
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Fig. 1. Overview of the Bristlecone System
Bristlecone contains the following components (represented
by rounded boxes in the figure):

« Bristlecone Compiler: The Bristlecone compiler com-
piles the tasks and task specifications into C code. We
chose to target C because it frees us from implementing
the low-level details of targetting machine code such
as instruction selection while still retaining most of the
flexibility. This flexibility has proven useful to efficiently
support roll back of data structures. Our implementation
then uses the gcc C compiler to generate executables.
The ellipse labeled Compiled Tasks represents the
compiled tasks.

o Runtime: The runtime uses the compiled code and
compiled specifications (represented by the ellipses in the
figure) to execute the software system. If the runtime
detects a software error, it aborts the task’s enclosing
transaction to recover consistent data structures. Finally, it
uses the task specifications to determine when to execute
the tasks and how to recover from errors.

B. Scope

Bristlecone is not suitable for all software systems. Certain
computations, such as some scientific simulations, are inher-
ently tightly coupled. While Bristlecone may detect errors in
such software systems, it is unlikely to enable these systems
to recover in any meaningful way. For other computations, it
may be desirable for a software system to shut down rather
than deviate from a specific designed behavior or produce a
partial result.

Bristlecone is designed for software systems that place a
premium on continued execution and that can tolerate some
degradation from a specific designed behavior. For exam-
ple, we expect that Bristlecone will be useful for financial
server software, e-commerce systems, office applications, web
browsers, online game servers, sensor networks, and control

systems for physical phenomena. For applications like finance,
Bristlecone can be used to develop software systems that only
process error-free transactions and back out all changes that
corrupt data structures, while still ensuring that cosmetic errors
do not cause potentially expensive downtime. Ultimately, the
software developer must decide whether using this approach
is reasonable for a given software system.

This decision could depend on the environment in which a
system is deployed. For example, in systems with redundant
backup systems, we expect that developers would design the
primary system to fail-fast and the backup system to be robust
in the presence of errors.

Bristlecone can only generate meaningful recovery for com-
putations that contain multiple independent subcomputations.
Examples of ideal applications include applications that react
to many independent inputs, interactive office applications that
react to many user requests, servers that service independent
requests, and games that contain multiple independent actors.
Bristlecone is unlikely to generate meaningful recovery for
tightly coupled numerical computations in which the output
depends on every operation.

Bristlecone requires developers to identify the high-level
conceptual operations that comprise an application and then
structure the application as a set of tasks that implement these
operations. In some cases it may be difficult to decompose
legacy applications or applications that rely heavily on existing
library code into collections of tasks. It is possible that
expressing certain types of computations as tasks could be
cumbersome — for example, code that contains complex
communications interactions may require large numbers of
tasks to implement.

C. Contributions

This article makes the following contributions:

o Bristlecone Language: It presents a set of extensions
to a core Java-like object oriented language that expose
both the conceptual operations and the ordering and data
dependences between these conceptual operations to the
compiler and runtime system.

o Recovery Strategy: It presents a strategy for repairing
the damage caused by a software error and adapting the
software system’s execution in response to the error to
enable it to safely continue execution.

o Static Analysis of Task Interaction Language: It
presents a static analysis of the task specifications that
extracts a set of reachable abstract object states, the initial
abstract states for any objects that a task allocates, and
a set of transitions between abstract objects states that
model the effects of the tasks.

o Graphical Representations: It presents the two graphi-
cal representations that our tool uses to communicate the
results of the analysis to the developer. The first graphical
representation is the flag state transition diagram, a graph
in which the nodes represent the possible abstracted states
of an object’s flags and tags and the edges represent the
changes the tasks induce on the object’s flags and tags.
This graph is intended to help developers visualize the



interactions between tasks and objects — including both
how tasks affect the states of an object’s flags and tags
and how these changes enable other tasks to operate on
these objects.

The second graphical representation is the task diagram,
a graph in which the nodes represent tasks and the edges
represent whether a second task can be invoked on an
object immediately after the first task exits. This graph
is intended to help the developer understand how objects
flow between tasks.

« Experience: It presents our experience using Bristlecone

to develop three robust software systems: a web crawler,
a web server, and a multi-room chat server. For each
benchmark, we developed both a Bristlecone version
and a Java version. We designed the Java versions to
be resilient: they use threads to tolerate failures. Our
experience indicates that the Bristlecone versions are able
to successfully recover from significantly more of the
injected failures.

It also presents our experience using the static analysis
to help understand three applications: a tic-tac-toe server,
a web server, and a multi-room chat server. For each
benchmark application, we examined both the flag state
transition diagram and the task diagram to understand the
interactions of task in the application.

The remainder of the article is structured as follows. Sec-
tion I presents an example that illustrates our approach.
Section III presents the Bristlecone languages. Section IV
discusses the runtime system. Section V presents a static
task specification analysis. Section VI presents our experience
using Bristlecone to develop several robust software appli-
cations. Section VII describes our experience using the task
specification analysis to explore several Bristlecone applica-
tions. Section VIII compares Bristlecone with related work;
we conclude in Section IX.

II. EXAMPLE

We next present a web server example that illustrates the
operation of Bristlecone. The example uses an event-driven
architecture [35].

A. Objects

The web server uses WebRequest objects to track the
state associated with an individual connection. Figure 2 gives
part of the WebRequest class definition. Bristlecone classes
are similar to Java — Bristlecone classes support standard
object-oriented constructs including inheritance, methods, and
virtual dispatch. The web server example uses instances of the
WebRequest class to manage connections to the web server.

As the example web server executes, the conceptual state
or role of objects in the computation evolves. This evolution
changes the way that the software system uses the object
and can change the functionality that the object supports.
Bristlecone uses flags to track the conceptual state of an
object. The developer declares a flag in a class with the flag
keyword followed by the flag’s name. The runtime then uses
the conceptual state of an object as indicated by the object’s

class WebRequest {
/+ This flag indicates that the WebRequest
object is in its initial state. =*/
flag initialized;

/+ This flag indicates that the system has
received a request to send a requested
file. */

flag file_req;

/* This flag indicates that the connection
should be logged. =/
flag write_log;

Fig. 2. WebRequest Class Declaration

flags to determine which tasks to invoke on the given object.
When a task exits, it can change the values of the flags of its
parameter objects.

The WebRequest class definition declares three flags: the
initialized flag, which indicates whether the connection
is in the initial state; the file_req flag, which indicates
that the server has received a file request from this client
connection; and the write_log flag, which indicates whether
the connection information is available for logging.

In many cases, the developer may need to invoke a task on
multiple objects that are related in some way. For example,
the example web server must ensure that tasks operate on a
Socket object and a WebRequest object from the same
connection. To address this issue, Bristlecone provides a tag
construct, which the developer can use to group objects to-
gether. New tag instances are created using tag allocation state-
ments of the form tag tagname=new tag(tagtype).
Such a tag allocation statement allocates a new tag instance
of type tagtype and assigns the variable tagname to this
tag instance. The developer can tag multiple objects with a
tag instance to group them, and then use that tag instance in
a task specification to ensure that the runtime invokes a task
on objects bound to the same tag.

Bristlecone adds a modified new statement that specifies
the initial flag settings and tag bindings for a newly allocated
object. These take effect when the task exits. Bristlecone
also contains a taskexit statement that specifies how the
task changes the state of the flags or tag bindings of its
parameter objects at that task exit point. The example uses
the connection tag to group a WebRequest object with
the corresponding Socket object that provides the TCP
connection for that web request.

B. Tasks

We next discuss Bristlecone tasks. Each task declaration
consists of the keyword task, the task’s name, the task’s
parameters, and the body of the task. Each task parameter
declaration contains the parameter’s name, the parameter’s
type, a flag guard expression that specifies the state of the
parameter’s flags, and an (optional) tag guard expression that
specifies the tags the object has. The task may be executed



when all of its parameters are available. A parameter is
available if the heap contains an object of the appropriate type,
that object’s flags satisfy the parameter’s guard expression, and
that object contains the tag instances that the parameter’s guard
expression specifies.

The key difference between tasks and methods is that the
runtime manages task invocation — the runtime can invoke a
task when all of its parameter objects are available in the heap.
In other words, Bristlecone’s tasks are implicitly invoked [18]
by the runtime when a set of parameter objects transition
into a state that satisfies the task’s guards. Note that while
the runtime controls task invocation, tasks can call methods.
Bristlecone methods have identical properties as Java methods.

Figure 3 gives the task declarations for the web server
example. We indicate the omission of the Java-like imperative
code inside the task declarations with ellipses. The first task
declaration declares that the task named startup takes
a StartupObject object as a parameter and points the
parameter variable start at this object. The declaration also
contains a guard that states that the StartupObject object
must have its initialstate flag set before the runtime
can invoke this task. The runtime invokes the task when there
exist parameter objects in the heap that satisfy the parameters’
guard expressions. Before exiting, the taskexit statement
in the startup task resets the initialstate flag in
the StartupObject to false to prevent the runtime from
repeatedly invoking the startup task.

Task declarations can contain constraints on tag bindings to
ensure that the parameter objects are related. A tag binding
constraint for a parameter contains the keyword with fol-
lowed by the type of the tag and the tag variable. For example,
the task declaration task readRequest (WebRequest
w in initialized with connection t, Socket
s in IO_Pending with connection t) ensures that
the runtime only invokes the readRequest task on a set
of parameter objects in which the first parameter object is
bound to an instance of a connection tag and the second
parameter object is bound to the same connection tag
instance. When the task executes, the tag variable t is bound
to that connection tag instance.

If multiple objects satisfy a task, the runtime non-
deterministically selects a given parameter object binding
to execute first. We expect that developers will use this
functionality to process independent computations. Similarly,
if a given object satisfies multiple tasks, the runtime non-
deterministically selects a given task to execute first. We
expect developers will use this functionality when operations
can be safely reordered on a given object.

C. Error-Free Execution

Figure 4 gives a diagram of the dependences between
tasks in the web server example. The ellipses in the diagram
represent tasks and the edges represent the control and data de-
pendences between the tasks. The rectangle labeled Runt ime
initialization represents the initialization performed by
the Bristlecone runtime. From this diagram, we can see that
the web server performs the following operations in an error-
free execution (although not necessarily in this order):

/+ This task starts the web server =/
task startup(StartupObject start in
initialstate) {

ServerSocket ss=new ServerSocket (80);
Logger l=new Logger () (initialized:=true);
taskexit (start: initialstate:=false);

}

/+ This task accepts incoming connection
requests and creates a Socket object. x/
task acceptConnection (ServerSocket ss in
pending_socket) {

tag t=new tag(connection);
WebRequest w=new WebRequest (...)

(initialized:=true, add t);
ss.accept (t);

}

/+ This task reads a request from a client. =/

task readRequest (WebRequest w in initialized
with connection t, Socket s in IO_Pending
with connection t) {

if (received_complete_request)
taskexit (w: initialized:=false,
file_reqg:=true, write_log:=true);

}

/+ This task sends the request to the client. */
task sendPage (WebRequest w in file_reqg with
connection t, Socket s with connection t) {

taskexit (w: file_reqg:=false);

}

/* This task logs the request. =*/
task logRequest (WebRequest s in write_log,
Logger 1 in initialized) {

taskexit (s: write_log:=false);
}

Fig. 3. Flag Specifications for Tasks

1) Startup: When a Bristlecone program is executed, the

Bristlecone runtime creates a StartupOb ject object
and then sets its initialstate flag to true. Setting
this flag causes the runtime to invoke the startup task
in our example.
When the runtime invokes the startup task, the
startup task creates a ServerSocket object to
accept incoming connections to the web server. Next, it
creates a Logger object to manage logging web page
requests and sets its initialized flag to indicate
that the object is ready to provide logging function-
ality. Finally, it resets the StartupObject object’s
initialstate flag to false to prevent the runtime
from repeatedly invoking the startup task. Note that
due to the transactional semantics of tasks, changes to
object’s flags take effect when the task ends.

2) Accepting an Incoming Connection: At some point,
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Fig. 4. Task Diagram for the Web Server

the web server will receive an incoming connection re-
quest from a web browser. This causes the runtime to set
the ServerSocket object’s pending_socket flag
to true, which in turn causes the runtime to invoke the
acceptConnection task with this ServerSocket
object as its parameter. The acceptConnection
task creates a WebRequest object to store the
connections state and calls the accept method on
the ServerSocket to create a Socket object to
manage communication with the web browser. Note
that the acceptConnection task creates a new
connection tag instance to group the Socket object
and WebRequest object together by binding this tag
instance to the WebRequest object and then passing
this tag instance into the accept method to bind the
newly created Socket object.

3) Reading a Request: After a connection is established,
the client web browser sends a web page request to the
server. In response to this incoming web page request,
the runtime sets the Socket object’s TO_pending flag
to true?, which in turn causes the runtime to invoke the
readRequest task. The readRequest task checks
whether the server has received the complete request.’
If it has received the complete request, it sets both
the file_req flag and the write_log flag to true
and resets the initialized flag to false. These flag
changes cause the runtime to eventually invoke both the
sendPage and the logRequest tasks and prevents
repeated invocations of the readRequest task on the
same object.

>The TO_pending flag is declared with the external keyword to
indicate that the runtime manages setting and clearing this flag. The current
runtime implementation of Bristlecone is single-threaded and, therefore, uses
non-blocking I/0. Future runtime implementations will support multiple
concurrent tasks and (transactional) blocking I/0O [23].

3Note that it is possible for a client browser to split a long request
across multiple packets and therefore it may be necessary to invoke the
readRequest task multiple times to receive a single request.

Logger {initialized}

4) Sending the Page: The runtime invokes the
sendPage task when the WebRequest object’s
request _processed flag is set to true. The
sendPage task then reads the requested file and
sends the contents of the file to the client browser. The
sendPage task then resets the file_req flag to false
to prevent repeated invocations of the sendPage task.

5) Logging the Request: The runtime invokes the
logRequest task when both the WebRequest ob-
ject’s write_log flag is set to true and the Logger
object’s initialized flag is set to true. The
logRequest task writes a log entry to record which
web page was requested. The 1logRequest task then
resets the write_log flag to false to prevent repeated
invocations of the 1ogRequest task.

D. Error Handling

The Bristlecone runtime uses task specifications to auto-
matically recover from errors. For example, suppose that the
logRequest task fails while updating the Logger object.
If the web server were written in a traditional programming
language, it could be difficult to recover from such a failure.
While some traditional languages provide exceptional handling
mechanisms, using them effectively is challenging — the
developer must both identify which failures are likely to
occur and reason about how to recover from those failures.
Alternatively, the program could simply ignore the failure. Un-
fortunately, if the web server were to simply ignore the failure,
it could easily leave the Logger object in an inconsistent
state, possibly eventually causing a catastrophic failure.

To address this issue Bristlecone tasks have transactional
semantics — upon failure, the Bristlecone runtime aborts the
enclosing transaction to return the affected objects, including
the Logger object, to consistent states. The runtime then
records that the 1ogRequest task failed when invoked on the
specific combination of WebRequest and Logger objects.
The runtime uses this record to avoid re-executing the same
specific failure. At this point, the runtime has returned the web
server to a known consistent state and must now determine
how to safely continue the web server’s execution.

The traditional problem with using transactions to recover
from deterministic software faults is that after aborting a
transaction the software system cannot make forward progress
— retrying the same transaction will cause the system to repeat
the same failure. Bristlecone solves this problem by using the
task specifications to determine which other tasks are safe to
execute after the error. Although the software fault prevents
the system from logging this request, since the file_req flag
is set to true, the task specification for the sendPage task
allows the runtime to invoke the sendPage task. Therefore,
the runtime can still safely serve the web page request.

The end result is that the software system is able to
safely continue to execute even in the presence of software
errors. Bristlecone is able to successfully isolate the effects
of the error to a minimal part of the web server’s execution
— only a single task is aborted and the abort is logged.
Without Bristlecone, the web server could potentially leave



the Logger object in an inconsistent state, possibly causing
the web server to fail to log future requests. If the web server
written in a conventional language was designed to log request
before serving a request, corruption of the log data structure
could even cause the server to stop serving requests.

E. Static Specification Analysis

We next discuss the operation of a static analysis of the
task specifications using the web server example. The static
analysis generates diagrams that can help developers better
understand the possible behaviors of Bristlecone applications.

Tag connection(1)

Flag State Transition Diagram for the WebConnection class

Fig. 5.

1) Flag State Transition Diagrams: Figure 5 presents a
flag state transition diagram for the web server example. Flag
state transition diagrams capture the dependences between
tasks. The nodes in this diagram represent the flag states
of objects and the edges represent transitions between these
flag states that the tasks perform. Each flag state specifies
the truth value assignments for an object’s flags and an
abstraction of the number of tag instances of a given type
bound to the object. The double periphery of the node labeled
Flag initialized, Tag connection (1) indicates
that newly allocated objects can be created with this flag
state. The node’s label indicates that these objects have their
initialized flag set to true and have been tagged with
exactly one connection tag instance. The edges labeled
readRequest from this node model the actions of the
readRequest task on the flag state of objects. The self-
edge labeled readRequest indicates that it is possible for
the readRequest task to leave a WebConnection object
in its initial state. This case occurs if the web server has only
received a partial web page request. The other edge labeled
readRequest indicates that the readRequest task can
cause a WebConnection object to transition from the ini-
tial state into the Flag file_req, Flag write_log,
Tag connection (1) state. This case occurs when the web
server has received the complete web page request.

The diamond shape of the node labeled Tag
connection(1l) indicates that no task can fire on

this object, and therefore, that this object will be garbage
collected unless a live object references it. The elliptical
shapes of the remaining nodes indicate that objects in these
flag states can transition to a garbage collectible state. A
rectangular node would indicate that objects cannot transition
to a garbage collectible state, and therefore can never be

garbage collected.
Task Start Node

Fig. 6. Task Diagram for the WebConnection class

2) Task Diagrams: Figure 6 presents the task diagram for
the web server example. The nodes in this diagram represent
the tasks that operate on the WebConnection object. The
edges model the flow of objects between tasks — there is
an edge from one task to a second task if the first task exits
placing its parameter object in a flag state that can trigger the
second task. From this diagram we can observe that the web
server must first execute the readRequest task before it
can execute either the logRequest or sendPage tasks.

3) Understanding Consequences of Failures: In many
cases, developers may wish to explore the possible conse-
quences of a task failure. This can be useful for deciding
which tasks are more critical than others and, therefore,
should receive more of the limited development resources.
Developers can use the flag transition diagrams to understand
the consequences of task failures. For example, we can observe
from Figure 5 that failures of readRequest task can prevent
both the 1ogRequest and sendPage tasks from executing.
We can also see that the 1logRequest and sendPage tasks
are mutually failure independent — if the execution of one of
these task fails, the runtime system will still execute the other
task by aborting the first task thereby returning to the fork in
the graph and then choosing an alternate path at that fork.

III. LANGUAGE DESIGN

The Bristlecone language includes a task specification lan-
guage that describes how to orchestrate task execution. Bristle-
cone introduces object flags to store the conceptual state of the
object. Each task contains a corresponding task specification
that describes which objects the task operates on, when the



task should execute, and how the task affects the conceptual
state of objects.

flagdecl flag flagname; | external flag flagname;
tagdecl := tagtype tagname;
taskdecl = task name(taskparamlist)

taskparamlist =  taskparamlist, taskparam | taskparam

taskparam type name in flagexp | type name in flagexp
with tagexp
flagexp = flagexp and flagexp | flagexp or flagexp |
flagexp | (flagexp) | flagname | true |
false
tagexp := tagexp and tagtype tagname | tagtype
tagname
statements = ... | taskexit(flagactionlist) |

assert(expression) |

tag fagname = new tag(tagtype) |

new name(params)(flagortagactions)
flagactionlist :=  flagactionlist; name : flagortagactions |

name : flagortagactions

params ... | tag ragname
flagortagactions flagortagactions, flagortagaction |
flagortagaction
flagortagaction Sflagaction | tagaction
flagaction := flagname = boolliteral
tagaction add fagname | clear tagname

Fig. 7. Task Grammar

Bristlecone is an object-oriented, type-safe language with
syntax similar to Java. Figure 7 presents the grammar for
Bristlecone’s task extensions to Java. We omit the Java-like
imperative component of Bristlecone from the grammar to
save space.

The developer may optionally use the external keyword
to specify that the flag is set and reset by the runtime system.
External flags are intended to handle asynchronous events
such as communication over the Internet or mouse clicks.
External flags are intended to be declared in library code with
the corresponding runtime component setting and clearing the
external flag.

Bristlecone contains an assert statement that can be used
to specify correctness properties that must hold. The goal
of assert statements is to provide a mechanism to detect
higher-level errors that do not cause low-level exceptions. The
compiled application uses the assert statements to detect errors
at runtime— if it detects an error, the runtime system will
invoke the recovery algorithm. These assertion statements can
be used with data structure consistency checking tools [16],
JML assertions [29], or design by contract methodologies [32].
In many cases, the assertions can be generated automatically
using dynamic invariant detection tools [17].

A. Design Rationale

An obvious alternative to Bristlecone’s flag construct is a
workflow diagram similar to our flag state transition diagrams.
The primary advantage of Bristlecone’s formulation is that
the developer can create several sets of flags that characterize
orthogonal aspects of an object’s abstract state. The developer
then includes only the flags in a task specification for the
components of an object’s abstract state that concerns that
task. If a task fails, this approach enables tasks that concern
orthogonal aspects of the object’s state to continue to execute.
For example, if a web request exposes an error in the code that
serves the web request, the logging task could still execute.
Bristlecone’s constructs give the developer much freedom —
in some cases a task may depend on multiple aspects of an
object’s state and the corresponding parameter guards can
specify the flags for each relevant aspect.

While it is possible to express the same computation in the
form of a diagram, the diagram must explicitly enumerate all
legal sequences of task invocations. For example, if there are
three independent tasks to be executed on a given object, the
diagram approach requires the developer to enumerate all 6
possible sequences of these three tasks. In cases in which the
diagram representation is more natural, it is straightforward
to build automated tools that translate task diagrams into the
corresponding task specifications.

B. Serial Semantics

This section develops operational semantics for the serial
execution of Bristlecone programs.

1) Domains: Figure 8 introduces the domains used by the
operational semantics. This section develops an operational
semantics that transforms machine configurations C. Each
machine configuration C consist of the global committed
state G, the executing task invocation Z, and the executing
task’s state M. The executing task operates on the task state
component M of the machine configuration. When this task
commits, the flag, tag binding, and heap changes the task made
to the task state M are committed to the global committed
state G.

A tag variable mapping L maps tag variable identifiers to
tag instances. A flag status mapping F maps object flags to
a boolean that indicates whether the flag is set. A tag status
mapping 7 maps objects to the set of tag instances that are
bound to the object. A tag type mapping T maps tag instances
to their tag types. A binding mapping B maps parameter
identifiers to the parameter objects that they reference. A task
invocation Z is composed of a task and a set of bindings for
the task’s parameter objects.

2) Helper Functions: We next define several helper func-
tions that will simplify the presentation of Bristlecone’s oper-
ational semantics. The set flag helper function, given below,
is used to update the FlagStatus F to reflect an operation that
sets or clears the flag f.

set flag(o, f,bool, F) ={(o', f',b) € F o # o' || f # f'} U {(o, f,bool)}



Values = Objects + Primitives

Memory = Objects X Field — Values
TagVariables = Identifier — Taglnstance
FlagStatus = Objects X Flag — Boolean
TagStatus = Objects X TagInstances
InstanceType = Taglnstances — TagTypes
ParameterBinding = Identifier — Objects
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TaskInvocation = Task X ParameterBinding

G € GlobalState = Memory x FlagStatus X TagStatus X
InstanceType X TaskInvocationaiied
M € TaskState = Memory X FlagStatus X TagStatus X
InstanceType X TagVariables X ExecutionState
C € Configuration = GlobalState x TaskInvocationcyrrent X
TaskState
Fig. 8. Domain Definitions

The pair of helper functions settag and cleartag are used
to update the TagStatus 7 to reflect operations that either add
or remove, respectively, a binding between a tag instance and
an object. These functions follow below:

settag(o,t,T) = TU {(o,t)}
cleartag(o,t,T) = {{o', 'Y € T|o# o ||t #t'}

The satisfies helper function, given below, is used to de-
termine whether an object’s flags satisfied the guard expression

flagexp.

satisfies(o, f, F) = F(o, f)
satisfies(o, ! flagexp, F) = —satisfies(o, flagexp, F)
satisfies(o, flagexpy and flagexps, F) = satisfies(o, flagexpi, F)A
satisfies(o, flagexpa, F)
satisfies(o, flagexpy or flagexps, F) = satisfies(o, flagexpi, F)V
satisfies(o, flagexps, F)

3) Task Invocation: We next define the task invocation
transition. Without loss of generality, we express the task
declaration in the following form:

task name(p1 in flagexp: with tagtypeir tagnameiy, ...,
tagtypeim, tagnameim,,...,pn in flagexp, with tagtypen1
tagnamen, ..., tagtypenm,, tagnamenmn)

To invoke a task on a set of parameter objects, the imple-
mentation must ensure that this task has not already failed
on the same set of parameter objects I ¢ Zygieq, that the
parameter objects satisfy the flag guard expressions Byiqgs,
that the parameter objects satisfy the tag guard expressions
Biags, and the implementation is not currently executing a
task. The implementation has the freedom to invoke any tasks
that satisfies these conditions. We define the transition for the
task invocation operation below. Note that the object variables
in B quantify over all objects in the heap and that the tag
variables in L quantify over all tag instances.

I ¢ Z¢aited> Bfiags, Btags
(m, F, T, 7, Liaitea),0,0) = ((m, F, T, 7, Lraitea), I, M)

where I = (name, B)

B = {{p1,01), .-, (Pn;0n)}

Byflags =1 < i < n. satisfies(os, flagexp;, F)

Biags =1 <i<n. 1< j<m;.(tiy;, tagtypei;) € T,(0i, tij) € T

L = {{tagnamei1, t11), ..., (tagnamelml R tlml)7 e

(tagnameni,tn1), ..., (tagnamenm,, » tnmy, ) }
M = (m,F,T,7,L,Sfresh)

where Syreqp, 18 a fresh execution state for the task to run in.
Note that Sy,..s, represents a new task execution state (i.e.
stack, processor registers, etc).
4) Task Commit: We next define the task commit transi-
tion. Without loss of generality, we express the taskexit
statement in the following form:

taskexit(name; : set flagnamei; to booliq, ...,

set flagnameiy, to boolik, ,add tagnameir, ...,

’
add tagnamey,, , clear tagname,, ..., clear taLgnamrLellm1 s eeny
name., : set flagnameni to booln1, ..., set flagnamenyg,, to
’
boolyk,, ,add tagnameni, ..., add tagnamey,,, , clear tagname,,,

7
..., clear tagname,,, )

To execute a taskexit statement, the implementation
updates the task’s flags and tags and then commits any changes
the task has made to the heap, the flags, or tag bindings. We
define the transition for the taskexit statement below:

(m, F, T, 7, Zsaitea), I, (m', F', T, 7', L', S")) =
Um, F" T, 7" Ttaitea), 0, 0)

where F'' = setflag(on, flagnameny,, , booly,, , ...
setflag(on, flagnamenpy, booly1, ...
setflag(o1, flagnameiy,,booligy, ...
setflag(o1, flagnameir, booliy, F')...)...)...)
T" = settag(on, L' (tagnameny,, ), ...

settag(on, L/(tagnamenl),
settag(o1, L’(tagnamelll )y e
settag(o1, L/(tagna’men)7 Tb/lle(“))))

T//

wlear = cleartag(on, L' (tagname

’

g )s
cleartag(on, L' (tagname,,,), ...
cleartag(o1, L/(tagnamellml )y ee

cleartag(oy, L' (tagname},), T')...)...)...)

5) Tag Allocation: We next define the tag instance allo-
cation transition. A new tag instance is created using a tag
allocation statement of the form:

tag tagname = new tag(tagtype)
We define the transition for the new tag statement below:
(G, I, (m', 7', 7', 7', L',§")) =

(g7]7 <m/,.7'—/,T,77'”,L”,SI>>

where 7/ = 7' U {(tagfresn,tagtype)}
L"=L"u {(tagname, tagsresn)}

Note that tagys,esn represents a fresh tag instance.



6) Object Allocation: We next define the new object allo-
cation transition. Without loss of generality, we express the
new statement in the following form:

new name(params)(set flagname; to true, ...,
set flagname, to true)(add tagnames, ...,

add tagname,,)

We define the transition for the new statement below:
(G, 1,(m',F', 7', 7', L',8"))y = (G, I,(m" 7", T",7',L',8"))

where F'’ =setflag(ofresh, flagnamen, true, ...
setflag(ofresh, flagnamey, true, F..)
T =settag(0fresh, L'(tagnamen),
settag(Oofresh, L/(tagna'rnel ), 'T/).A.)

where 0.5 is a freshly allocated object.

7) Task Failure: We next define the behavior when the
implementation detects an error. When an error is detected,
the implementation aborts the execution of the current task
and then records the task and parameter objects that caused
the failure in the failed task record. We define the transition
for the task abort below:

error detected

{m, F, T, 7, Ltaitea), I, M) = {({m, F, T, 7, Laitea U I),0,0)

IV. RUNTIME SYSTEM

The Bristlecone runtime is responsible for dispatching tasks,
detecting errors, and recovering from errors.

A. Task Execution

Recall that the task specification contains guard expressions
for all of the task’s parameters and that the runtime executes
a task when parameter objects are available that satisfy these
guards. We next discuss how our implementation efficiently
performs task dispatch. A naive approach to task dispatch
could potentially be very inefficient — a parameter’s guard
expression is quantified over all objects in the heap!

1) Parameter Sets: The runtime maintains a parameter set
for each parameter of each task. A parameter set contains
all of the objects that satisfy the corresponding parameter’s
guard. For each object type, the runtime precomputes a list of
parameter sets that objects of this type can potentially be a
member of. When a task exit changes an object’s flag settings
or tag bindings, the runtime updates that object’s membership
in the parameter sets by traversing the precomputed list of
possible parameter sets for the class and evaluating whether
the object satisfies the guard expression to be a member of the
parameter set.

Bristlecone also uses the parameter sets as root sets for
garbage collection. Objects in Bristlecone are garbage col-
lected if (1) the object is unreachable from any potential
parameter objects and (2) the object cannot be a parameter
object of any task as determined by membership in a parameter
set. Note that it is possible to write incorrect programs that
leave objects in task queues (e.g consider a two parameter

task with tagged parameters, the program might only change
one parameter object’s flags leaving the other parameter object
in the queue). Section V presents a static analysis that helps
developers identify these types of memory leaks.

2) Task Queue: A task invocation is a tuple that includes
both a task and bindings for that task’s object parameters and
tag parameters. An active task invocation is a task invocation
that satisfies all of the task specification’s guards and can
therefore safely be invoked by the runtime. The runtime
maintains the task queue of all active task invocations and
executes task invocations from this task queue.

Our implementation maintains a conservative approximation
of the task queue — our implementation’s task queue may
contain a number of non-active task invocations in addition
to all of the active task invocations. When an object is added
to a parameter set, the implementation generates all active
task invocations that bind that object to the corresponding
parameter and then adds these active task invocations to the
task queue. When an object is removed from a parameter set,
our implementation does not remove task invocations from the
task queue. Instead, before the implementation executes a task
invocation in the queue, the implementation verifies that the
task invocation is still active. Verification is straightforward —
the runtime simply checks that the parameters are still in the
corresponding parameter sets and that the tag is still bound to
the specified parameter objects.

3) Iterators: We next describe how our implementation
efficiently computes the set of active task invocations. Our
implementation incrementally computes the set of new task
invocations when a task changes an object’s tag bindings
or its flags. The key insight in our implementation is that
tag bindings restrict how parameter objects may be grouped
together into a task invocation, and therefore, the imple-
mentation can leverage tags to efficient prune many possible
task invocations that do not satisfy tag guards. Consider that
the sendPage task in a web server may require both a
WebRequest object and a Socket object tagged with the
same connection instance as parameters. Our implementa-
tion uses the connection tag instances to prune the search
space of possible task invocations to avoid exploring pairs of
WebRequest and Socket objects that are not bound to the
same connection tag.

The search is structured as a sequence of iterators over
parameter objects or parameter tag instances. The implemen-
tation uses two iterator types: object instance iterators and
tag instance iterators. Object instance iterators iterate over
possible parameter objects in the corresponding parameter
set that are compatible with all tag variable bindings made
by previous tag iterators in the sequence. In general, we
expect that relatively few objects will be bound to a given
tag instance and relatively few tag instances will be bound to
a given object. Our implementation exploits this expectation to
optimize the object iterators: if the parameter has a tag guard
with a tag variable that was bound by a previous tag iterator,
the implementation optimizes the object iterator to only iterate
over the objects bound to that tag instance. Tag iterators iterate
over tag instances that are bound to objects chosen by previous
iterators in the sequence.



Note that the order of the iterators can affect the size of
the search space that the implementation explores to generate
all active task invocations. Our implementation precomputes
iterator orderings for each parameter of each task. The imple-
mentation uses the following ordering priority:

1) Tag iterators for tags bound to parameter objects that
have already been iterated over have the highest priority.
We expect that the set of iterated tag instances will
be small and, therefore, tag bindings will substantially
prune subsequent object iterations for parameters bound
to the same tag variable.

2) Object iterators for parameters with tags that are bound
by previous tag iterators.

3) Object iterators for parameters with tags that have not
yet been iterated over.

4) Remaining object iterators have the lowest priority.

4) Task Execution Semantics: Tasks may fail either as a
result of software errors, hardware failures, or user errors. If
a task fails, it may leave data structures in inconsistent states.
Further computation using these inconsistent data structures
will likely have unpredictable and potentially catastrophic
results. To avoid this problem, tasks in Bristlecone have
transactional semantics — if a task fails, the Bristlecone
runtime aborts the task’s transaction.

Recall that a potential issue with the use of transactions
in traditional programming languages is that after the system
recovers to the previous point, the system may simply re-
execute the same deterministic fault and that fault will cause
the system to fail repeatedly in the same way. Bristlecone
addresses this issue by using the flexibility provided by the
task-based language to avoid re-executing the same failure.
The Bristlecone runtime records the combination of task and
parameter assignments that caused the failure and uses this
record to avoid re-executing the failed combination task and
parameter assignments. Instead, the runtime executes other
tasks to avoid retriggering the same underlying fault.

B. Error Detection

Errors can cause the computation to produce incorrect re-
sults and corrupt data structures, potentially eventually causing
the software system to perform unacceptably. Bristlecone uses
runtime checks to detect errors, enabling the software system
to adapt its execution. The Bristlecone runtime uses error
detection routines to trigger recovery actions.

Bristlecone detects many types of software errors. For
example, the Bristlecone compiler generates array bounds
checks. These checks verify that the software system does not
read or write past the end of arrays. The Bristlecone compiler
also generates the necessary type checks for array operations
and cast operations. These checks ensure that the dynamic
types of objects do not violate type safety.

The runtime uses hardware page protection to perform
null pointer checks. This is implemented by catching the
segmentation fault signal from the operating system. These
checks ensure that the software system does not attempt to
dereference a null pointer or write values to the fields of a null
pointer. The runtime also uses hardware exceptions to detect

arithmetic errors including division by zero. Native library
routines also signal errors to the runtime. For example, if a
software system attempts to send data over a closed network
connection, the runtime will signal an error. Software errors
can also cause a program to loop. Looping can prevent the
software system from providing services. It is straightforward
to support developer-provided task time-outs that the runtime
can use to detect looping tasks.

Bristlecone includes a runtime assertion mechanism to en-
sure that the execution is consistent with respect to specified
properties. The developer can simply write imperative code
to check properties or can use the assertion mechanism to
call external consistency checking code. This mechanism is
intended to be used to ensure data structure consistency or to
use techniques such as design by contract to detect higher-
level errors. The mechanism can be used in conjunction with
JML assertions [29], data structure consistency specifications
languages [14], [16], or other runtime checkable specifications.

C. Error Recovery

Bristlecone was designed to support reasoning about failures
at the level of tasks. In Bristlecone, a task either successfully
completes execution or does not execute at all. Bristlecone
adds write barriers to all object and array write operations
to ensure that backup copies of all objects modified by the
transaction exist. If the transaction is aborted, the objects are
restored from the backup copies.

A second issue with the current implementation is transac-
tional I/0. One solution is to use a transactional I/O API that
delays the effects of I/O operations until a task commits.

If Bristlecone detects an error, it simply fails the entire task
and aborts the transaction to rollback the state affected by the
failed task. This recovery strategy greatly simplifies reasoning
about the state of the software system after a failure. Aborting
the transaction ensures that a failure does not leave partially
updated data structures in inconsistent states.

Many software errors are deterministic. If Bristlecone re-
executes a failed task on the same parameters in the same
state, it is likely that the task will fail again due to the
same error. Bristlecone addresses this issue by maintaining
a record of failures. For each failure, this record contains the
combination of the failed task and the parameter assignments
that failed. Bristlecone uses this record to avoid re-executing
the same failures by checking reference equality of the task’s
parameters. The Bristlecone runtime then uses the object flags
to determine which tasks can be executed even though part of
the computation has failed. To better handle non-deterministic
failures, the approach can be extended to automatically retry a
failed task execution a few times. We note that after a failure, a
failed object can remain in the task queue and never be garbage
collected. We expect that in practice, software systems will be
mostly correct and therefore failures will be rare occurrences
and only small amounts of memory will be leaked due to
failures.

D. Debugging and Error Logging

While it is desirable for deployed Bristlecone software
systems to make every effort to avoid failures, during the de-



velopment phase this behavior can mask failures and therefore
complicate the debugging process. To facilitate debugging,
Bristlecone can be configured to fail-fast. The fail-fast mode
ensures that developers will notice software errors during the
development process. Moreover, it would be straightforward
to have the runtime record the state of the objects that caused
the task failure. This information could help with debugging
many software errors.

Furthermore, both developers and system administrators
often want to be aware of failures in deployed systems so
that the underlying faults can be fixed. Bristlecone contains
a logging mechanism that records both the task that failed
and the type of error. This log ensures that developers and
system administrators are aware of failures in Bristlecone
software systems and gives the developers a starting point for
diagnosing the cause of the failure. In some cases, developers
may wish to create a custom framework to communicate
failure data. It would be possible to provide an API for
querying the runtime system about failures.

V. STATIC ANALYSIS

The static analysis produces a flag state transition diagram
for each class. The nodes in this diagram represent the possible
flag states of an object: the flag state includes the boolean
values of each flag in the class and an abstraction of the
tag instances the object has been tagged with. Recall that an
object can have many different tag instances of the same type.
Therefore, the flag state abstracts the tag state with a 1-limited
abstraction for tags; for each tag type, the flag state indicates
whether that object has 0, 1, or at least 1 instance of that tag.
We abstract the set of reachable flag states F' using a set of
flag state nodes N.

The set T of tasks represents the possible set of tasks. The
set P C T x N represents the possible set of combinations
of tasks and parameter indices for the invocation of a task on
an object. The set of edges & C N x P x N represents the
possible object flag state transitions. If task 7" can be invoked
with its ith parameter object in the flag state f; and exits with
this object in the flag state fs, then there is an edge for a task
T for its i¢th parameter from the flag state node n; for fi to
the flag state node ny for f5, The lack of an edge implies that
a transition is prohibited.

We have implemented the static analysis using two phases.
The first phase computes: (1) the objects that each task
allocates and (2) the initial flag states of these objects. The
second phase uses the results of the first phase to compute:
(1) the set of reachable states for each class and (2) which
tasks can cause transitions between these states.

A. New Object Analysis

We next describe how the analysis determines the initial
states of all objects that a task can potentially allocate. The
complication is that Bristlecone methods with tag parameters
were designed to be polymorphic in the tag type to provide
developers with the flexibility to pass any type of tag into a
method that takes tag parameters. This flexibility is desirable
as a developer may often need to group arbitrary combinations

of objects including classes developed by other developers.
However, as a result of this complication, the new object
analysis must consider a method’s calling context before it
can determine the types of the tag instances that the method
may use to tag newly allocated objects.

1 callers = {}

2 alloc:={}

3 @:=Tx{}

4 while @ is not empty

5 remove method or task (m,b) from Q

6 tomap = {}

7 if m is a task

8 for each tag ¢ with type 7 declared in ¢’s declaration

9 add (t, ) to tvmap

10 else if m is a method and set of tag bindings b

11 add bindings b to tvmap

12 for each tag allocation t=new tag 7 inm

13 add (t,7) to tvmap

14 for each method call ¢ in m

15 for each method m’ that ¢ could invoke

16 add (m’,b") to @ where b’ contains the tag variables in
17 m declaration bound to their corresponding types
18 add ({(m, by, (m',b")) to callers

19 for each allocation site a in m

20 Compute the initial flag state f using tvmap to look up
21 tag types

22 add (m, f) to alloc.

23 do

24 for each ({(m,b), (m’', b)) in callers

25 alloc := alloc U ({m} x alloc(m’))

26 while alloc changes

Fig. 9. New Allocation Analysis

Figure 9 presents pseudo-code for the object allocation
analysis. The analysis specializes each method with a calling
context that contains a list of the types of all the tag parame-
ters. The analysis explores the application’s call graph starting
with the set of tasks as its root set. This phase of the analysis
computes the map alloc from tasks and methods to the set
of initial flag states for the objects allocated by the task or
method.

The analysis is structured as a workset algorithm. The
workset () is initialized with the set of tasks in the application.
The algorithm removes a tuple consisting of either (1) a task
m and the empty set or (2) a method m and a map b from
the method’s tag parameters to the tag types for the calling
context. The analysis then initializes the tag variable map
tvmap from tag variables to the corresponding tag types. For
methods, the analysis initializes tvmap from the method’s tag
context b and for tasks the analysis initializes tvmap from the
declared tag parameters in the task declaration. The analysis
then updates tvmap with any tag allocation statements in
the current method. Next, the analysis processes each call
site in the method. When the analysis discovers a method
call to a previously unseen method calling context, it adds
that method calling context to the workset (). Finally, the
analysis processes all of the allocation sites in the method. The
analysis uses the map tvmap from tag variables to tag types
to determine which tag types are bound to newly allocated



1 discovered := {}

2 @ ={ StartupObject with initialstate:=true }

3 while @ is not empty

4 remove flag state f from @

5  for each task ¢ in T’

6 for each parameter ¢ of task ¢

7 if (f’s type is not the declared type 7; of parameter i or
8 a subtype of 7; ||

9 f does not satisfy flag guard expression of parameter 3 ||

10 f is not bound to all declared tags for parameter %)
11 goto 6

12 for each flag state f’ in alloc(t)

13 if f’ is not in discovered

14 add f' to discovered and @

15 for each task exit e in ¢

16 compute the state f' of parameter i after task exit
17 add (f, (t,i),f) 0 E

18 if ' is not in discovered

19 add f’ to discovered and Q

Fig. 10. State Transition Analysis

objects. The combination of the tag type information and the
initial flag settings is sufficient for the analysis to determine
the flag states of all objects the method or task can allocated.
It continues this process until it has processed all reachable
tasks and method calling contexts.

Finally, the analysis computes the transitive closure to
determine the initial states allocated by each task or method
and all methods transitively called. The analysis topologically
sorts the strongly connected components of the call graph.
The computation processes the strongly connected components
of tasks and method calling contexts in topological order to
compute all of the flag states that either the task, the method, or
any method that it (transitively) calls allocates. Note that all
methods in a strongly connected component can potentially
(transitively) allocate the same set of flag states. A simply
analysis of the algorithm structure reveals that complexity of
the analysis is linear in the number of tasks plus the number
of method calling contexts.

B. State Transition Analysis

We next describe the second phase of the static analysis
that computes the set of flag state transitions that tasks can
potentially perform. This analysis uses the results of the new
object analysis to determine the flag states of all objects that
a task could potentially allocate.

Figure 10 presents pseudo-code for the state transition
analysis. The analysis is structured as a workset algorithm.
The basic approach is to start with the initial state of the
StartupObject and then to explore all of the flag states
that can be reached through the task invocations.

The analysis initializes the StartupObject object in its
initial state with its initialstate flag set to true. For each
flag state, the analysis analyzes the task specifications in steps
5 through 10 to determine all of the tasks that an object with
this flag state could potentially serve as a parameter. For each
such task in steps 12 through 14, the state transition analysis
uses the results of the new object analysis to determine the flag

states of all objects that this task may potentially allocate. For
any flag state the analysis has not already discovered, it adds
that flag state to the queue. Finally, the analysis examines each
possible task exit to determine how that task changes the flags
and tags of the parameter object.

Our implementation extends this basic algorithm to conser-
vatively analyze the action of the runtime on external flags
by modelling the action of the runtime on an external flag
as equivalent to a pair of tasks: one task that operates on all
objects with the external flag cleared and sets it and a second
task that operates on objects with the external flag set and
clears it. Because the analysis must analyze each task in the
context of each reachable flag state, the complexity of the
analysis grows with the product of the number of tasks and
the number of reachable flag states.

C. Automated Analysis of Flag State Transition Diagrams

We have developed an analysis of flag state diagrams
that checks necessary conditions for an object to be garbage
collected. In general, objects in Bristlecone can be garbage
collected if (1) the object is unreachable from any potential
parameter objects and (2) the object cannot be a parameter
object of any task. This analysis determines which states
can be garbage collected, from which states that objects can
eventually transition into a garbage collectible state, and from
which states objects can never reach a garbage collectible
state. Our tool communicates this information to the developer
through the shape of the nodes in the flag state transition
diagram.

D. Task Diagrams

Depending on the task at hand, the developer may wish
to view a coarser abstraction of the application. Our tool
can generate task diagrams to help the developer understand
how objects flow between tasks. Task diagrams provide the
developer with a task-centric view of the application. There is
a task diagram for each class in the heap.

The nodes in a class’s task diagram represent the tasks that
take objects of that class as parameters. The edges in the
diagram model the flow of objects between tasks — there is
an edge from one task to a second task if a parameter object of
the first task can be used as a parameter object of the second
task immediately after the first task exits.

In some cases, the developer may wish to view how all
of the tasks in the application interact. Our tool can generate
an overview task diagram that unifies all of the class task
diagrams into a single diagram. In addition, overview task
diagrams contain edges that capture the dependence between
a task that allocates new objects and other tasks that operate
on these newly allocated objects. This diagram gives the
developer an overview of the relationships between all of the
tasks in an application.

VI. EXPERIENCE

We next discuss our experiences using Bristlecone to de-
velop three robust software systems: a web crawler, a web
server, and a multi-room chat server.



A. Methodology

We have implemented the Bristlecone compiler. Our im-
plementation consists of approximately 22,400 lines of Java
code and C code for the Bristlecone compiler and runtime
system. The Bristlecone compiler generates C code that runs
on both Linux and Mac OS X. The Bristlecone runtime uses
precise stop-and-copy garbage collection. The source code for
our compiler and runtime is available at http://demsky.
eecs.uci.edu/bristlecone/. We ran the benchmarks
on a MacBook with a 2 GHz Intel Core Duo processor, 1 GB
of RAM, and Mac OS X version 10.4.8.

For each benchmark, we developed two versions: a Bristle-
cone version and a Java version. We designed the Java versions
to tolerate faults by using threads to isolate components of the
computation. Without using threads to provide fault tolerance,
the Java versions would have halted with the first failure.

Our evaluation was designed to evaluate how robust each
version of the benchmark applications was to the large class
of faults that cause the faulty thread or task to perform an
illegal operation. This fault class includes faults that cause
null pointer dereferences, out of bound array index errors,
failed assertions, failed data structure consistency checks,
library usage errors, and arithmetic exceptions. Our evaluation
simulated the effects of this fault class by randomly injecting
halting failures.

We used the Bristlecone compiler to automatically insert
failure injection code after each instruction. We used the
Java frontend of our compiler framework to compile and
instrument the Java versions. The failure injection code takes
three parameters at runtime: the number of instructions to
execute before considering injecting a failure, the probability
that a failure will be injected, and the total number of failures
to inject. For each benchmark, we selected the number of
failures and then set the failure probability to ensure that
the normal execution of the benchmark would reach the set
number of failures.

B. Web Crawler

The web crawler takes an initial Uniform Resource Locator
(URL) as input, visits the web page referenced by the URL,
extracts the hyperlinks from the page, and then repeats this
process to visit all of the URLs transitively reachable from
the initial URL.

The Bristlecone version contains four tasks. The Startup
task creates a Query object to store the initial URL that was
specified on the command line and creates a QueryList
object to store the list of URLs that the web crawler has
extracted. The requestQuery task takes a newly created
Query object as input, contacts the web server specified
by the Query object, and then requests the URL specified
by the Query object. The readResponse task reads the
data that is currently available on the connection and then
checks if the task has received the complete web page.
The processPage task extracts URLs from the web page,
checks the QueryList object to see if the crawler has seen
this URL before, and then creates a Query object if the URL
has not been seen before.

Java | Bristlecone
Web Pages Crawled (out of 100) 6 91

Fig. 11. Summary of Web Crawler Benchmark Results

The Java version uses a pool of three threads to crawl web
pages. Each thread dequeues a URL from a global list of pages
to visit, downloads the corresponding web page, extracts URLs
from the web page, and then stores any URLSs it has not seen
before into the global list of pages to visit.

We evaluated the robustness of the web crawler by de-
veloping both a workload and a failure injection strategy.
Our workload consisted of a set of 100 web pages that
each contain 3 hyperlinks to other web pages in the set. We
used randomized failure injection to inject failures into the
executions of the web crawlers. We injected 3 failures into
each execution with each instruction having a 1 in 426,000
chance of failing.

We performed 100 trials of the experiment on each ver-
sion. For each trial, we measured how many web pages the
crawler downloaded. Figure 11 presents the results of the
web crawler experiments. Without the injected failures, both
versions download 100 web pages. With the injected failures,
on average the Bristlecone version downloaded 91 out of 100
web pages and the Java version downloaded 6 out of 100 web
pages. While most of the injected failures in the Bristlecone
version only affect crawling a single web page, failures that
are injected into either the startup task or the processing of
the initial web page can affect crawling many web pages.
Such failures prevent the Bristlecone version from discovering
the URLs of any further pages and significantly lowered the
Bristlecone version’s average number of crawled pages.

C. Web Server

The web server benchmark contains features that are in-
tended to model an e-commerce server. The web server
integrates features often found in application servers — it
maintains an inventory of merchandise and supports requests
to perform commercial transactions on this inventory, includ-
ing adding new items, selling items, and printing the inventory.

The Bristlecone version contains six tasks. The StartUp
task creates a ServerSocket object to accept incoming
connections, creates a Logger object to log the connections,
and creates an Inventory object to keep track of the current
inventory of merchandise. The AcceptConnection task
processes incoming connections and creates a WebSocket
objects to manage each connection. The ProcessRequest
task reads the data that is currently available from the incoming
connection and then checks if the task has received the
complete request. When the complete request is available,
the ProcessRequest task parses the request to determine
whether the request is an e-commerce transaction or a simple
file request.

The Transaction task processes e-commerce transaction
requests. It first inspects the request to determine whether the
request is to add new items to the inventory, to make a pur-
chase, or to display inventory and then performs the requested
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Failures to serve Inventory Responses 4.5% 1.5%
Correct Inventory Responses 68.6% 100%
Failures to Serve Request 3.8% 2.2%
Failures to Log Request 3.9% 2.6%

Fig. 12.  Summary of Web Server Benchmark Results

operation. For example, after receiving a purchase request the
task looks up the price of the item in the Inventory object,
verifies that the item is available, and if so, decrements the
inventory count for the item and adds the price of the item to
the sales figure.

The SendFile task processes file requests. It opens the
requested file, reads the file’s contents, and writes the file’s
contents to the socket. The LogRequest task logs all of the
requests to the log file.

The Java version of the web server uses a thread to monitor
for incoming connections. When a new connection arrives, the
server spawns a separate thread for that incoming connection.
The server uses a global object to store the inventory values.
We used this design to isolate failures in connection threads
to that specific request as much as possible. Note that failures
can potentially corrupt the shared state. Note that unlike the
Bristlecone version of the web server, a failure in a connection
thread will prevent the server from performing any further
operations for that connection including logging the request.

We evaluated the robustness of both versions of the web
server by developing both a workload and a failure injection
strategy. Our workload simulated web traffic to the server.
Our workload consisted of a sequence of 4,400 transaction
requests. Our failure injection strategy utilized the failure
injection code described in the previous section.

We used failure injection to randomly inject 50 failures into
the execution with a probability of injecting a failure after a
given instruction of 1 in 2,100,000. We performed 200 trials
on each versions. For each trial we recorded whether the final
inventory request was served, whether the final inventory was
consistent, how many requests each version failed to serve,
and how many requests each version failed to log.

Figure 12 summarizes the results of the fault injection
experiments with the web server. The Java version failed
to serve the inventory request in 4.5% of the trials while
the Bristlecone version failed to serve the inventory request
in 1.5% representing a three-fold reduction in the number
of failures to serve inventory requests. More importantly,
while the Java version served correct inventory responses only
68.6% of the time, the Bristlecone version served the correct
inventory response 100% of the time. The Java version failed
to serve 3.8% of the web requests and Bristlecone version
failed to serve 2.2% of the web requests, representing a 42%
reduction in the failure rate. The Java version failed to log
3.9% of the web requests and Bristlecone version failed to
log 2.6% of the web requests, representing a 33% reduction
in the failure rate.

D. Chat Server

The multi-room chat server benchmark accepts incoming
connections, asks the user to create a new room or select an
existing room, and then allows users to chat with other users
in the same chat room. The Bristlecone version contains six
tasks. The StartUp task creates a ServerSocket object to
accept incoming connections and a RoomOb ject to manage
the chat rooms. The AcceptConnection task processes
incoming chat connections. It creates a Chat Socket object
to manage this connection and then sends a message to ask
the user to select a chat room.

The ReadRequest task reads the user’s chat room selec-
tion. It reads the currently available data from the incoming
connection and checks if the chat server has received the
complete chat room selection. When the complete room re-
quest has been received, the ProcessRoom task processes
the request. If the requested room does not exist, it creates
the requested chat room. It then adds the user to the requested
chat room. The chat server stores the mapping of chat room
names to the set of chat room participants and for each room,
maintains a list of participants in the corresponding room.

The Message task processes incoming chat messages
and stores these message in a Message object. The
SendMessage task then reads these Message objects,
parses the messages, and then sends the messages to all of the
participants in the chat room. Note that a problematic message
or other error condition that causes the SendMessage task
to fail will not prevent the server from processing future
messages from the same connection.

The Java version of the chat server uses a thread to monitor
for incoming connections. When a new connection arrives, the
server spawns a separate connection thread for that incoming
connection. The server uses a global object to store the set
of chat rooms. Unless a failure corrupts the room list, this
design isolates failures in connection threads to the specific
connection. Note that unlike the Bristlecone version, a single
failure in a connection thread will prevent the server from
relaying any further messages from that connection.

We evaluated the robustness of both versions by developing
a workload and a failure injection strategy. Our workload
simulated multiple users chatting. Our workload sent a total of
800 messages. Our failure injection strategy utilized the failure
injection code described in the previous section.

We used failure injection to randomly inject 10 failures into
the execution with a probability of injecting a failure after a
given instruction of 1 in 270,000. We performed 100 trials
on each of the two versions. For each trial we recorded how
many messages were successfully transmitted.

In the presence of the injected failures, the Java version
failed to deliver 39.9% of the messages and the Bristlecone
version failed to deliver 19.3% of the messages, representing
a factor of two reduction in the failure rate.

E. Experiences Writing Bristlecone Applications

We have developed Bristlecone and Java versions of three
different benchmark applications. In general, we found writing
Bristlecone applications to be straightforward. The process



begins with identifying both the high-level operations and
the key data structures in the program. Next, the developer
determines the conceptual states of the key data structures and
the dependences between these conceptual states and the high-
level operations. The developer then uses this information to
write task specifications. We found that the Bristlecone ver-
sions often shared major components with our Java versions.

The Bristlecone versions of the benchmarks were approx-
imately the same size as the Java versions. The Bristlecone
version of the web crawler contained 20% fewer lines of code
than the Java version, the Bristlecone version of the web server
contained 2% more lines of code than the Java version, and
the Bristlecone version of the chat server contained 5% more
lines of code. The Bristlecone version of the web crawler was
shorter because it did not require an auxiliary data structure
to store queries.

FE. Performance

Although Bristlecone uses standard compilation techniques
for the body of methods and tasks, it incurs extra overheads
supporting transactions and task invocation. We have measured
the current implementation’s task invocation overhead on a
microbenchmark to be 0.63 microseconds per task invocation
on a 2.2 GHz Core 2 Duo. The same microbenchmark on
our previous checkpointing-based implementation takes 4.68
microseconds per task invocation.

To measure the overhead of Bristlecone on a real computa-
tion, we ported a Mandelbrot set computation that generates a
3200x3200 image to C and Bristlecone. The Bristlecone ver-
sion divides the computation into 800 tasks. The Bristlecone
version took 4.82 seconds and the C version took 3.95 seconds,
representing a slowdown of 22% relative to C. Note that a
number of opportunities remain to optimize the overhead of
task invocation and eliminate many of the write barriers.

G. Discussion

Our experience indicates that software systems developed
using Bristlecone can recover from many otherwise fatal
failures. The Bristlecone versions of all three benchmarks were
able to recover from many more injected failures and provided
a higher of quality of service than the hand-designed Java
versions.

Note that these results only hold for software faults that can
be automatically detected. These results can be generalized to
include faults that cause the application to silently perform
an incorrect action, if the developer provides Bristlecone
with a runtime-checkable correctness specification the detects
the error. Examples of such specifications include runtime
assertions or data structure consistency specifications.

VII. ANALYSIS EXPERIENCE

We next discuss our experiences using the flag state analysis
tool to explore the behavior of several Bristlecone programs.
We report our experience for: TTT, a tic-tac-toe game; a web
server; and a chat server. In these experiments, the co-author
using the static analysis tool had no prior experience with the
benchmark programs but was experienced with Bristlecone.

Flag MakeMove, Tag connect(1)

SendBoardDisplay

Flag SendBoard, Tag connect(1)

Fig. 13. Flag State Transition Diagram with ReceiveRequest reset

A. Tic-Tac-Toe Server

TTT, a tic-tac-toe game server, was developed by a student
in the author’s class as a class project. Users can connect to
TTT through telnet and play a game of tic-tac-toe against
the computer. This was the student’s first experience with
Bristlecone. The student only had access to example programs
and the Bristlecone technical report — the student did not have
access to a Bristlecone tutorial or receive any other assistance
writing TTT. When we attempted to run TTT, we discovered
some surprising behaviors. For example, TTT did not allow
us to complete the game and it printed out multiple copies
of the board after each move. We used the flag state analysis
to understand TTT’s erroneous behavior. Our tool produced a
flag state diagram for the initial buggy version of TTT that
contained too many nodes and edges to be understood.

Although we found it difficult to learn much about TTT
from this initial diagram, we did observe many self-edges.
We found these self-edges to be interesting, because they
indicate that a task can potentially fire repeatedly on the same
object. For example, we were able to use the initial diagram
to determine that the ProcessRequest task can potentially
fire multiple times. Since the TTTServerSocket object can
only store a single request, this could potentially result in a
race condition in which a second request clobbers the first
request before the server can process the first request. To
correct this bug, we modified the task specification to reset
the ReceiveRequest flag after processing each request.

Figure 13 presents the flag state transition diagram after
this correction. The nodes in this diagram represent the flag
states of objects of the TTTServerSocket class and the
edges represent the effects of task invocations on these ob-
jects. Double peripheries around a node indicate that new
objects may be allocated with this flag state. A rectangular
node indicates that objects in the flag state represented by
the node will never reach a state in which no task can be
invoked on it, and therefore such objects can never be garbage
collected. We observed that the only node in this diagram
with a double periphery is rectangular — this implies that
TTTServerSocket objects can never be garbage collected.

We next observed that this new diagram contains self-edges
for the SendBoardDisplay, SendErrorMessage, and
GameOver tasks, indicating that these task may be executed
repeatedly causing the server to display multiple copies of the
same board, print error messages many times, and print the exit
message multiple times, respectively. Moreover, these possible
repeated task invocations prevent these objects from being
garbage collected. To correct these bugs, we modified the
task specification to reset the SendBoard, SendError, and
SendDone flags upon exiting the SendBoardDisplay,
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Fig. 14. Flag State Transition Diagram with Multiple Invocation Correction

Flag SendError, Tag connect(1)

Fig. 15. Final Flag State Transition Diagram

SendErrorMessage, and GameOver tasks, respectively.

Figure 14 presents the flag state transition diagram for
the version that corrects these errors. Note that all of the
nodes but one are elliptical, which indicates that the corre-
sponding objects may eventually reach a garbage collectible
state. The remaining diamond shaped node indicates that
objects in this flag state will no longer be parameters of
tasks and can be garbage collected if no references keep them
alive. Finally, we observed that there are no paths from the
SendBoardDisplay task or the SendErrorMessage
task to the ProcessRequest task in the flag state transition
diagram. This implies that the player can only make one
move in the game. To correct this bug, we modified the task
specification to set the ReceiveRequest flag upon exiting
the SendBoardDisplay and SendErrorMessage tasks.
Figure 15 presents the flag state transition diagram for the final
version of TTT. Note that the SendBoardDisplay task and
the SendErrorMessage task now return the object to the
Flag ReceiveRequest, Tag connect (1) flag state
where the ProcessRequest task is active.

B. Web Server

The web server benchmark contains features that are in-
tended to closely resemble an e-commerce server. The web
server maintains an inventory of merchandise and supports
requests to perform commercial transactions on this inventory,
including adding new items, selling items, and printing the
inventory. We used the flag-state analysis tool to explore the
behavior of this benchmark.

Fig. 16.

Flag State Transition Diagram for the WebServerSocket class

Flag Transinitidize . ransaction Flag Initidize . ogRequest

Fig. 17. Flag State Transition Diagrams for the Inventory and Logger classes

Figure 16 presents the flag state transition diagram for the
WebServerSocket class. The nodes in this graph represent
the flag states for the WebServerSocket class and the
edges represent the task transitions. The absence of rectangular
nodes in the graph indicates that a WebServerSocket
object can reach a state in which it will be garbage collected
unless a reference keeps it alive.

The diagram shows the two possible paths that a user
request can take through the web server: a user may request
the web server to serve a file or to perform a transaction on the
inventory. The absence of a path from the (Tag Link (1))
node to the start node (Flag WebInitialize, Tag
Link (1)) implies that the web server serves users on a
single request basis. We also made an interesting observation:
writing to the log is independent of serving the user request
— they can be performed in either order.

Figure 17 shows the flag state transition diagrams for the
Inventory and the Logger classes. These two diagrams
show that instances of these classes are live for the lifetime
of the web server. Inspection of the code reveals the reason
that these objects are live for the entire execution of the web
server — a single Inventory object is used to store the
inventory of the e-commerce server and a single Logger
object manages access to the log file.

C. Chat Server

The multi-room chat server benchmark accepts incoming
connections, asks the user to create a new room or select an
existing room, and then allows the user to chat with the other
users in that chat room. We explored the behavior of the chat
server using our flag state analysis tool.

Figure 18 presents the flag-state transition diagram for
the ChatSocket class. The presence of rectangular nodes
indicate a limitation in the chat server — ChatSocket
objects can never be garbage collected. We inspected the code
and discovered that the issue is that the chat server does not
contain functionality to allow the user to exit the chat room.
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Fig. 19. Task Diagram for the ChatSocket Class

The flag state transition diagram for the RoomOb ject class
contains a single node with a self-edge. The presence of the
self-edge in that diagram indicates that this object can never
be garbage collected. We inspected the code and discovered
that the chat server uses a single instance of this class to
maintain the list of chat rooms, and therefore, this is the
desired behavior.

In many cases, a developer may wish to see a coarser
abstraction of an application’s behavior. The task diagram is
designed to further abstract the interaction patterns between
tasks and objects. Figure 19 presents the task graph for
the ChatSocket class. The nodes in this graph represent
the tasks that act upon the ChatSocket object. From this
diagram, we can see that after a new user connects to the
chat server, the chat server reads the user’s chat room request,
processes this request, and then processes any messages that
the user sends to the room.

D. Discussion

In general, the state transition diagrams helped us to quickly
understand the structure of Bristlecone programs and to find
and correct bugs in the task specifications. Based on our
experience, we believe that this tool will make writing correct
task specifications even easier.

Our experience using the task state analysis to find bugs in
TTT raises an important question: If Bristlecone is designed
to tolerate software bugs, why did we use the static analysis
to explore a bug in a program? Note that there is an important
distinction to be made between bugs in the code and bugs
in the task specifications. Bristlecone is primarily designed to
address bugs in the actual code. Bristlecone relies on correct
task specifications to correctly compose the program: errors in
the task specifications can result in the application exhibiting
surprising behaviors.

However, our experience leads us to believe that writing
correct task specifications is easier than writing correct code.

In our experience, task specifications tend to be simple —
they express how high-level operations in the software system
interact. Errors in task specifications have been readily appar-
ent within the first few executions of a Bristlecone program.
We believe that this observation is a result of the high-level
nature of task specifications and will hold across a wide range
of Bristlecone programs. Furthermore, task specifications are
amenable to static analysis, like the one presented in this
article, that can help the developer understand all of the
possible behaviors of the program.

While we selected a student-written program with task
specification bugs because it was an interesting case study
for our analysis, we believe that this benchmark represents an
exception rather than the rule. We do not know of any task
specification bugs in the several other Bristlecone programs
written by others. It is important to remember that TTT was
written by a student that did not have access to any Bristlecone
tutorial, assistance from Bristlecone developers, or the static
analysis developed in the article.

VIII. RELATED WORK

We survey related work in testing, static analysis, exception
mechanisms, fault tolerance, programming languages, and
software architectures.

A. Approaches to Reliable Software

The standard approach to dealing with software failures is
to work hard to find and eliminate software faults. Approaches
such as extensive testing [9], static analysis [20], [39], soft-
ware model checking [13], error correction codes [41], and
software isolation mechanisms [1] are all designed, in part,
to eliminate as many potential errors as possible. We expect
that Bristlecone will complement these techniques by enabling
software systems to recover from software errors that the other
techniques miss.

Many programming languages, including Java, provide an
exception handling mechanism [21]. Writing exception han-
dlers requires developers to reason about what parts of the
computation are effected by the failure and how to recover the
computation from a failure. Bristlecone eliminates this diffi-
culty by automatically reasoning about program dependences
and generating the appropriate recovery actions.

Backward recovery uses a combination of checkpointing
and acceptance tests (or error detection) to prevent a software
system from entering an incorrect state [48], [37], [11], [47].
Unfortunately, it can be difficult to handle deterministic fail-
ures using backward recovery as the same software error will
likely cause the software system to repeatedly fail. Forward
recovery uses multiple copies of a computation to recover
from transient errors [26]. Forward recovery is designed to
handle intermittent failures — it cannot help deterministic
errors that affect all copies of the computation. Bristlecone’s
task specifications allow Bristlecone applications to continue
to perform useful work even in the presence of deterministic
failures by executing the parts of the application that do not
depend on the failure.



Fault tolerance researchers have developed many methods to
address software failures. Recovery blocks allow a developer
to provide multiple implementations of an algorithm and an
acceptance test for these implementations [4]. This technique
requires the developer to expend the effort to develop multi-
ple implementations and acceptance tests. Furthermore, the
recovery block technique may fail if the algorithms share
a common defect or if there is an error in the acceptance
test. In N-version programming, the developer constructs a
software system out of multiple, independent implementations
and a decision algorithm to decide which result to use in
the event of a disagreement [6]. For many applications, the
cost of developing multiple independent implementations is
prohibitive. Bristlecone enables these applications to benefit
from improved reliability at a lower cost.

The Recovery-Oriented Computing project has explored
integrating an undo operation into software systems [36] and
constructing systems out of a set of individually rebootable
components [10]. One issue with recursive restartability is that
key data structures can be corrupted causing the system to fail.
Bristlecone has been designed to partition data to minimize
how much data a failure can affect.

Researchers have used meta-languages to decompose nu-
merical computations into parallelizable tasks [38]. This tech-
nique is applicable to parallelizable numerical computations
that compute many subproblems and then combine the sub-
problem results to compute an overall result. If one of the
subcomputations executes slowly, this approach can ignore the
subcomputation. Bristlecone is designed to handle a broader
class of systems including servers, control systems, and office
applications and can provide stronger correctness guarantees.

B. Related Languages

A previous version of this article appeared in ECOOP
2008 [15]. This version of the publication adds formal se-
mantics for the language, a static analysis of the Bristlecone
task specifications, and two graphical representations of this
analysis’s results. These diagrams graphically characterize the
set of transitions that tasks can perform on the objects in the
application. The current implementation has been modified to
use write barriers to only copy modified objects instead of
checkpointing the entire heap that is reachable from the current
task’s parameters.

A key component of Bristlecone is decoupling unrelated
conceptual operations and tracking data dependences between
these operations. Bristlecone’s approach contains common
elements with many parallel programming paradigms [8].
Dataflow computation was one of the earlier computational
models that keeps track of data dependences between opera-
tions so that the operations can be parallelized [27]. Note that
dataflow languages are not designed to handle failures — a
failure in a data flow program will likely cause an operation
to fail to place a value in a queue, which would likely cause
the application to fail catastrophically because operations that
operate on multiple queues would pair the wrong values for
the rest of the computation. Bristlecone ensures that failures
cannot cause the wrong parameter objects to be paired together

or prevent a task from operating on parameter objects that were
not affected by the error.

Tuple-space languages, such as Linda [19], decouple com-
putations to enable parallelization. The threads of execution
communicate through a set of primitives that manipulate a
global tuple space. While these systems were not designed to
address software errors as errors in these systems can perma-
nently halt the execution of threads, Bristlecone implements a
similar technique to decouple the execution of its tasks.

The orchestration language Orc [12] specifies how work
flows between tasks. Orc is designed to decouple operations
and expose parallelism. Note that if an operation fails, any
work (and any corresponding data) flowing through the task
may be lost. Since the goal of Orc is not failure recovery, it
was not designed to contain mechanisms to recover data from
failed tasks. Therefore, errors can cause critical information
to disappear, eventually causing the software system to fail.
Bristlecone uses flags to track the conceptual states (or roles)
that objects are in, enabling software systems to recover data
from software errors and to continue to execute successfully.

Actors communicate through messages [25], [2]. Actors
were designed as a concurrent programming paradigm. Fail-
ures may cause actors to drop messages and corrupt or lose
their state. Bristlecone’s objects persist across task failures and
can still be used by other tasks. Moreover, state corruption in
actors can cause actors to permanently crash. Since Bristle-
cone’s tasks are stateless, a previous failure of a task does not
affect future invocations of that task on different inputs.

The Argus programming language organizes processes un-
der guardians and isolates process failures to the guardian
under which it executes [30]. Inconsistencies could potentially
cause the enclosing guardian to shut down. Argus supports
failure recover through an exception handling mechanism. This
approach is complementary to Bristlecone: a developer can
write exception handlers for anticipated failures and Bristle-
cone can be used to recover from unexpected failures.

Oz is a concurrent, functional language that organizes
computations as a set of tasks [42], [31]. Tasks are created
and destroyed by the program. A task becomes reducible
(executable) once the constraint store satisfied the task’s guard.
Task reducibility is monotonic — once a task is reducible
it is always reducible. Task activation in Bristlecone is not
monotonic — the developer can temporarily disable a task
when other tasks have placed objects into states that are
incompatible with the task or when the effect of a task is no
longer desirable. Non-monotonicity makes it straightforward
for a Bristlecone application to use multiple implementations
of the same functionality for redundancy. Moreover, since task
creation is controlled by the program in Oz, it is more difficult
to reason statically about tasks.

Concurrent Prolog is logic-based language that uses uni-
fication to prove a goal [40]. The proof corresponds to the
program’s execution. Concurrent Prolog’s guarded notation
is similar to Bristlecone’s flag expressions, but Concurrent
Prolog’s evaluation strategy starts from an end goal and
reasons backwards. Concurrent Prolog programs may be able
to recover from some failures by finding a different execution
that reaches the same goal. The downside is that if a failure



prevents the program from completely achieving its goal, the
program will be unable to make partial progress. Bristlecone
works forward and therefore can make progress even if a
failure prevents the system from completely achieving its goal.

Erlang has been used to implement robust systems using
a set of supervisors and a hierarchy of increasingly simple
implementations of the same functionality [S]. The supervisors
monitor the computation for errors. If an error is detected, the
system falls back to a simpler implementation in the hierarchy.
Ericsson has taken this approach in their telephone switches.
Bristlecone is complementary to the supervisor approach —
while the supervisor approach gives the developer complete
control of the recovery process, the downside of this approach
is that it requires the developer to manually develop mul-
tiple implementations of the same functionality. Bristlecone
requires minimal development effort and could potentially
make recovery cost effective for a larger set of applications.
Furthermore, while a shared but minor fault could cause the
entire Erlang implementation hierarchy to fail, in many cases
Bristlecone may be able to execute around the fault and still
provide nearly complete functionality.

The properties that the flag state analysis extracts are related
to typestate properties [43]. Nanda et al. [34] present a static
analysis that infers typestate properties. Ammons et al. [3]
present a dynamic analysis that monitors function calls to a
component to automatically extract finite state machines that
describe the component interface. Wasylkowksi et al. [44]
presents a static analysis that can extract and check finite
state automata for method calls on individual objects. Whaley
et al. [46] combine static analysis and dynamic analysis to
discover finite state machine component interface models.

Bristlecone separates information about the structure of
high-level components of a software systems and how these
components interact from the low-level code that implements
the components. Bristlecone separation of these different pro-
gram aspects shares philosophical underpinnings with aspect-
oriented programming [28]. Viewed in this light, Bristlecone
contribution can be seen as a mechanism to separate high-level
structural aspects from low-level imperative code.

C. Related Software Architectures

The staged event-driven architecture (SEDA) pushes events
through stages [45]. Note that this architecture was designed
for high-performance computation and not fault tolerance. An
error in a stage can prevent relaying the event and cause
information to be lost. Stages also have local state, therefore,
corruption of this state will cause that stage to shutdown
until reboot. It appears difficult to specify that an application
should either execute one sequence of operations or a second
sequence, but not both.

IX. CONCLUSION

We have successfully developed several robust software sys-
tems using Bristlecone. Bristlecone software systems consist
of a set of interacting tasks with each task implementing
one of the conceptual operations in the software system. The

developer specifies how these tasks interact using task specifi-
cations. Bristlecone uses transaction to recover data structures
from task failures. Bristlecone then uses task specifications
to reason about how to continue execution in the presence
of a failed task. The key results in this article include the
Bristlecone language, the Bristlecone compiler and runtime,
a static analysis of Bristlecone task specifications, and our
experience using the Bristlecone language. Our experience
indicates that the task-based approach used in Bristlecone can
effectively enable software systems to recover from otherwise
fatal errors. Bristlecone promises to increase the robustness of
software systems and to decrease the cost of developing many
classes of robust software systems.
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